TRABAJO ESPECIAL DE GRADO

EVALUACIÓN DEL COMPORTAMIENTO MECÁNICO DE BARRAS DE ACERO CON BAJO CONTENIDO DE CARBONO SOLDADAS CON JUNTAS A TOPE Y JUNTAS A SOLAPE

Presentado ante la ilustre
Universidad Central de Venezuela
Por los Brs.:
Ochoa Lugo, Alberto José.
Palma Oropeza, Alcides Enrique
Para optar al título de
Ingeniero Civil

TRABAJO ESPECIAL DE GRADO

EVALUACIÓN DEL COMPORTAMIENTO MECÁNICO DE BARRAS DE ACERO CON BAJO CONTENIDO DE CARBONO SOLDADAS CON JUNTAS A TOPE Y JUNTAS A SOLAPE

TUTOR ACADÉMICO: Prof. Cesar Peñuela

Presentado ante la ilustre
Universidad Central de Venezuela
Por los Brs.:
Ochoa Lugo, Alberto José.
Palma Oropeza, Alcides Enrique
Para optar al título de
Ingeniero Civil

ACTA

El día 10 de mayo de 2010, se reunió el jurado formado por los profesores:

Penvelo	i, l'ésar	
lópez.	Alba	1
Baloa	, Trino	

Con el fin de examinar el Trabajo Especial de Grado titulado: "EVALUACIÓN DEL COMPORTAMIENTO MECÁNICO DE BARRAS DE ACERO CON BAJO CONTENIDO DE CARBONO SOLDADAS CON JUNTAS A TOPE Y JUNTAS A SOLAPE". Presentado ante la Ilustre Universidad Central de Venezuela para optar al Título de INGENIERO CIVIL.

Una vez oída la defensa oral que los bachilleres hicieron de su Trabajo Especial de Grado, este jurado decidió las siguientes calificaciones:

NOMEDE		CALIFICACIÓN
NOMBRE .	Números	Letras
Br. Alberto José Ochoa Lugo	20	VEINTE .
Br. Alcides Enrique Palma Oropeza	20	VEINTE

ecomendaciones:		

FIRMAS DELJURADO

Caracas, 13 de mayo de 2010

DEDICATORIA

A Dios, a la memoria de mi padre, a mi mamá porque ha sido mi apoyo, mi confidente y mi mejor amiga.

Alberto Ochoa

AGRADECIMIENTOS

Agradezco a Dios por la vida y la salud que me ha dado. A mis padres, quienes con su amor y su entrega incondicional me ayudaron a cumplir la meta más importante de mi vida hasta este momento.

A mi gente de Maracay: Arlis, Carlitos, Chack, Dalbert, Daniela, Diegadas, Dorian, El Yugoslavo, Fu2, José Juan, Juan Manuel, Juan Rojas, Karlha, Kelly, Miguel el Chivito, Nelsito Vaquiña, Ricardo caimán, Ricardo Rodríguez, Sheyla y Zaría, quienes han sido mis amigos desde hace años y que a pesar de que a algunos ya no veo a muy seguido, considero que somos una familia.

A mi compadre Luis Mariano, que si mal no recuerdo me ayudó un par de veces en mi carrera. A mi comaggre Ana Karina.

A mis queridos amigos de la universidad que de alguna manera me ayudaron, con quienes he aprendido, crecido, y compartido momentos inolvidables: Adrián, Airaalmis, Alelú, Alejandro Friedman, Andrea Teresa, Andrea Victoria, Amolnar, Austin Martínez, Daniel Noriega, Daniela Lippo, Edu González, Edu Saad, Efren García, Elis Timaure, Harry mil, Jaime Martínez, Joanna Daniela, José Alirio, José Ra, Johan Mejías, Gaby Silva, Gary, Julito killer, La Peque, Larry Maracara (†), Luisa Maldonado, Marialth Ynfante, Meli fan, Nathy, Oliver, Pin Pin, Pussy Molinet, Rafa Vielma, Reinaldo Márquez, Toto Ruiz, Vanessa González, Víctor el Pibe y Yurani López.

A mis primos hermanos: Danny, Jesús Enrique, Yolibeth, Ana Patricia, Milagros, Osman, Rosmín, Laura Valentina, Carlos Agustín, María Andreina, Carlos Antonio, a mi compadre José, Armandito y Lago. A mis tíos Francisco, Yola, Omaira, Luis Benito (†), Nelly, Martha, Luis, Claudio, Luis Alberto, Eugenio, Jorge. A mis abuelos. A mis muchachos Drago, Rocky, Rona, Cindy, Faraón.

A mí estimado tutor el profesor Cesar Peñuela, a la profesora Korody, al personal del IMME, René, Bracho, Robert y Elione, por su valiosa colaboración.

A ACE que además de ser un excelente compañero de tesis es como mi hermano.....somos un súper robo.

Alberto Ochoa

DEDICATORIA

A Dios, al Sagrado Corazón de Jesús y a la Virgen del Valle por estar conmigo ahora y siempre.

A mis padres por ser lo más importante que tengo, el apoyo más incondicional durante mi carrera y por formarme del tamaño de mis sueños a través de sus consejos, enseñanzas y valores familiares.

A mi hermana, porque simplemente nacimos para triunfar...

Alcides Palma

AGRADECIMIENTOS

A Dios, al Sagrado Corazón de Jesús y a mi Virgencita del Valle por estar siempre a mi lado acompañándome durante toda la carrera, en las buenas y en las malas y por ayudarme a realizar uno de mis sueños al igual que mis padres por apoyarme durante todo este tiempo de aprendizaje, crecimiento y superación.

A la gente de la universidad con quien he compartido momentos únicos en esta etapa de la vida y me ayudaron de una forma u otra, a José Alírio, mi socio Rei, Alelu, Omar Orlando, Santi, Harry mil, Julito, El Pussy, La Peque, Edu Saad, Edu González, Idalmis, José Ra, Abraham, Rafa Vielma, Iván Poskal, Jean Carlo, Toto Ruiz y Toto Marcha, el Husse, Rarra, Arturo, Chori, Gary, Johan, Gaby Silva, Andrea Teresa, la Catira Molnar, Marianita, Yohanna, Naty, Mely, Pin Pin, Andrea Victoria y mi Ginita.

A mis hermanos de la casa y a esas personas importantes que han estado en mi vida de una manera u otra, siempre pendientes, siempre con una palabra de aliento y apoyo, y con sus consejos que han dejado una huella en quien soy hoy por hoy... El Chueco, el Gordo Ber, el Enano, al Merchán y al Pichi, Marinita, Juanchito, Romel, el gordo Eduardo, Gaby León y mi bella doc Gaby Bucci.

A mi coach Celia Constanza, Dondito, Gabo, Richie, Charlie, a mi prima Dani y a mi tía Liz, Pajarito, Felna, y el capusho Uzcategui, Arcoíris, y el resto del equipo de natación de la UCV que siempre estuvieron apoyándome durante esta experiencia.

A nuestro tutor el profesor Cesar Peñuela, por apoyarnos incondicionalmente durante la realización de todo este trabajo, al personal del IMME, Robert, René, Elione y Bracho, por prestarnos su colaboración siempre que la necesitamos. A mi profesora asesora M.E. Korody, Al Ing. Giuseppe Mónaco de Odebrecht por cedernos gentilmente las barras para nuestro trabajo y al Sr. Rómulo Millano por dedicar su valioso tiempo en el proceso de trabajo.

A mi hermano y compañero de Tesis el Negro, somos un robo.... No se diga más...

Alcides Palma

Ochoa Lugo, Alberto José

Palma Oropeza, Alcides Enrique

EVALUACIÓN DEL COMPORTAMIENTO MECÁNICO DE BARRAS DE ACERO

CON BAJO CONTENIDO DE CARBONO SOLDADAS CON JUNTAS A TOPE Y

JUNTAS A SOLAPE

TUTOR ACADÉMICO: Prof. Cesar Peñuela

Trabajo Especial de Grado. Caracas U.C.V. Facultad de Ingeniería.

Escuela de Ingeniería Civil 2010 nº de pág. 189.

Palabras claves: Barras de acero, Soldadura.

Evaluación del comportamiento mecánico de barras de acero con bajo

contenido de carbono (soldables "W"), soldadas con juntas a tope y juntas a

solape. Los objetivos planteados fueron estimar la resistencia a tracción, el límite

elástico convencional y el porcentaje de alargamiento de las barras para ser

comparados con los parámetros de la norma COVENIN 316, determinar la mejor

eficiencia en las soldaduras de barras soldables con junta a solape y junta a tope.

Se realizaron ensayos de tracción a barras patrón de distintos diámetros y a

muestras de barras soldadas con junta a tope y con junta a solape. Las barras con

junta a solape superaron los requisitos mientras las muestras con junta a tope

fallaron en su totalidad en la zona de la soldadura. Se trabajó con prensas

hidráulicas con manómetro y se asignó un personal capacitado el cual asistió en

todo momento durante los ensayos. Esta investigación se desarrolló en las

instalaciones del IMME (Instituto de Materiales y Modelos Estructurales) de la

Universidad Central de Venezuela.

VIII

ÍNDICE

DEDICATORIA	IV
AGRADECIMIENTOS	VI
RESUMEN	VIII
ÍNDICE GENERAL	IX
ÍNDICE DE TABLAS	XII
ÍNDICE DE GRAFICAS	XXII
ÍNDICE DE FIGURAS	XXVII
INTRODUCCIÓN	1
CAPITULO I	
1.1 PLANTEAMIENTO DEL PROBLEMA	2
1.2 OBJETIVOS	4
1.2.1 Objetivos generales	4
1.2.2 Objetivos específicos	4
1.3 JUSTIFICACIÓN Y APORTES	5
CAPITULO II	
MARCO TEORICO	6
2.1 Antecedentes	6
2.2 Acero	7
2.2.1 Acero con bajo contenido de carbono (W)	8
2.3. Acero de refuerzo para el concreto armado	8
2.4. Barras de refuerzo	
2.4.1 Clasificación	9

2.4.1.1 Según la soldabilidad	9
2.4.1.2 Según el límite elástico	10
2.4.2 Designación	10
2.4.3 Propiedades normativas para las barras de refuerzo	12
2.4.3.1 Resistencia a la tracción (fsu)	12
2.4.3.2 Resistencia a la tracción real (fsu*)	13
2.4.3.3 Limite elástico convencional nominal (fy)	13
2.4.3.4 Limite elástico convencional real (fy*)	13
2.4.3.5 Porcentaje de alargamiento en 20 cm	14
2.4.3.6 Composición Química	15
2.4.3.7 Geometría de los resaltes	16
2.4.3.8 Propiedades de tracción	16
2.5 Soldadura	17
2.5.1 Procesos de soldadura	18
2.5.2 Tipos de soldaduras y de juntas soldadas	18
2.5.2.1 Tipos de soldaduras	19
2.5.2.2 Tipos de juntas	20
2.5.3 Soldabilidad	23
2.5.3.1 Propiedades de soldabilidad	24
2.5.4 Electrodos para soldadura de arco	25
2.5.4.1 Clasificación AWS-ASTM de los electrodos de acero al carbo	ono 25
CAPITULO III	
MARCO METODOLOGICO	28
3.1 Introducción	
3.1.1 Nivel de investigación	
o	20
3.1.2 Diseño de investigación	29
3.1.3 Población v Muestra	30

3.1.4. Técnicas e instrumentos de recolección de Datos	31
3.1.5. Procesamiento y Análisis de Datos	32
3.2 Procedimiento	33
3.2.1 Proceso de corte y biselado de las barras de acero	33
3.2.2 Determinación de la longitud del cordón de soldadura a solape	34
3.2.3 Proceso de soldadura	35
3.2.4 Proceso de marcado de las barras	36
3.2.5 Ensayos	37
3.2.5.1 Colocación de la muestra de ensayo	37
3.2.5.2 Aplicación de la carga	37
3.2.6 Toma de datos	38
3.2.7 Procesamiento de datos	38
3.2.8 Interpretación de datos	40
CAPITULO IV	
ANALISIS DE RESULTADOS	41
CAPITULO V	
CONCLUSIONES Y RECOMENDACIONES	174
5.1 Conclusiones	174
5.2 Recomendaciones	177
CAPITULO VI	
BIBLIOGRAFÍA	178
ANEXOS	180

ÍNDICE DE TABLAS

Tabla 2.1. Límite elástico nominal	10
Tabla 2.2. Números en octavos de pulgada y milímetros para designar las	
barras, diámetro área y peso nominal de la sección transversal	11
Tabla 2.3 Límite elástico convencional y resistencia a la tracción	13
Tabla 2.4 Porcentaje de alargamiento mínimo	14
Tabla 2.5 Límites de composición química en aceros tipo W	15
Tabla 2.6 Sistema AWS de dosificación de electrodos	26
Tabla 2.7 Requisitos que deben cumplir los electrodos de aporte de	
soldadura, según AWS D1.4	26
Tabla 2.8 Interpretación del último digito en la clasificación de electrodos	
AWS	27
Tabla 3.1 Muestras Soldadas a Solape	31
Tabla 3.2 Muestras Soldadas a Tope	31
Tabla 3.3 Determinación de la longitud del cordón de soldadura a solape	34
Tabla 4.1 Resultado del ensayo de la barra patrón N°1 de diámetro 3/8"	43
Tabla 4.2 Resultado del ensayo de la barra patrón N°2 de diámetro 3/8"	45
Tabla 4.3 Resultado del ensayo de la muestra N°1 de solape con cordón	
simple de diámetro 3/8"	47
Tabla 4.4 Resultado del ensayo de la muestra N°2 de solape con cordón	
simple de diámetro 3/8"	49
Tabla 4.5 Resultado del ensayo de la muestra N°3 de solape con cordón	
simple de diámetro 3/8"	51
Tabla 4.6 Resultado del ensayo de la muestra N°1 de solape con cordón	
doble de diámetro 3/8"	53

Tabla 4.7 Resultado del ensayo de la muestra N°2 de solape con cordón	
doble de diámetro 3/8"	55
Tabla 4.8 Resultado del ensayo de la muestra N°3 de solape con cordón	
doble de diámetro 3/8"	57
Tabla 4.9 Resultado del ensayo de la barra patrón N°1 de diámetro 1/2"	59
Tabla 4.10 Resultado del ensayo de la barra patrón N°2 de diámetro 1/2"	61
Tabla 4.11 Resultado del ensayo de la muestra N°1 de solape con	
cordón simple de diámetro 1/2"	63
Tabla 4.12 Resultado del ensayo de la muestra N°2 de solape con	
cordón simple de diámetro 1/2"	65
Tabla 4.13 Resultado del ensayo de la muestra N°3 de solape con cordón	
simple de diámetro 1/2"	67
Tabla 4.14 Resultado del ensayo de la muestra N°1 de solape con	
cordón doble de diámetro 1/2"	69
Tabla 4.15 Resultado del ensayo de la muestra N°2 de solape con cordón	
doble de diámetro 1/2"	71
Tabla 4.16 Resultado del ensayo de la muestra N°3 de solape con	
cordón doble de diámetro 1/2"	73
Tabla 4.17 Resultado del ensayo de la barra patrón N°1 de diámetro 5/8"	75
Tabla 4.18 Resultado del ensayo de la barra patrón N°2 de diámetro 5/8"	77
Tabla 4.19 Resultado del ensayo de la muestra N°1 de solape con	
cordón simple de diámetro 5/8"	79
Tabla 4.20 Resultado del ensayo de la muestra N°2 de solape con	
cordón simple de diámetro 5/8"	81
Tabla 4.21 Resultado del ensayo de la muestra N°3 de solape con cordón	
simple de diámetro 5/8"	83
Tabla 4.22 Resultado del ensayo de la muestra N°1 de solape con	
cordón doble de diámetro 5/8"	8

Tabla 4.23 Resultado del ensayo de la muestra N°2 de solape con	
cordón doble de diámetro 5/8"	87
Tabla 4.24 Resultado del ensayo de la muestra N°3 de solape con	
cordón doble de diámetro 5/8"	89
Tabla 4.25 Resultado del ensayo de la barra patrón N°1 de diámetro 3/4"	91
Tabla 4.26 Resultado del ensayo de la barra patrón N°2 de diámetro 3/4"	93
Tabla 4.27 Resultado del ensayo de la muestra N°1 de solape con	
cordón simple de diámetro 3/4"	95
Tabla 4.28 Resultado del ensayo de la muestra N°2 de solape con	
cordón simple de diámetro 3/4"	97
Tabla 4.29 Resultado del ensayo de la muestra N°3 de solape con cordón	
simple de diámetro 3/4"	99
Tabla 4.30 Resultado del ensayo de la muestra N°1 de solape con	
cordón doble de diámetro 3/4"	101
Tabla 4.31 Resultado del ensayo de la muestra N°2 de solape con	
cordón doble de diámetro 3/4"	103
Tabla 4.32 Resultado del ensayo de la muestra N°3 de solape con	
cordón doble de diámetro 3/4"	105
Tabla 4.33 Resultado del ensayo de la barra patrón N°1 de diámetro 7/8"	107
Tabla 4.34 Resultado del ensayo de la barra patrón N°2 de diámetro 7/8"	109
Tabla 4.35 Resultado del ensayo de la muestra N°1 de tope con bisel	
simple de diámetro 7/8"	111
Tabla 4.36 Resultado del ensayo de la muestra N°2 de tope con bisel	
simple de diámetro 7/8"	113
Tabla 4.37 Resultado del ensayo de la muestra N°3 de tope con bisel	
simple de diámetro 7/8"	115
Tabla 4.38 Resultado del ensayo de la muestra N°1 de tope con bisel	
doble de diámetro 7/8"	117

Tabla 4.39 Resultado del ensayo de la muestra N°2 de tope con bisel	
doble de diámetro 7/8"	119
Tabla 4.40 Resultado del ensayo de la muestra N°3 de tope con bisel	
doble de diámetro 7/8"	121
Tabla 4.41 Resultado del ensayo de la barra patrón N°1 de diámetro	
1 3/8"	123
Tabla 4.42 Resultado del ensayo de la barra patrón N°2 de diámetro	
1 3/8"	125
Tabla 4.43 Resultado del ensayo de la muestra N°1 de tope con bisel	
sencillo de diámetro 1 3/8"	127
Tabla 4.44 Resultado del ensayo de la muestra N°2 de tope con bisel	
sencillo de diámetro 1 3/8"	129
Tabla 4.45 Resultado del ensayo de la muestra N°3 de tope con bisel	
sencillo de diámetro 1 3/8"	131
Tabla 4.46 Resultado del ensayo de la muestra N°1 de tope con bisel	
doble de diámetro 1 3/8"	133
Tabla 4.47 Resultado del ensayo de la muestra N°2 de tope con bisel	
doble de diámetro 1 3/8"	135
Tabla 4.48 Resultado del ensayo de la muestra N°3 de tope con bisel	
doble de diámetro 1 3/8"	137
Tabla 4.49 Comparación del criterio fy* ≤ 1,25fy con las muestras de	
diámetro 3/8"	139
Tabla 4.50 Comparación del criterio fy* ≤ 1,25fy con las muestras de	
diámetro 1/2"	139
Tabla 4.51 Comparación del criterio fy* ≤ 1,25fy con las muestras de	
diámetro 5/8"	140
Tabla 4.52 Comparación del criterio fy* ≤ 1,25fy con las muestras de	
diámetro 3/4"	140

Tabla 4.53 Comparación del criterio fy* ≤ 1,25fy con las muestras de	
diámetro 7/8"	141
Tabla 4.54 Comparación del criterio fy* ≤ 1,25fy con las muestras de	
diámetro 1 3/8"	141
Tabla 4.55 Comparación del criterio fsu* ≥ 1, 25 fy* con las muestras de	
diámetro 3/8"	143
Tabla 4.56 Comparación del criterio fsu* ≥ 1, 25 fy* con las muestras de	
diámetro 1/2"	143
Tabla 4.57 Comparación del criterio fsu* ≥ 1, 25 fy* con las muestras de	
diámetro 5/8"	144
Tabla 4.58 Comparación del criterio fsu* ≥ 1, 25 fy* con las muestras de	
diámetro 3/4"	144
Tabla 4.59 Comparación del criterio fsu* ≥ 1, 25 fy* con las muestras de	
diámetro 7/8"	145
Tabla 4.60 Comparación del criterio fsu* ≥ 1, 25 fy* con las muestras de	
diámetro 1 3/8"	145
Tabla 4.61 Porcentaje de alargamiento en 20 cm incluida la estricción	
para las muestras de diámetro 3/8"	147
Tabla 4.62 Porcentaje de alargamiento en 20 cm incluida la estricción	
para las muestras de diámetro 1/2"	147
Tabla 4.63 Comparación Porcentaje de alargamiento en 20 cm incluida la	
estricción para las muestras de diámetro 5/8"	148
Tabla 4.64 Porcentaje de alargamiento en 20 cm incluida la estricción	
para las muestras de diámetro 3/4"	148
Tabla 4.65 Porcentaje de alargamiento en 20 cm incluida la estricción	
para las muestras de diámetro 7/8"	149
Tabla 4.66 Porcentaje de alargamiento en 20 cm incluida la estricción	
para las muestras de diámetro 1 3/8"	149

Tabla 4.67 95% del promedio del esfuerzo máximo de las muestras	
patrón de diámetro 3/8"	150
Tabla 4.68 95% del promedio del esfuerzo máximo de las muestras	
patrón de diámetro 1/2"	150
Tabla 4.69 95% del promedio del esfuerzo máximo de las muestras	
patrón de diámetro 5/8"	150
Tabla 4.70 95% del promedio del esfuerzo máximo de las muestras	
patrón de diámetro 3/4"	151
Tabla 4.71 95% del promedio del esfuerzo máximo de las muestras	
patrón de diámetro 7/8"	151
Tabla 4.72 95% del promedio del esfuerzo máximo de las muestras	
patrón de diámetro 1 3/8"	151
Tabla 4.73 Comparación de los esfuerzos máximos de las muestras	
soldadas versus el 95% del promedio del esfuerzo máximo de las	
muestras patrón de diámetro 3/8"	152
Tabla 4.74 Comparación de los esfuerzos máximos de las muestras	
soldadas versus el 95% del promedio del esfuerzo máximo de las	
muestras patrón de diámetro 1/2"	152
Tabla 4.75 Comparación de los esfuerzos máximos de las muestras	
soldadas versus el 95% del promedio del esfuerzo máximo de las	
muestras patrón de diámetro 5/8"	152
Tabla 4.76 Comparación de los esfuerzos máximos de las muestras	
soldadas versus el 95% del promedio del esfuerzo máximo de las	
muestras patrón de diámetro 3/4"	153
Tabla 4.77 Comparación de los esfuerzos máximos de las muestras	
soldadas versus el 95% del promedio del esfuerzo máximo de las	
muestras patrón de diámetro 7/8"	153

Tabla 4.78 Comparación de los esfuerzos máximos de las muestras	
soldadas versus el 95% del promedio del esfuerzo máximo de las	
muestras patrón de diámetro 1 3/8"	153
Tabla 4.79 95% del promedio del alargamiento en 20 cm de las muestras	
patrón de diámetro 3/8"	155
Tabla 4.80 95% del promedio del alargamiento en 20 cm de las muestras	
patrón de diámetro 1/2"	155
Tabla 4.81 95% del promedio del alargamiento en 20 cm de las muestras	
patrón de diámetro 5/8"	155
Tabla 4.82 del promedio del alargamiento en 20 cm de las muestras	
patrón de diámetro 3/4"	156
Tabla 4.83 95% del promedio del alargamiento en 20 cm de las muestras	
patrón de diámetro 7/8"	156
Tabla 4.84 95% del promedio del alargamiento en 20 cm de las muestras	
patrón de diámetro 1 3/8"	156
Tabla 4.85 Comparación del alargamiento en 20 cm de las muestras	
soldadas versus el 95% del alargamiento en 20 cm del promedio de las	
muestras patrón de diámetro 3/8"	157
Tabla 4.86 Comparación del alargamiento en 20 cm de las muestras	
soldadas versus el 95% del alargamiento en 20 cm del promedio de las	
muestras patrón de diámetro 1/2"	157
Tabla 4.87 Comparación del alargamiento en 20 cm de las muestras	
soldadas versus el 95% del alargamiento en 20 cm del promedio de las	
muestras patrón de diámetro 5/8"	157
Tabla 4.88 Comparación del alargamiento en 20 cm de las muestras	
soldadas versus el 95% del alargamiento en 20 cm del promedio de las	
muestras patrón de diámetro 3/4"	158

Tabla 4.89 Comparación del alargamiento en 20 cm de las muestras	
soldadas versus el 95% del alargamiento en 20 cm del promedio de las	
muestras patrón de diámetro 7/8"	158
Tabla 4.90 Comparación del alargamiento en 20 cm de las muestras	
soldadas versus el 95% del alargamiento en 20 cm del promedio de las	
muestras patrón de diámetro 1 3/8"	158
Tabla 4.91 95% del promedio del esfuerzo máximo de las muestras	
patrón versus promedio del esfuerzo máximo de las muestras de	
diámetro 3/8"	160
Tabla 4.92 Comparación del 95% del promedio del esfuerzo máximo de	
las muestras patrón versus porcentaje de esfuerzo máximo de las	
muestras de diámetro 3/8"	160
Tabla 4.93 95% del promedio del esfuerzo máximo de las muestras	
patrón versus promedio del esfuerzo máximo de las muestras de	
diámetro 1/2"	161
Tabla 4.94 Comparación del 95% del promedio del esfuerzo máximo de	
las muestras patrón versus porcentaje de esfuerzo máximo de las	
muestras de diámetro 1/2"	161
Tabla 4.95 95% del promedio del esfuerzo máximo de las muestras	
patrón versus promedio del esfuerzo máximo de las muestras de	
diámetro 5/8"	162
Tabla 4.96 Comparación del 95% del promedio del esfuerzo máximo de	
las muestras patrón versus porcentaje de esfuerzo máximo de las	
muestras de diámetro 5/8"	162
Tabla 4.97 95% del promedio del esfuerzo máximo de las muestras	
patrón versus promedio del esfuerzo máximo de las muestras de	
diámetro 3/4"	163

Tabla 4.98 Comparación del 95% del promedio del esfuerzo máximo de	
las muestras patrón versus porcentaje de esfuerzo máximo de las	
muestras de diámetro 3/4"	163
Tabla 4.99 95% del promedio del esfuerzo máximo de las muestras	
patrón versus promedio del esfuerzo máximo de las muestras de	
diámetro 7/8"	164
Tabla 4.100 Comparación del 95% del promedio del esfuerzo máximo de	
las muestras patrón versus porcentaje de esfuerzo máximo de las	
muestras de diámetro 7/8"	164
Tabla 4.101 95% del promedio del esfuerzo máximo de las muestras	
patrón versus promedio del esfuerzo máximo de las muestras de	
diámetro 1 3/8"	165
Tabla 4.102 Comparación del 95% del promedio del esfuerzo máximo de	
las muestras patrón versus porcentaje de esfuerzo máximo de las	
muestras de diámetro 1 3/8"	165
Tabla 4.103 95% del promedio del alargamiento de las muestras patrón	
versus promedio de alargamiento de las muestras de diámetro 3/8"	166
Tabla 4.104 Comparación del 95% del promedio del alargamiento de las	
muestras patrón versus porcentaje de alargamiento de las muestras de	
diámetro 3/8"	166
Tabla 4.105 95% del promedio del alargamiento de las muestras patrón	
versus promedio de alargamiento de las muestras de diámetro 1/2"	167
Tabla 4.106 Comparación del 95% del promedio del alargamiento de las	
muestras patrón versus porcentaje de alargamiento de las muestras de	
diámetro 1/2"	167
Tabla 4.107 95% del promedio del alargamiento de las muestras patrón	
versus promedio de alargamiento de las muestras de diámetro 5/8"	168

Tabla 4.108 Comparación del 95% del promedio del alargamiento de las	
muestras patrón versus porcentaje de alargamiento de las muestras de	
diámetro 5/8"	168
Tabla 4.109 95% del promedio del alargamiento de las muestras patrón	
versus promedio de alargamiento de las muestras de diámetro 3/4"	169
Tabla 4.110 Comparación del 95% del promedio del alargamiento de las	
muestras patrón versus porcentaje de alargamiento de las muestras de	
diámetro 3/4"	169
Tabla 4.111 95% del promedio del alargamiento de las muestras patrón	
versus promedio de alargamiento de las muestras de diámetro 7/8"	170
Tabla 4.112 Comparación del 95% del promedio del alargamiento de las	
muestras patrón versus porcentaje de alargamiento de las muestras de	
diámetro 7/8"	170
Tabla 4.113 95% del promedio del alargamiento de las muestras patrón	
versus promedio de alargamiento de las muestras de diámetro 1 3/8"	171
Tabla 4.114 Comparación del 95% del promedio del alargamiento de las	
muestras patrón versus porcentaje de alargamiento de las muestras de	
diámetro 1 3/8"	171
Tabla 4.115 Zona por donde falló la probeta de ensayo	172
Tabla 4.116 Porcentaie de la zona por donde falló la probeta de ensavo	173

ÍNDICE DE GRÁFICAS

Gráfica 4.1 Resultado del ensayo de la barra patrón N°1 de diámetro 3/8"	44
Gráfica 4.2 Resultado del ensayo de la barra patrón N°2 de diámetro 3/8"	46
Gráfica 4.3 Resultado del ensayo de la muestra N°1 de solape con	
cordón simple de diámetro 3/8"	48
Gráfica 4.4 Resultado del ensayo de la muestra N°2 de solape con	
cordón simple de diámetro 3/8"	50
Gráfica 4.5 Resultado del ensayo de la muestra N°3 de solape con	
cordón simple de diámetro 3/8"	52
Gráfica 4.6 Resultado del ensayo de la muestra N°1 de solape con	
cordón doble de diámetro 3/8"	54
Gráfica 4.7 Resultado del ensayo de la muestra N°2 de solape con	
cordón doble de diámetro 3/8"	56
Gráfica 4.8 Resultado del ensayo de la muestra N°3 de solape con	
cordón doble de diámetro 3/8"	58
Gráfica 4.9 Resultado del ensayo de la barra patrón N°1 de diámetro 1/2"	60
Gráfica 4.10 Resultado del ensayo de la barra patrón N°2 de diámetro	
1/2"	62
Gráfica 4.11 Resultado del ensayo de la muestra N°1 de solape con	
cordón simple de diámetro 1/2"	64
Gráfica 4.12 Resultado del ensayo de la muestra N°2 de solape con	
cordón simple de diámetro 1/2"	66
Gráfica 4.13 Resultado del ensayo de la muestra N°3 de solape con	
cordón simple de diámetro 1/2"	68
Gráfica 4.14 Resultado del ensayo de la muestra N°1 de solape con	
cordón doble de diámetro 1/2"	70

Gráfica 4.15 Resultado del ensayo de la muestra N°2 de solape con
cordón doble de diámetro 1/2"
Gráfica 4.16 Resultado del ensayo de la muestra N°3 de solape con
cordón doble de diámetro 1/2"
Gráfica 4.17 Resultado del ensayo de la barra patrón N°1 de diámetro
5/8"
Gráfica 4.18 Resultado del ensayo de la barra patrón N°2 de diámetro
5/8"
Gráfica 4.19 Resultado del ensayo de la muestra N°1 de solape con
cordón simple de diámetro 5/8"
Gráfica 4.20 Resultado del ensayo de la muestra N°2 de solape con
cordón simple de diámetro 5/8"
Gráfica 4.21 Resultado del ensayo de la muestra N°3 de solape con
cordón simple de diámetro 5/8"
Gráfica 4.22 Resultado del ensayo de la muestra N°1 de solape con
cordón doble de diámetro 5/8"
Gráfica 4.23 Resultado del ensayo de la muestra N°2 de solape con
cordón doble de diámetro 5/8"
Gráfica 4.24 Resultado del ensayo de la muestra N°3 de solape con
cordón doble de diámetro 5/8"
Gráfica 4.25 Resultado del ensayo de la barra patrón N°1 de diámetro
3/4"
Gráfica 4.26 Resultado del ensayo de la barra patrón N°2 de diámetro
3/4"
Gráfica 4.27 Resultado del ensayo de la muestra N°1 de solape con
cordón simple de diámetro 3/4"
Gráfica 4.28 Resultado del ensayo de la muestra N°2 de solape con
cordón simple de diámetro 3/4"

Gráfica 4.29 Resultado del ensayo de la muestra N°3 de solape con	
cordón simple de diámetro 3/4"	100
Gráfica 4.30 Resultado del ensayo de la muestra N°1 de solape con	
cordón doble de diámetro 3/4"	102
Gráfica 4.31 Resultado del ensayo de la muestra N°2 de solape con	
cordón doble de diámetro 3/4"	104
Gráfica 4.32 Resultado del ensayo de la muestra N°3 de solape con	
cordón doble de diámetro 3/4"	106
Gráfica 4.33 Resultado del ensayo de la barra patrón N°1 de diámetro	
7/8"	108
Gráfica 4.34 Resultado del ensayo de la barra patrón N°2 de diámetro	
7/8"	110
Gráfica 4.35 Resultado del ensayo de la muestra N°1 de tope con bisel	
sencillo de diámetro 7/8"	112
Gráfica 4.36 Resultado del ensayo de la muestra N°2 de tope con bisel	
sencillo de diámetro 7/8"	114
Gráfica 4.37 Resultado del ensayo de la muestra N°3 de tope con bisel	
sencillo de diámetro 7/8"	116
Gráfica 4.38 Resultado del ensayo de la muestra N°1 de tope con bisel	
doble de diámetro 7/8"	118
Gráfica 4.39 Resultado del ensayo de la muestra N°2 de tope con bisel	
doble de diámetro 7/8"	120
Gráfica 4.40 Resultado del ensayo de la muestra N°3 de tope con bisel	
doble de diámetro 7/8"	122
Gráfica 4.41 Resultado del ensayo de la barra patrón N°1 de diámetro	
1 3/8"	124
Gráfica 4.42 Resultado del ensayo de la barra patrón N°2 de diámetro	
1 3/8"	126

Grafica 4.43 Resultado del ensayo de la muestra Nº1 de tope con bisel	
sencillo de diámetro 1 3/8"	128
Gráfica 4.44 Resultado del ensayo de la muestra N°2 de tope con bisel	
sencillo de diámetro 1 3/8"	130
Gráfica 4.45 Resultado del ensayo de la muestra N°3 de tope con bisel	
sencillo de diámetro 1 3/8"	132
Gráfica 4.46 Resultado del ensayo de la muestra N°1 de tope con bisel	
doble de diámetro 1 3/8"	134
Gráfica 4.47 Resultado del ensayo de la muestra N°2 de tope con bisel	
doble de diámetro 1 3/8"	136
Gráfica 4.48 Resultado del ensayo de la muestra N°3 de tope con bisel	
doble de diámetro 1 3/8"	138
Gráfica 4.49 Eficiencia de las muestras respecto al patrón 3/8" (Esfuerzo	
Máximo %)	160
Gráfica 4.50 Eficiencia de las muestras respecto al patrón 1/2" (Esfuerzo	
Máximo %)	161
Gráfica 4.51 Eficiencia de las muestras respecto al patrón 5/8" (Esfuerzo	
Máximo %)	162
Gráfica 4.52 Eficiencia de las muestras respecto al patrón 3/4" (Esfuerzo	
Máximo %)	163
Gráfica 4.53 Eficiencia de las muestras respecto al patrón 7/8" (Esfuerzo	
Máximo %)	164
Gráfica 4.54 Eficiencia de las muestras respecto al patrón1 3/8" (Esfuerzo	
Máximo %)	165
Gráfica 4.55 Eficiencia de las muestras respecto al patrón 3/8"	
(Alargamiento %)	166
Gráfica 4.56 Eficiencia de las muestras respecto al patrón 1/2"	
(Alargamiento %)	167

Gráfica 4.57 Eficiencia de las muestras respecto al patrón 5/8"	
(Alargamiento %)	168
Gráfica 4.58 Eficiencia de las muestras respecto al patrón	
3/4"(Alargamiento %)	169
Gráfica 4.59 Eficiencia de las muestras respecto al patrón 7/8"	
(Alargamiento %)	170
Gráfica 4.60 Eficiencia de las muestras respecto al patrón 1 3/8"	
(Alargamiento%)	171

ÍNDICE DE FIGURAS

Figura 2.1 Esfuerzo vs. Deformación	. 12
Figura 2.2 Vista transversal del cordón de soldadura de la junta a solape	. 21
Figura 2.3 Soldadura de junta a solape con cordón simple	. 21
Figura 2.4 Soldadura de junta a solape con cordón doble	. 22
Figura 2.5 Soldadura de junta a tope con bisel sencillo y doble	. 23
Figura 3.1 Proceso de soldadura por arco	. 36

INTRODUCCIÓN

En el campo de la construcción es imprescindible el uso de barras de acero de refuerzo para el armado de estructuras debido al comportamiento que estas adoptan al momento de la presencia de fuerzas de tracción. Por esto la técnica de soldadura de barras de acero se hace cada vez más necesaria. Esta técnica utilizada en barras de refuerzo soldables no es muy común debido a la poca información sobre el desempeño del material luego de ser soldado. Es necesario resaltar que el poco uso de esta técnica ha causado que las mismas no tengan una demanda comercial como las no soldables, siendo las barras soldables elementos con mejores condiciones de resistencia.

En nuestro país existen normas para la construcción, entre ellas se encuentra la COVENIN 316-2000 "Barras y rollos de acero con resaltes para uso como refuerzo estructural" que determina los parámetros que deben cumplir las barras, la norma AWS D1.4 expone los pasos a cumplir al momento de realizar distintas actividades de soldadura, y a su vez la norma COVENIN 299-89 "Materiales metálicos. Ensayo de tracción" describe los ensayos necesarios para comprobar la eficiencia de los parámetros indicados en la norma mencionada inicialmente.

Finalizados los ensayos se realizaron una serie de cálculos para estimar la resistencia a la tracción, el límite elástico convencional y el porcentaje de alargamiento de las barras, además de comparar la eficiencia de la soldadura con los parámetros normativos y determinar si cumple o no con los requerimientos mínimos establecidos. Esta investigación sirve como información del desempeño de la soldadura de barras de acero de refuerzo soldables y como un precedente a futuras investigaciones relacionadas con esta técnica. Estos ensayos se llevaron a cabo con la supervisión de técnicos especializados del Instituto de Materiales y Modelos Estructurales (IMME) de la Universidad Central de Venezuela.

CAPITULO I

1.1 PLANTEAMIENTO DEL PROBLEMA

A través de la historia, el hombre ha tratado de mejorar las materias primas, tales como los metales, añadiéndoles materiales tanto orgánicos como inorgánicos, obteniéndose así los más apropiados para ser empleados en la construcción. Esto ha ocurrido debido a que los materiales más usados en obras civiles no se encuentran en la naturaleza en estado puro, por lo que para su empleo hay que someterlos a una serie de procesos metalúrgicos cuyo fin es separar el metal de las impurezas u otros minerales que lo acompañen.

Para alcanzar las condiciones óptimas de uso de los metales, en este caso el acero, y lograr que alcancen un buen comportamiento en la construcción, son llevados a tratamientos de aleación para que adquieran una serie de propiedades que los hagan aptos para adoptar sus futuras formas y ser capaces de soportar las tensiones a los que van a estar sometidos. Estos procedimientos de aleación pueden influir sobre los métodos de soldadura usualmente empleados en la industria.

Anteriormente, los metales se unían por remachado o por soldadura, mediante un procedimiento que no involucraba fusión. La práctica de la soldadura por forjado continuó casi sin sufrir cambios hasta alrededor del año 1900, cuando la invención de los modernos procedimientos de soldadura dio paso a medios de eficiencia creciente para unir placas o perfiles metálicos, piezas fundidas o piezas forjadas. (Horwitz, 1984)

La soldadura moderna de metales logra la fusión completa y permanente entre dos o más metales, y se observó que el área soldada tenia mayor resistencia que cualquiera de las piezas que se habían unido utilizando las técnicas y los materiales correctos. (Horwitz, 1984)

Por esto, la soldadura del acero resulta así de particular importancia estudiarla dado a su extenso uso en la industria de la construcción en Venezuela debido a que este se utiliza como material indispensable de refuerzo en las construcciones.

En Venezuela se trabaja con normas tales como la COVENIN 316-200 "Barras y Rollos de Acero con Resaltes para uso como Refuerzo Estructural" y la AWS D1.4 "Structural Welding Code. Reinforcing Steel" de la American Welding Society, las cuales rigen las prácticas que se deben cumplir al momento de realizar distintas actividades de soldadura relacionadas con las barras de acero de refuerzo en una obra.

Por lo general, en el país este tipo de actividad (la soldadura de las barras mencionadas) se ha obviado por falta de credibilidad en que los resultados esperados en su desempeño no sean efectivos. Esto se debe a una praxis generalizada de no soldar las barras sino unirlas con alambre, bajo la creencia de que tal técnica es lo suficientemente confiable. En tal sentido, la falta de información sobre el comportamiento de las barras soldadas excluye su uso, razón por la cual no se conoce a ciencia cierta las ventajas o desventajas de su empleo en la construcción. (Peñuela, 2009, comunicación personal)

Por tal motivo el propósito de este trabajo consistirá en la evaluación del comportamiento de las soldaduras de junta a tope y junta a solape en barras de acero de refuerzo con bajo contenido de carbono (barras soldables), luego de ser sometidas a distintos ensayos mecánicos para comprobar que cumplan con los requerimientos mínimos de resistencia establecidos por la norma.

1.2 OBJETIVOS

1.2.1 Objetivos generales

Evaluar el comportamiento mecánico de barras de acero de refuerzo con bajo contenido de carbono soldadas con juntas a tope y juntas a solape.

1.2.2 Objetivos específicos

- Determinar la resistencia a tracción real (fsu*), el limite elástico convencional real (fy*) y el porcentaje de alargamiento de las barras de refuerzo soldables (W).
- Comparar los parámetros de fsu*, fy* y el porcentaje de alargamiento de las barras con bajo contenido de carbono, soldadas con juntas a tope y juntas a solape, con los de la norma COVENIN 316-2000 "Barras y rollos de acero con resaltes para uso como refuerzo estructural".
- Determinar la eficiencia en las soldaduras de barras soldables con junta a solape en barras de acero de refuerzo de diámetro menor o igual a ³/₄" y junta a tope en barras de acero de refuerzo mayores o igual a ⁷/₈".

1.3 JUSTIFICACIÓN Y APORTES

Con este trabajo se propone evaluar de manera práctica la factibilidad de utilizar barras con bajo contenido de carbono en la construcción cuando estas se encuentran soldadas con junta a tope y junta a solape y sometidas a tracción, siendo este, el comportamiento que estas adoptan cuando son empleadas como acero de refuerzo. En efecto, para la industria de la construcción pudiera ser importante la investigación a realizar, debido a la falta de información en un área escasamente estudiada, así como también, podrá representar un importante aporte a la Ingeniería Estructural el complementar investigaciones preliminares que han hecho este tipo de evaluaciones pero con barras no soldables (Martínez, V. y Rodríguez, R. 2008).

Adicionalmente, la investigación resulta relevante debido a que proporcionará nuevos resultados a un campo poco estudiado en el país sobre el comportamiento de barras de acero soldables correspondiente a los diferentes diámetros (³/8", ¹/2", ⁵/8", ³/4", ²/8" y 1 ³/8") cuando éstas están soldadas con junta a solape y/o junta a tope. Dichos resultados podrán ser comparados con los valores preestablecidos en la norma COVENIN 316-2000 "Barras y rollos de acero con resaltes para uso como refuerzo estructural" y el código AWS D1.4 "Structural Welding Code. Reinforcing Steel" de la American Welding Society para determinar si es adecuado o no, el uso de estas barras en la industria.

CAPITULO II

MARCO TEÓRICO

2.1 Antecedentes

Las juntas soldadas en barras de acero de refuerzo han sido poco estudiadas, sin embargo existe un estudio de trabajo de grado de barras soldables el cual lleva por título "Evaluación del comportamiento mecánico de barras de acero con alto contenido de carbono soldadas a tope y a solape." (Martínez, V. y Rodríguez, R. 2008) donde se plantearon los siguientes objetivos:

- Verificar el esfuerzo máximo, el alargamiento y esfuerzo cedente (fy) de las barras de refuerzo no soldables (S).
- Calcular la eficiencia de soldadura en barras no soldables.
- Establecer cual tipo de soldaduras solape o tope presenta una mejor eficiencia.
- Calcular la eficiencia de la soldadura necesaria para soldadura a tope en barras de acero de diámetro menor o igual a ¾" y a solape en barras de acero mayores a 7/8".

En dicho trabajo se comprobó que las barras de refuerzo con alto contenido de carbono no cumplen con la eficiencia requerida en los criterios establecidos en la norma COVENIN 316 "Barras y rollos de acero con resaltes para uso como refuerzo estructural". Aunque se demostró que las muestras de barras soldadas no cumplieron con el control de calidad requerido, se logró referenciar que el tipo de soldadura presentó una eficiencia cercana al 95% establecido para los esfuerzos obtenidos.

2.2. Acero

El acero, se define como una aleación metálica compuesta principalmente por hierro y pequeñas cantidades de carbono (de aproximadamente 0,002% hasta 2%), con propiedades específicas, sobre todo de resistencia y de ductilidad, las que son muy importantes para sus aplicaciones en ingeniería civil.

La obtención de acero comprende el aprovechamiento del hierro contenido en el mineral de hierro mediante la eliminación progresiva de las impurezas de éste último. En forma líquida, ya libre de las impurezas del mineral, el acero recibe adiciones que le confieren las características deseadas. Luego es solidificado y preparado para adquirir la forma requerida.

Según la norma COVENIN 803-89 "Aceros. Definiciones y clasificación" se define como toda aleación de hierro-carbono capaz de ser deformado plásticamente; con tenores mínimo y máximo de carbono del orden de 0,008% y 2%, respectivamente, pudiendo contener otros elementos de aleación, así como también impurezas inherentes al proceso de fabricación.

Además define los aceros al carbono como la aleación de hierro-carbono que contiene otros elementos en ciertas proporciones como titanio 0,05%, silicio 0,50%, níquel 0,30%, manganeso 1,65% entre otros. Asimismo otro tipo de aceros como lo son aceros al carbono comunes son aquellos cuyo principal elemento aleante es el carbono y contiene manganeso hasta 1% máximo. Dentro de este grupo se consideran los aceros de bajo contenido de carbono, $C \le 0,25\%$; medio contenido de carbono 0,25% $< C \le 0,5\%$ y alto contenido de carbono C > 0,5%.

También define a los aceros aleados como aquellos que contienen elementos de aleación en porcentajes superiores a los establecidos en los aceros

al carbono, con el fin de conferirle determinadas propiedades deseadas. Los aceros especiales son aquellos a los que se prescriben requerimientos metalúrgicos especiales, tales como: aumento de la templabilidad, resistencia a la corrosión, resistencia al desgaste, mejora de las propiedades magnéticas entre otros, con el fin de satisfacer su uso final. Otros como los aceros inoxidables son aquellos capaces de formar una capa superficial muy fina de oxido de cromo u oxido de níquel, la cual los protege eficazmente contra la corrosión.

2.2.1 Acero con bajo contenido de carbono (W)

Se producen primordialmente en láminas, en hojas o en rollos y laminados tanto en frio como en caliente. Tienen baja resistencia a la fluencia, y se emplean en la mayoría de las aplicaciones que requieren considerable conformación en frio, tales como piezas estampadas, formas fabricadas en rodillos o dobladas en tamaños de barras para utilizarse en formas estructurales.

Pueden unirse por cualquiera de los procedimientos de soldadura. En raras ocasiones, los aceros que tienen un contenido de carbono menor a 0,10% muestran tendencia a producir soldaduras porosas. Aunque la porosidad no ofrece un serio problema desde el punto de vista de resistencia, las picaduras superficiales en la soldadura son indeseables desde el punto de vista de la apariencia.

2.3. Acero de refuerzo para el concreto armado

El concreto armado es el elemento de construcción mayormente utilizado en el mundo, debido a las características de durabilidad y maleabilidad combinadas. El concreto aporta su capacidad de resistencia a la compresión y el acero de refuerzo, su ductilidad y mayor resistencia a la tracción.

Las presentaciones tradicionales de estos tipos de acero de refuerzo son: las barras y mallas con resaltes. Las primeras también conocidas como *cabillas* en Venezuela, son utilizadas como un elemento con núcleo circular cuya superficie presenta salientes regularmente espaciadas con el fin de aumentar la adherencia con el concreto. Las mallas con resaltes (también conocidas como mallas electrosoldadas) son utilizadas en elementos planos tales como: losas, pavimentos, muros y paredes prefrabicadas.

2.4. Barras de refuerzo

Las barras a las que se refiere la norma COVENIN 316-2000, se deben fabricar por laminación en caliente con o sin termotratado a partir de productos semi-terminados como palanquillas o lingotes de coladas identificadas apropiadamente.

2.4.1 Clasificación

2.4.1.1 Según la soldabilidad:

Con una letra mayúscula indicativa del proceso de fabricación y de las características de soldabilidad del acero, según:

S = Aceros al carbono con o sin microaleantes no soldables a temperatura ambiente, se incluyen en esta categoría los aceros al carbono termotratados. Contienen un alto contenido de carbono.

W = Aceros al carbono con o sin microaleantes soldables a temperatura ambiente. Contienen un bajo contenido de carbono (ver anexo 16)

2.4.1.2 Según el límite elástico:

Con un guión separador, y un número que representa el límite elástico nominal del acero, expresado kilo libras por pulgada cuadrada (ksi).

La descripción de esta clasificación se presenta en la Tabla 2.1

Tabla 2.1. Límite elástico nominal

	Límite elástico nominal (fy),	28 (40)	42 (60)	50 (70)
	kgf/mm2 (ksi)			
S	Acero al carbono con o sin	S-40	S-60	S-70
	microaleantes no soldable a			
	temperatura ambiente			
W	Acero al carbono con o sin	W-40	W-60	W-70
	microaleantes soldable a temperatura			
	ambiente.			

FUENTE: NORMA COVENIN 316-2000

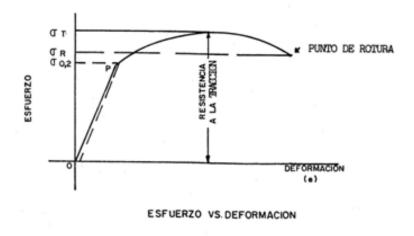
2.4.2 Designación

Según la norma COVENIN 316-2000, Las barras se designan de acuerdo con su diámetro nominal, tanto en pulgadas como en milímetros. Para la designación en pulgadas se usa el diámetro nominal expresado en octavos de pulgadas, tal como se describe en la Tabla 2.2. En el caso de la designación en milímetros, se usa el diámetro nominal de la barra en milímetros seguido de la letra M como indicativo de la designación milimétrica.

Tabla 2.2. Números en octavos de pulgada y milímetros para designar las barras, diámetro área y peso nominal de la sección transversal

	DESIGNACIÓN	DIÁMETRO	ÁREA	PESO
Nº	Milímetros	mm	cm ²	kgf/m
	6M	6,00	0,28	0,222
	8M	8,00	0,50	0,394
3		9,53	0,71	0,559
	10M	10,00	0,78	0,617
	12M	12,00	1,13	0,888
4		12,70	1,27	0,994
	14M	14,00	1,54	1,208
5		15,88	1,98	1,554
	16M	16,00	2,01	1,577
6		19,05	2,85	2,237
	20M	20,00	3,14	2,465
7		22,22	3,88	3,044
	25M	25,00	4,91	3,854
8		25,40	5,07	3,977
9		28,65	6,45	5,059
	32M	32,00	8,04	6,309
10		32,26	8,17	6,403
11		35,81	10,07	7,906
	36M	36,00	10,18	7,981
	40M	40,00	12,57	9,850
14		43,00	14,52	11,383
	45M	45,00	15,90	12,482
	56M	56,00	24,63	19,334
18		57,33	25,81	20,237

FUENTE: NORMA COVENIN 1753-2006


2.4.3 Propiedades normativas para las barras de refuerzo

Toda especificación normativa para las barras de refuerzo incluye un conjunto de características y propiedades que deben ser cumplidas por los productos para asegurar su comportamiento idóneo. Los resultados obtenidos al medir esas propiedades, mediante ensayos, tienen un carácter probabilístico y como tal deben ser tratados. La mayoría de las Normas en el mundo resuelven esta circunstancia definiendo límites mínimos y máximos que deben ser observados, tal como hace la normativa nacional. La Norma COVENIN 316, "Barras y rollos de acero con resaltes para uso como refuerzo estructural" utiliza un conjunto de parámetros de control que se dan a continuación. (Porrero, 2004)

2.4.3.1 Resistencia a la tracción (fsu)

Es el valor del esfuerzo correspondiente al valor máximo de carga aplicada que se obtiene durante el ensayo (ver fig. 2.1).

Figura 2.1 Esfuerzo vs. Deformación

FUENTE: NORMA COVENIN 299-89

2.4.3.2 Resistencia a la tracción real (fsu*)

Se determina mediante ensayos y debe exceder por lo menos en un 25% el límite elástico convencional real determinado en el ensayo.

2.4.3.3 Límite elástico convencional nominal (fy)

Es el esfuerzo correspondiente a una pequeña deformación plástica especificada, generalmente es el 0,2% de la longitud calibrada de la probeta y se obtiene trazando una paralela a 0P (ver fig. 2.1) pasando por el punto de deformación que ha sido fijado hasta que corte la curva esfuerzo – deformación. $(\sigma 0,2)$.

2.4.3.4 Limite elástico convencional real (fy*)

Se obtiene de la misma manera que el límite convencional nominal, obtenido de la carga máxima registrada en el ensayo, el fy* no debe exceder en un 25% al fy.

Tabla 2.3 Límite elástico convencional y resistencia a la tracción

Nominal	S-40	S-60	S-70	W-40	W-60	W-70
Límite Elástico (fy),	28 min (275)	42 a 55 (415 a	50 a 65 (490 a	28 a 35 (275 a	42 a 55 (415 a	50 a 65 (490 a
Kgf/mm2 (Mpa.)	min.	540)	637)	353)	540)	637)
Resistencia a la tracción (fsu)	Mayor a 1,25 fy.			Mayor a 1,25 fy		
Kgf/mm2 (Mpa.)	63 min				63 min	

FUENTE: NORMA COVENIN 316-2000

2.4.3.5 Porcentaje de alargamiento en 20 cm.

Esta medida se toma después de la rotura de la probeta. Se juntan las dos mitades por su cara de fractura y se mide la longitud que ocupan 20 divisiones marcadas, antes del ensayo, a un centímetro de distancia entre sí, dejando 10 marcas a cada lado de la fractura. De esta manera se incluye en la medida, la zona de mayor deformación inelástica del material. Si el acero es dúctil durante el ensayo se forma una garganta o cuello de estricción, que es un estrechamiento cuya magnitud, en términos de porcentaje de reducción de área, es una medida de la ductilidad. Después de la rotura ocurre una recuperación elástica parcial de ambas mitades por lo que el alargamiento aquí definido, no es la máxima deformación inmediatamente antes de la rotura, sino la deformación remanente posterior. (Porrero, 2004) (Ver anexo 15)

Tabla 2.4 Porcentaje de alargamiento mínimo

	% Alargamiento mínimo						
	(lor	(longitud entre marcas igual a 200 mm, incluye zona de restricción)					
Número de designación	S - 40	S - 40 S - 60 S - 70 W - 40 W - 60 W - 70					
3,4,5 y 6	16	12	10	16	14	14	
7,8,9,10 y 11	16	12	10	16	12	12	
14 y 18	16	12	10	16	12	12	
6M, 8M Y 10M	16	12	10	16	14	14	
12M, 14M Y 16M	16	12	10	16	14	14	
20M, 25M Y 32M	16	12	10	16	12	12	
36M Y 40M	16	12	10	16	12	12	

2.4.3.6 Composición Química

La Norma indica algunas condiciones que restringen los valores de los principales elementos de aleación que influyen en el establecimiento de las características de los aceros estructurales, destacando que los efectos de dos o más elementos usados simultáneamente pueden ser diferentes de los efectos de adiciones aisladas de esos mismos elementos. La presencia del fósforo aumenta el límite de resistencia y dureza, sin embargo cuando sobrepasa ciertos niveles hace que el acero se torne quebradizo. En el caso de la presencia del azufre, es extremadamente perjudicial para los aceros, ya que afecta la ductilidad, la flexión y reduce la soldabilidad; en los aceros comunes el contenido de azufre es limitado a valores inferiores a 0,05%. También se restringen los contenidos de carbono y manganeso debido a que perjudican sensiblemente la ductilidad (en especial el doblado), la tenacidad y la soldabilidad.

Tabla 2.5 Límites de composición química en aceros tipo W

Γ	1	
Elemento	Análisis de colada	Análisis de comprobación
	(% máx.)	(% máx.)
Carbono (C)	0,300	0,330
Manganeso (Mn)	1,500	1,560
Fósforo (P)	0,035	0,043
Azufres (S)	0,045	0,053
Silicio (Si)	0,500	0,550

FUENTE: NORMA COVENIN 316-2000

2.4.3.7 Geometría de los resaltes

La finalidad de los resaltes es garantizar la adherencia entre el acero y el concreto, dicha adherencia es especialmente necesaria para resistir las solicitaciones sísmicas. Las Normas regulan la inclinación, longitud, altura y separación de esas corrugaciones. No constituyen distintivo de marca. Entre los resaltes, cada barra debe llevar la marcación del fabricante.

2.4.3.8 Propiedades de tracción

Debido a que Venezuela se encuentra ubicada en una zona sísmica, la Norma COVENIN 1753 "Proyecto y construcción de obras en concreto estructural" incluye en su capítulo XVIII, prescripciones especiales sobre solicitaciones sísmicas y la Norma COVENIN 316 "Barras y rollos de acero con resaltes para uso como refuerzo estructural", incluyó los siguientes requisitos complementarios:

a) El valor del límite elástico convencional real (fy*) no debe exceder el valor especificado, (fy) en más de un 25%.

$$fy^* \le 1.25 \, fy$$

La razón de este requisito es evitar el uso de aceros de refuerzo con tensión cedente sensiblemente mayor a la especificada en el diseño. Tal situación puede conducir a fallas de tipo frágil, por corte o por adherencia.

b) La resistencia a la tracción real (fsu*), deberá exceder, por lo menos un 25% el límite elástico convencional determinado en el ensayo (fy*).

Esta condición asegura que el acero posee suficiente capacidad de endurecimiento después de la cedencia, para evitar que se produzcan deformaciones unitarias críticas a un nivel de tensiones relativamente bajo; es decir, reducir la probabilidad de que se produzca el colapso del elemento de concreto reforzado al sobrepasar el punto de cedencia.

2.5 Soldadura

En general se entiende por soldadura la unión de dos piezas de metal aplicando calor intenso, presión intensa o ambas cosas, para fundir los bordes del metal de manera que se unan por fusión en forma permanente. Durante este proceso, el soldador puede utilizar diversos tipos de dispositivos para obtener el calor necesario, con o sin ayuda de presión, o bien la presión necesaria, con o sin ayuda de calor, para fundir los bordes del metal en forma controlada. (Horwitz, 1984)

Debido a que la longitud de solape, en función del diámetro, puede ser del orden de un metro o más, puede ser conveniente, en algunos casos necesario, soldar barras de refuerzo con lo que se evita dicho solape y la consiguiente dificultad para colocar los requisitos exigidos para el acero tipo W. (Porrero, 2004)

2.5.1 Procesos de soldadura

<u>Soldadura de arco</u>: obtiene calor de un arco eléctrico y lo mantiene entre dos electrodos o entre un electrodo y la pieza de trabajo. Es el proceso de más amplia aceptación como el mejor, el más económico, el más natural y el más práctico para unir metales

<u>Soldadura a gas</u>: obtiene el calor en forma de una llama, mediante la mezcla de oxigeno y algún otro gas combustible que genera acetileno.

<u>Soldadura por resistencia</u>: obtiene el calor de la resistencia que ofrece la pieza de trabajo al paso de una corriente eléctrica.

2.5.2 Tipos de soldaduras y de juntas soldadas

Las juntas soldadas, independientemente del proceso de unión, se diseñan principalmente por la resistencia y seguridad que requieren los servicios a los que se les va a destinar. Debe tomarse en consideración la manera en la que ha de aplicarse el esfuerzo de servicio, ya sea de tensión, de corte, de flexión o de torsión. Pueden requerirse diferentes diseños, según que la carga sea estática o dinámica, así como cuando interviene la fatiga. Las juntas que han de estar sujetas a corrosión o a erosión deben hacerse de tal manera que no presenten irregularidades, hendiduras ni otros defectos que las hagan susceptible a tales formas de ataque. El diseño debe tener también en cuenta la *eficiencia de la junta*, la cual se define como la relación de la resistencia de la junta a la del metal base, y se expresa generalmente como un porcentaje.

Adicionalmente, se toma en consideración, al diseñar la junta, la economía y la accesibilidad durante su construcción. Entre los factores que intervienen en la

construcción se encuentra el control de la deformación y del agrietamiento por contracción, el facilitar la buena calidad del trabajo, y la obtención de soldaduras completamente confiables. La accesibilidad durante la construcción no solo asegura unos costos más bajos, sino que también da la oportunidad de lograr una mejor ejecución, la reducción de fallas, y el control de la deformación y de los esfuerzos residuales. (Horwitz, 1984)

2.5.2.1 Tipos de soldaduras

Uno de los aspectos del diseño de juntas es el correspondiente al tipo de soldadura que se utiliza en la junta. La selección del tipo de soldaduras está tan ligada a la eficiencia de la junta como el diseño mismo de esta.

Se elige un tipo de soldadura con preferencia sobre otro por razón de su relación específica con la eficiencia de la junta.

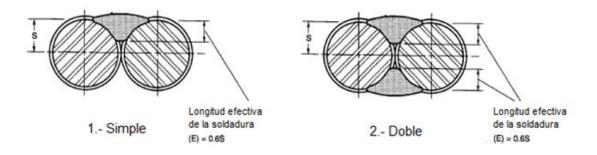
<u>Soldadura de cordón</u>: se hace una sola pasada, con el metal de aporte sin movimiento hacia uno u otro lado. Esta soldadura se utiliza principalmente para reconstruir superficies degastadas, y en muy pocos casos se emplea para juntas.

<u>Soldadura ondeada</u>: se logra haciendo un cordón con algo de movimiento hacia uno y otro lado. El ancho del cordón depende del diseño o de la necesidad. Entre estas soldaduras hay también varios tipos como el de zigzag, el circular, el oscilante y otros. Se usan primordialmente para la reconstrucción de superficies.

<u>Soldadura de tapón y de agujero alargado</u>: sirve principalmente para hacer las veces de los remaches. Se emplean para unir por fusión dos piezas de metal cuyos bordes, por alguna razón, no pueden fundirse.

2.5.2.2 Tipos de juntas

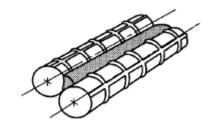
Existen cinco estilos básicos de juntas: la junta a solape, la junta a tope, la de esquina, la de brida y la junta en T. Para efectos de este trabajo se estudiarán solo las primeras dos.


<u>Junta a solape</u>: están formadas en esencia por dos piezas de metal solapadas, que se unen por fusión mediante soldadura de puntos, ondeada, de tapón o de agujero alargado.

Cuando las barras que se sueldan son de pequeño diámetro (³/₄" o menor), la soldadura puede realizarse mediante uno o dos cordones de aporte, a lo largo de la unión solapada de las dos barras. Cuando se le aplica la carga, la junta es sometida a un momento flector, igual al producto de la fuerza por la excentricidad de las barras, que es la suma de los radios de ambas. (Porrero, 2004)

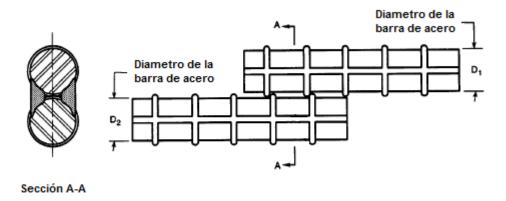
La norma AWS D1.4 exige varios requisitos para juntas soldadas con barras no concéntricas:

- .- El diámetro de las barras no debe exceder 3/4"
- .- La junta soldada debe quedar embebida en el concreto y rodeada por barras transversales, para prevenir la rotura del concreto como consecuencia de la tendencia de la junta a doblarse, debido a la excentricidad de la fuerza transmitida por las barras soldadas.


Figura 2.2 Vista transversal del cordón de soldadura de la junta a solape

S= Radio de la barra de acero

FUENTE: NORMA AWS D 1.4

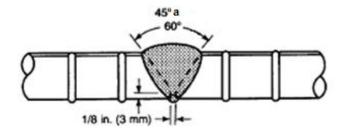

Figura 2.3 Soldadura de junta a solape con cordón simple

Soldadura de junta a solape con cordón simple

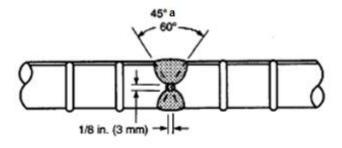
FUENTE: NORMA AWS D 1.4

Figura 2.4 Soldadura de junta a solape con cordón doble

Soldadura de junta a solape con cordón doble


FUENTE: NORMA AWS D 1.4

<u>Junta a tope</u>: está comprendida entre los planos de las superficies de las dos partes. Las juntas a tope pueden ser simple, escuadradas, biseladas, en V o dobles.


Desde el punto de vista estructural es preferible la soldadura a tope porque la transferencia de tensiones (tracción o compresión) es directa y concéntrica. Utilizando el electrodo apropiado. La junta soldada a tope puede y debe resistir y transferir el 100% de la resistencia a tracción especificada para la barra. Sin embargo, la soldadura a tope resulta muy lenta y difícil de realizar en barras de pequeño diámetro, como la ¾" y menos, en cuyo caso se utiliza la soldadura lateral con solape. (Porrero, 2004)

Las barras que deban soldarse a tope requieren de un biselado que puede ser sencillo o doble, en una barra o en ambas. La selección de bisel doble o sencillo depende de la facilidad de acceso a la junta.

Figura 2.5 Soldadura de junta a tope con bisel sencillo y doble.

Soldadura de junta a tope con bisel simple

Soldadura de junta a tope con bisel doble

FUENTE: NORMA AWS D 1.4

2.5.3 Soldabilidad

Todos los metales son soldables siempre que se apliquen el procedimiento y la técnica adecuados. En ocasiones fracasa el intento de soldar metales porque se ha pasado por alto uno de estos dos factores, ya sea el procedimiento correcto o la técnica adecuada. Sin embargo si el ingeniero y el soldador comprenden la

composición, la estructura y las propiedades de un metal, estarán en posibilidades de diseñar y hacer mejores soldaduras. (Horwitz, 1984)

Las condiciones generalmente fijadas por las normas para definir un acero como soldable son varias, se considera por una parte la composición química como condición suficiente, y por otra parte, el cumplimiento de las propiedades mecánicas conseguidas en ensayos de tracción sobre la barra soldada, donde se debe obtener una carga de rotura similar a la de las barras antes de ser soldadas, en otras palabras, la soldadura no debe disminuir las propiedades mecánicas de la barra.

2.5.3.1 Propiedades de soldabilidad

<u>Metalurgia de la soldadura</u>: Una junta soldada está constituida por diferentes zonas: el cordón de soldadura, la zona afectada por el calor y el metal base no afectado térmicamente

<u>Cordón de soldadura</u>: es la región que ha sido fundida durante el proceso de soldadura. La composición química del cordón de soldadura depende de la composición del metal base y del metal de aporte, así como la relación que existe entre la cantidad del metal base fundido y la cantidad de material de aporte agregado durante la soldadura.

Zona afectada por el calor (Zac): Es aquella zona del material base adyacente al metal fundido que es afectada por el calor generado durante el proceso de soldadura. Esta zona se define frecuentemente en función de su micro estructura o de su dureza.

<u>Metal base</u>: la tercera zona que compone de una unión soldada, es el metal base propiamente dicho. Uno de los principales problemas que se presentan al soldar cierto tipo de metales es la fragilidad por hidrogeno y el agotamiento en caliente.

2.5.4 Electrodos para soldadura de arco

El desarrollo de electrodos recubiertos con fundente, capaces de producir soldaduras son propiedades físicas que igualen o sobrepasen las del metal de base, ha convertido a la soldadura de arco en el proceso de soldadura más generalizado.

El recubrimiento de estos electrodos (fundente) mejora el aspecto de la soldadura, hace más fácil el salto del arco, ayuda a mantener éste, regula la profundidad de penetración, mejora la calidad de la soldadura a los rayos x, y a veces agrega agentes de aleación al metal de la soldadura, o restaura elementos perdidos. La escoria que deja el recubrimiento no solo protege el cordón de soldadura, sino que también ayuda a darle forma. Además, se ha agregado hierro pulverizado al recubrimiento de muchos de los tipos básicos de electrodos.

Bajo el intenso calor del arco, el polvo del hierro se convierte en acero, y aporta metal al depósito de soldadura. El recubrimiento del electrodo sirve también de aislante al alambre que constituye el núcleo del electrodo. Afecta a la longitud del arco y al voltaje de trabajo, y controla la posición de aplicación de la soldadura en la que puede usarse el electrodo. (Horwitz, 1984)

2.5.4.1 Clasificación AWS-ASTM de los electrodos de acero al carbono

Esta clasificación está formada por una serie de cuatro a cinco dígitos que lleva como prefijo la letra E. La E indica que se emplea en la soldadura eléctrica.

Los números que van a la izquierda de los dos últimos dígitos, multiplicados por 1000, dan la resistencia mínima a la tensión del metal depositado; el digito situado junto al último número indica el suministro de energía, el tipo de escoria, el tipo de arco, la penetración y la presencia de polvo de hierro. Algunos de estos electrodos son para corriente directa (cd) y otros, para corriente alterna (ca).

Tabla 2.6 Sistema AWS de dosificación de electrodos

DIGITO	SIGNIFICADO	EJEMPLO
Primeros dos	Resistencia mínima a la tensión	E-60XX = 60.000 lb/pulg2 (min)
o primeros tres	Nesistericia minima a la terision	E-110XX = 110.000 lb/pulg2 (min)
Anterior		E-XX1X = todas las posiciones
	Posición de aplicación	E-XX2X = horizontal y E-XX3X =
al ultimo		plana
	Tipo de energía, tipo de escoria, tipo de arco,	
Ultimo	magnitud de la penetración, presencia de hierro	
	en el recubrimiento	

FUENTE: METALS AND HOW TO WELD THEM

Tabla 2.7 Requisitos que deben cumplir los electrodos de aporte de soldadura, según AWS D1.4

Designación	Designación	Resistencia a la		Resistencia al		
de la	del	tracción, Fu		tracción, Fu corte, Vr		rte, Vr
Barra	electrodo	(psi)	(kgf/cm ²)	(psi)	(kgf/cm ²)	
W-40	E-70XX	70.000	4.900	42.000	3.000	
W-60	E-90XX	90.000	6.300	54.000	3.800	
W-70	E-100XX	100.000	7.000	60.000	4.200	

FUENTE: MANUAL DEL CONCRETO ESTRUCTURAL

Tabla 2.8 Interpretación del último digito en la clasificación de electrodos AWS

				ULTIMO	DIGITO				
	0	1	2	3	4	5	6	7	8
Tipo de		ca o cd				cd	ca o cd		ca o cd
Energía	а	polaridad invertida	ca o cd	ca o cd	ca o cd	polaridad invertida	polaridad invertida	ca o cd	polaridad invertida
Tipo de escoria	b	Orgánica	Rutilo	Rutilo	Rutilo	Bajo hidrogeno	Bajo	Mineral	Bajo hidrogeno
Tipo de arco	Excavadora	Excavadora	Regular	Blando	Blando	Regular	Regular	Regular	Regular
Penetración	С	Profunda	Regular	Ligera	Ligera	Regular	Regular	Regular	Regular
Polvo de hierro en el recubrimiento	0-10%	Nada	0-10%	0-10%	30-50%	Nada	Nada	50%	30-50%

a E-6010 es de cd, polaridad invertida; E-6020 es de ca o cd

FUENTE: METALS AND HOW TO WELD THEM

b E-6010 es orgánica; E-6020 es mineral

c E-6010 es de penetración profunda; E-6020 es de penetración mediana o regular

CAPITULO III

MARCO METODOLÓGICO

3.1 Introducción

En el siguiente capítulo se presentarán los aspectos metodológicos referidos al proceso de investigación con el fin de cumplir los objetivos planteados; en tal sentido, Arias (1999), explica: "La metodología del proyecto incluye el tipo o tipos de investigación, las técnicas y los procedimientos que serán utilizados para llevar a cabo la indagación. Es el "como" se realizará el estudio para responder al problema planteado". (p.45)

La metodología contiene la descripción y argumentación de las principales decisiones metodológicas adoptadas según el tema de investigación y las posibilidades del investigador. La claridad en el enfoque, y estructura metodológica, es condición obligada para asegurar la validez de la investigación. (Saravia, 2006, p.10).

Por consiguiente, la metodología de la investigación abarca los procesos utilizados por el investigador para realizar el estudio en cuestión y así obtener las respuestas a sus interrogantes, esta incluye el nivel y diseño de investigación, la población y muestra, técnicas e instrumentos de recolección de datos, técnicas de procesamientos y análisis de datos.

La finalidad de realizar el proyecto de investigación es mejorar las habilidades de búsqueda de información, observación, lógica y análisis de datos; por lo tanto, lo importante de un proyecto no es la complejidad, sino la metodología con que haya sido realizado.

3.1.1 Nivel de investigación

Al respecto, Arias (1999), señala: es el grado de profundidad con que se aborda un objeto o fenómeno, aquí se indicara si se trata de una investigación exploratoria, descriptiva o explicativa. (p.45).

Esta investigación se clasifica como del tipo descriptiva, la cual consiste en la caracterización de un hecho, fenómeno o grupo con el fin de establecer su estructura o comportamiento. (Arias, 1999, p.46).

Según Córdova (2007), la investigación descriptiva trata de obtener información acerca de un fenómeno o proceso, para describir sus implicaciones, sin interesarse mucho (o muy poco) en conocer el origen o causa de la situación; fundamentalmente está dirigida a dar una visión de cómo opera y cuáles son sus características.

3.1.2 Diseño de investigación

Sobre el diseño de investigación Suarez (2001) expresa lo siguiente: es un procedimiento que determina las fuentes, estrategias e instrumentos para la recolección de información y la forma de analizarlos con miras a lograr los objetivos de la investigación. Las fuentes de información se definen de acuerdo con el problema y los marcos de investigación. Definir las estrategias de recolección de información es determinar técnicas, generar instrumentos, prever contextos o actividades mediante los cuales el investigador puede tener a su disposición los datos que requiere para interpretarlos. (p.13).

Así mismo, la recolección de información requiere prever quien llevará a cabo este proceso porque no siempre lo puede realizar el investigador y puede

requerirse la capacitación de personas que ayuden en el proyecto para que la información obtenida sea válida y útil al estudio.

3.1.3 Población y Muestra

Morles (Citado por Arias, 1999), define la población o universo como el conjunto para el cual serán válidas las conclusiones que se obtengan: a los elementos o unidades (personas, instituciones o cosas) involucradas en la investigación.

Por su parte, Córdova (2007), habla de la población como un conjunto infinito de individuos (personas, objetos o cosas) que poseen características definitorias, que por lo general, se encuentran en un momento dado y en un lugar determinado. La muestra, por su parte, es una pequeña parte o porción de la población que se selecciona cuando esta es muy grande, extensa o infinita; en este sentido, se trata de un conjunto finito o reducido de individuos (personas, objetos o cosas), con los cuales, es y será siempre más fácil abordar y estudiar una población o universo determinado.

Las técnicas de muestreo consisten en los procedimientos que se utilizan para seleccionar y conformar una muestra representativa de la población abordada como objeto de estudio de la investigación. En este caso la población son las barras de acero de refuerzo W, y la muestra son los 12 patrones de prueba y las 36 barras de acero con bajo contenido de carbono las cuales serán soldadas, una parte a solape y la otra a tope.

Tabla 3.1 Muestras Soldadas a Solape

Diámetro	Muestras	Muestras	Muestras
	Patrón	Solape Simple	Solape Doble
3/8"	2	3	3
1/2"	2	3	3
5/8"	2	3	3
3/4"	2	3	3

FUENTE: ELABORACIÓN PROPIA

Tabla 3.2 Muestras Soldadas a Tope

Diámetro	Muestras	Muestras Tope	Muestras Tope
Diametro	Patrón	Bisel Sencillo	Bisel Doble
7/8"	2	3	3
1 ³ / ₈ "	2	3	3

FUENTE: ELABORACIÓN PROPIA

3.1.4. Técnicas e instrumentos de recolección de Datos.

Para Suarez (2001), la recolección de datos es el comienzo propiamente dicho del desarrollo de la investigación por que provee la materia prima para responder el problema de investigación. Este proceso requiere previamente haber elaborado unos instrumentos de recolección que sean validos y confiables y además, que sean adecuados al tipo de estudio y a la muestra seleccionada. De la calidad de los instrumentos depende en parte, la posibilidad de aceptar o no las conclusiones de la investigación y en particular, la respuesta al problema de la investigación. (p.157).

Hernandez, Fernandez & Baptista (1997) señalan que un instrumento de recolección de información es un recurso para acercarse a un fenómeno y determinar el valor que presenta cada variable en la escala que se ha definido para ello. Un instrumento de medición adecuado es aquel que registra los datos de la realidad que representan verdaderamente a los conceptos o variables que el investigador tiene en mente y que ha definido en el proyecto de investigación.

La observación es una técnica de medición que acepta material no estructurado y puede trabajar con volúmenes diferentes de datos mediante el registro sistemático, valido y confiable de comportamientos o conductas manifiestas, de características de un fenómeno o de diferentes aspectos de la realidad empírica susceptible de ser captados por los sentidos. (Suarez, 2001, p.158).

En conclusión, el investigador elige la técnica que más se adecúe para realizar el trabajo de investigación, ya que estas pueden variar entre las existentes. En este caso, se eligió la observación científica que puede ser simple o participante. Es simple cuando el observador se aproxima al fenómeno sin ningún acercamiento anterior, es ajeno a la situación objeto y no tiene ninguna interacción.

3.1.5. Procesamiento y Análisis de Datos.

En este punto se describen las distintas operaciones a las que serán sometidos los datos que se obtengan: clasificación, registro, tabulación y codificación si fuere el caso. En lo referente al análisis, se definirán las técnicas lógicas (inducción, deducción análisis, síntesis) o estadísticas (descriptivas o inferenciales), que serán empleadas para descifrar lo que revelan los datos que sean recogidos. (Arias, 1999).

La información obtenida requiere un proceso detallado para poder interpretar, comparar, hacer consideraciones y dar respuestas a los objetivos del trabajo. Para ello, esta investigación acude a la estadística descriptiva utilizando diferentes procedimientos como por ejemplo los gráficos estadísticos, de distribución y cuadros comparativos. La estadística descriptiva analiza, estudia y describe a la totalidad de individuos de una población. Su finalidad es obtener información, analizarla, elaborarla y simplificarla lo necesario para que pueda ser interpretada cómoda y rápidamente y, por tanto, pueda utilizarse eficazmente para el fin que se desee. (Córdova, 2007)

Por su parte Suarez (2001), explica que: la estadística descriptiva analiza, mediante las medidas de tendencia central, la forma como los individuos de una muestra, se agrupan en torno a un valor central de la variable; así mismo, mediante las medidas de dispersión analiza el comportamiento de los individuos en tanto se acercan o no a ese valor central y como se distribuyen.

3.2 PROCEDIMIENTO

3.2.1 Proceso de corte y biselado de las barras de acero

Se realizó el corte de las barras de acero de 12m de longitud con una tronzadora marca *BOSCH*, con un disco de 14" x 7/64" x 1" especial para acero. Se separaron los 2 diámetros mayores que fueron soldados a tope de los 4 diámetros menores que se soldaron a solape. Las barras soldadas a tope fueron cortadas en tramos de 55cm cada uno, 6 de éstos para ser soldados con bisel sencillo y 6 más para ser soldados con bisel doble, esto para cada uno de los diámetros. Las barras soldadas a solape fueron cortadas en tramos de 75cm cada uno, 6 de estos fueron soldados con cordón simple y el resto con cordón doble, esto para cada uno de los diámetros. La longitud de estos tramos se determinó

respetando un mínimo de 80 cm por cada muestra, 40 cm de luz de ensayo y 20 cm de cada lado para las mordazas. Las barras soldadas a tope fueron cortadas, las de bisel sencillo, con un ángulo de 30°, ya que por norma el ángulo que debe formarse entre los biseles de las barras debe estar comprendido entre los 45° y 60°. Para el caso de las barras con bisel doble se les realizó un ángulo de 30° de lado y lado medido desde el eje central de la barra. Luego de realizar el bisel con el ángulo correspondiente, se procedió a realizar un bisel recto de aproximadamente 3mm en el extremo de la barra donde se llevó a cabo el procedimiento anterior. (ver anexos 1 al 6).

3.2.2 Determinación de la longitud del cordón de soldadura a solape

Para este cálculo se utilizó un fsu de 8000 kg/cm² y un fu de 6300 kg/cm², establecido en la norma AWS D1.4, utilizando la siguiente fórmula:

Longitud de soldadura =
$$\frac{Di\acute{a}metro\ nominal\ x\ 6\ x\ Fsu}{Fu}$$
 Longitud de soldadura =
$$\frac{Di\acute{a}metro\ nominal\ x\ 6\ x\ 8000}{6300}$$

Longitud de soldadura = Diámetro nominal (cada barra) x 7,62

TABLA 3.3 Determinación de la longitud del cordón de soldadura a solape

Diámetro	Diámetro	Longitud del cordón	Long. a utilizar	L/2 a utilizar
(pulg)	(cm)	(cm)	(cm)	(cm)
3/8	0,95	7,24	8	4
1/2	1,27	9,68	10	5
5/8	1,59	12,16	13	7
3/4	1,91	14,55	15	8

FUENTE: ELABORACIÓN PROPIA

3.2.3 Proceso de soldadura

En este proceso el soldador utilizó el electrodo AWS E-9018, aunque el adecuado para este tipo de barras según la norma AWS D1.4, es el AWS E-100XX, el cual no se encuentra en el mercado actualmente, ya que la demanda de estos es muy baja debido a que se hace engorroso el manejo de los mismos al momento del trabajo. La producción de estos se rige por encargos y en cantidades industriales siendo esta razón, una limitante para la obtención de los mismos.

Los electrodos AWS E-9018, presentan la resistencia (6300 kgf/cm²) más cercana al AWS E-100XX (7000 kgf/cm²). Es el electrodo disponible en el mercado que presenta la resistencia más alta y son de diseño de bajo hidrógeno con un recubrimiento de 40% de hierro pulverizado. Tienen todas las características deseables de los electrodos de bajo hidrogeno, los que producen soldaduras solidas y confiables en aceros difíciles, tales como los de alto contenido de azufre, alto contenido de carbono y bajo contenido de elementos de aleación.

Su recubrimiento más grueso y con contenido de hierro pulverizado, los hacen generalmente más fáciles de usar que los otros tipos de bajo hidrogeno. (Horwitz, 1984)

Se trabajó con una maquina de soldar *Lincoln Electric AC-225 ARC Welder*. A continuación el soldador sujetó el cable de tierra de la máquina a una pieza metálica y ajusta la corriente eléctrica que va desde 140 AMP, para las barras de mayor diámetro y de hasta 100 AMP en las de menor diámetro para así "hacer saltar el arco", es decir, para crear una corriente intensa que salte entre el electrodo y el metal.

En seguida mueve el electrodo a lo largo de líneas de unión del metal que ha de soldar dando suficiente tiempo para que el calor del arco funda el metal. El metal fundido, procedente del electrodo, o metal de aporte, se deposita en la junta, y, junto con el metal fundido de los bordes, se solidifica para formar una junta solida.

Portaelectrodo

Metal de aporte o soldadura

Pieza de trabajo

Alambre del núcleo Recubrimiento del electrodo (fundente)

Protección gaseosa Relleno de soldadura Capa de escoria

Profundidad de la fusión

Profundidad de la fusión

Figura 3.1 Proceso de soldadura por arco

FUENTE: WELDING: PRINCIPLES AND PRACTICE

3.2.4 Proceso de marcado de las barras

Este proceso se realizó con una maquina AMSTEL ubicada en las instalaciones del IMME. Primeramente se delimitó la luz de ensayo de 40 cm en el centro de la barra. Luego se realizaron 41 marcas a partir de 20 cm medidos

desde el centro de la barra para garantizar las 40 divisiones de un centímetro cada una, que servirán como guía para la medición del porcentaje de alargamiento en 20 cm luego de finalizado el ensayo. (ver anexos 9).

3.2.5 Ensayos

Para las características del acero a estudiar se trabajó conforme con lo establecido en el punto 6.3 *Probeta Tipo C* señalado en la Norma COVENIN 299-89 "Materiales metálicos. Ensayos de tracción". Se trabajó con prensas hidráulicas con manómetro, marca BALDWIN modelo Universal. Las barras con los diámetros ³/₈", ¹/₂", ⁵/₈" y ³/₄", se ensayaron en la prensa con capacidad de 1.200 a 30.000kg y las barras con diámetro ⁷/₈" y 1 ³/₈", se ensayaron en la prensa con capacidad de 10.000 a 200.000kg. (ver anexos 8 al 14)

3.2.5.1 Colocación de la muestra de ensayo

Durante el ensayo se alineó la probeta en la máquina de tracción para que el eje de dicha muestra coincidiera con las mordazas de la máquina. La colocación de esta se realizó respetando la luz de ensayo de 40cm.

3.2.5.3 Aplicación de la carga

La carga predeterminada para el ensayo de cada barra se calculó con el área nominal de las mismas. Los ensayos de deformación fueron realizados empleando un extensómetro, el cual registró la deformación. La lectura del extensómetro se realizó al comienzo de cada intervalo de carga predeterminada, dependiendo esto, de la velocidad de aplicación de la carga por parte del operador, que permitía realizar la lectura más exacta. (ver anexo 10)

La carga se aplicó a una velocidad apropiada hasta que se registró un incremento de deformación sin aumento de carga, donde se determinó el punto de fluencia y el límite elástico convencional de las barras.

3.2.6 Toma de datos

Esta etapa se realizó simultáneamente con los ensayos donde se recopilaron los resultados bajo el formato de planillas entregadas por el personal del IMME para tal fin, las cuales fueron estudiadas para efectuar posteriormente los análisis de resultados del trabajo. (ver anexo 17)

Para el llenado de las planillas se procedió a registrar la deformación longitudinal de la barra en mm, leyendo un extensómetro al momento en que a esta se le aplicara una carga predeterminada para cada diámetro, hasta alcanzar los 25mm para luego retirar el instrumento de medición y esperar la rotura de la probeta.

3.2.7 Procesamiento de datos

1. Elaboración de la curva Tensión vs. Deformación.

Conseguidos los valores finales de la carga máxima y el alargamiento de cada ensayo se procedió a graficar el resultado del comportamiento final de las probetas, colocando en el eje de las abscisas la deformación unitaria y en el eje de las ordenadas el tensión. Ambas se calcularon según la norma COVENIN 299-1989 "Materiales metálicos. Ensayos de tracción" de la siguiente manera:

.- Esfuerzo:

$$\rho = \frac{P}{Ao}$$

Donde:

ρ = esfuerzo expresado en MPa

P = carga expresada en Kg

A_o= área de la sección transversal original, expresada en cm²

.- Deformación de rotura:

$$\varepsilon = \frac{Lf - Lo}{Lo} \times 100$$

Donde:

 ε = deformación de rotura expresado en porcentaje

L_f = distancia de la longitud calibrada después del ensayo, expresada en mm.

L_o= longitud calibrada, expresada en cm.

.- Alargamiento:

$$e = Lf - Lo$$

Donde:

e = alargamiento lineal media

L_f = distancia de la longitud calibrada después del ensayo, expresada en mm.

L_o= longitud calibrada, expresada en cm.

.- Resistencia a la tracción (fsu):

$$\sigma t = \frac{Pm\acute{a}x}{Ao}$$

Donde:

 σ_t = resistencia a la tracción.

P_{MÁX} = carga máxima expresada en Kg

A_o= área de la sección transversal original de la probeta de ensayo, expresada en mc²

.-Límite Elástico Convencional (fy):

$$\sigma 0,2 = \frac{P0,2}{Ao}$$

Donde:

 $\sigma_{0,2}$ = Iímite Elástico Convencional, expresado en MPa

 $P_{0,2}$ = carga expresada en Kg

A_o= área de la sección transversal original de la probeta de ensayo, expresada en cm²

3.2.8 Interpretación de datos

Se analizaron los resultados de los ensayos de manera detallada y con un criterio lógico para cumplir con la resolución de los objetivos planteados en la investigación.

CAPITULO IV

ANALISIS DE RESULTADOS

El análisis de los resultados se hizo en base a la norma COVENIN 316 "Barras y rollos de acero con resaltes para uso como refuerzo estructural", la cual especifica una serie de requisitos que tienen que cumplir las barras W, entre estos se encontraron las propiedades de tracción como lo son el limite elástico convencional, la resistencia a la tracción y el alargamiento en 20 cm, los cuales se compararon con los obtenidos.

Los resultados fueron recopilados en planillas con un formato predeterminado del IMME, donde se detallan varios renglones como lo son: la carga (en Kg), la deformación (en milímetros), el esfuerzo (en Kg/cm²) y la deformación unitaria expresada en 10⁻⁴ cm/cm. Además incluye los renglones de carga máxima, alargamiento en 20 cm con estricción incluida, el porcentaje de alargamiento en 20 cm con la estricción y las observaciones que sean pertinentes durante los ensayo.

Se realizaron un total de 48 ensayos, los cuales se dividieron en 12 probetas patrón por cada diámetro (${}^3/{}_8$ ", ${}^1/{}_2$ ", ${}^5/{}_8$ ", ${}^3/{}_4$ ", ${}^7/{}_8$ " y 1 ${}^3/{}_8$ ") y 36 ensayos divididos en: 24 muestras soldadas a solape (sencillo y doble) para los diámetros ${}^3/{}_8$ ", ${}^1/{}_2$ ", ${}^5/{}_8$ " y ${}^3/{}_4$ " (6 muestras para cada uno) y 12 muestras a tope (sencillo y doble) para los diámetros ${}^7/{}_8$ " y 1 ${}^3/{}_8$ " (6 muestras para cada uno).

Se consiguió el valor del límite elástico convencional nominal (fy) luego de trazar una recta paralela (con origen en $\varepsilon=0,002$) a la línea inicial de la deformación elástica hasta la intersección de estas. La resistencia a la tracción (fsu) se obtuvo luego de dividir la carga máxima obtenida en cada ensayo entre el área transversal de cada muestra.

El porcentaje de alargamiento se determinó uniendo las mitades de la probeta luego de la rotura y midiendo 20 espacios, previamente marcados, contando 10 marcas a cada lado de la fractura, estos requisitos se compararon con los establecidos en la norma antes nombrada.

Los límites establecidos para el fy de las barras W-70 según norma, se encuentran entre 5000 kg/cm² y 6500 kg/cm², la probeta de ensayo debe cumplir con el criterio fy* \leq 1,25fy. Para este mismo tipo de barras el fsu debe ser mayor a 6300 kg/cm² y cumplir con el criterio fsu* \geq 1, 25 fy*.

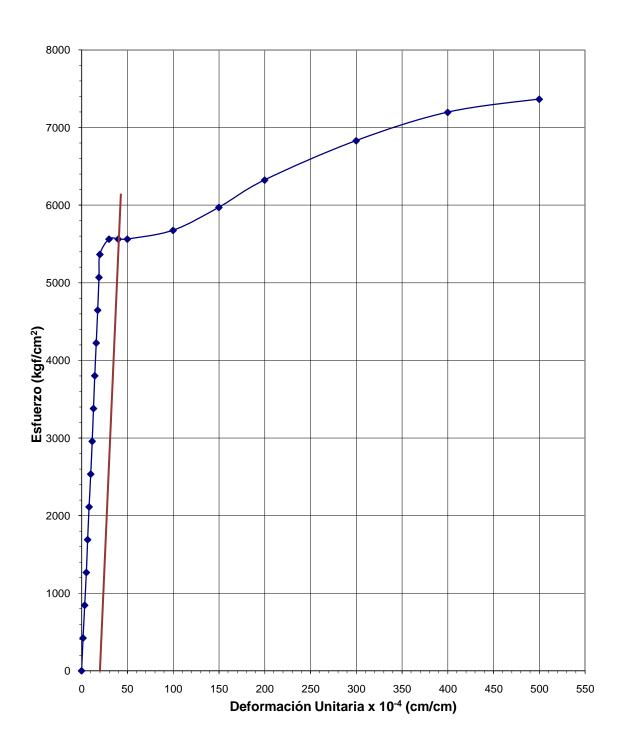
Tabla 4.1 Resultado del ensayo de la barra patrón N°1 de diámetro 3/8"

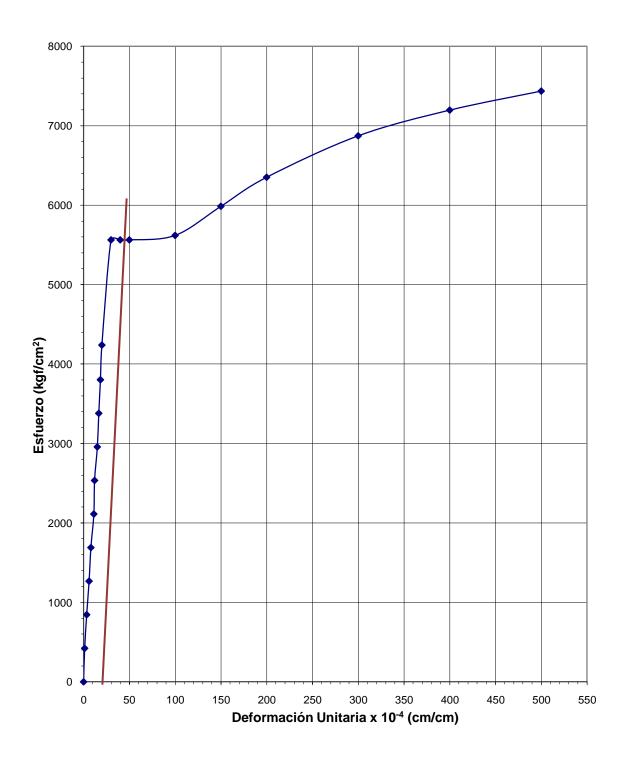
CARGA (Kg)	DEFORM. (0,01mm)	ESFUERZO (Kg/cm²)	DEF. UNT. (10 ⁻⁴ cm/cm)
0	0,0	0	0,0
300	0,8	423	1,6
600	1,7	845	3,4
900	2,6	1268	5,2
1200	3,3	1690	6,6
1500	4,1	2113	8,2
1800	5,0	2535	10,0
2100	5,8	2958	11,6
2400	6,5	3380	13,0
2700	7,2	3803	14,4
3000	8,0	4225	16,0
3300	8,8	4648	17,6
3600	9,5	5070	19,0
3810	10,0	5366	20,0
3950	15,0	5563	30,0
3950	20,0	5563	40,0
3950	25,0	5563	50,0
4030	50,0	5676	100,0
4240	75,0	5972	150,0
4490	100,0	6324	200,0
4850	150,0	6831	300,0
5110	200,0	7197	400,0
5230	250,0	7366	500,0

FUENTE: ELABORACIÓN PROPIA

Este ensayo se realizó midiendo la deformación cada 300 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. El patrón falló al alcanzar a una carga máxima de 5.410kg.

Gráfica 4.1 Resultado del ensayo de la barra patrón N°1 de diámetro 3/8"




Tabla 4.2 Resultado del ensayo de la barra patrón N°2 de diámetro 3/8"

CARGA (Kg)	DEFORM. (0,01mm)	ESFUERZO (Kg/cm²)	DEF. UNT. (10 ⁻⁴ cm/cm)
0	0,0	0	0,0
300	0,6	423	1,2
600	1,7	845	3,4
900	3,0	1268	6,0
1200	4,0	1690	8,0
1500	5,6	2113	11,2
1800	6,0	2535	12,0
2100	7,5	2958	15,0
2400	8,3	3380	16,6
2700	9,2	3803	18,4
3010	10,0	4239	20,0
3950	15,0	5563	30,0
3950	20,0	5563	40,0
3950	25,0	5563	50,0
3990	50,0	5620	100,0
4250	75,0	5986	150,0
4510	100,0	6352	200,0
4880	150,0	6873	300,0
5110	200,0	7197	400,0
5280	250,0	7437	500,0

FUENTE: ELABORACIÓN PROPIA

Este ensayo se realizó midiendo la deformación cada 300 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. El patrón falló al alcanzar a una carga máxima de 5.420 Kg.

Gráfica 4.2 Resultado del ensayo de la barra patrón N°2 de diámetro 3/8"

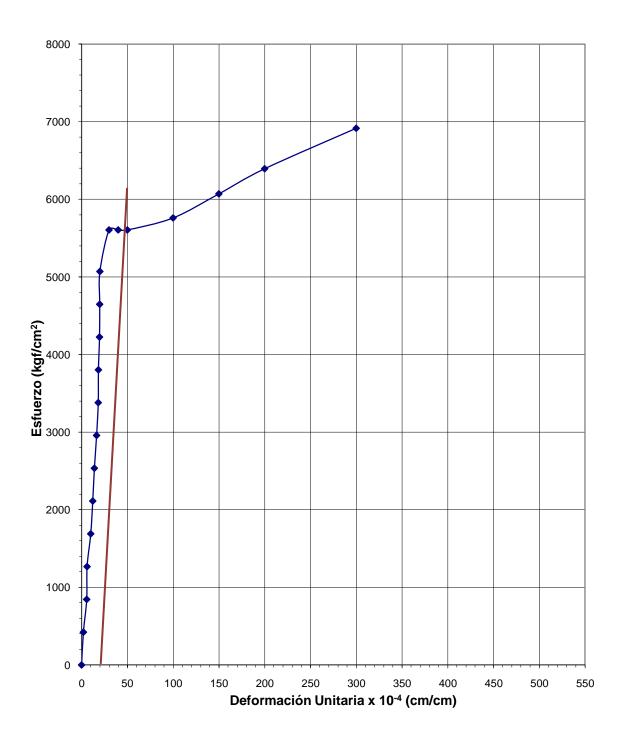


Tabla 4.3 Resultado del ensayo de la muestra N°1 de solape con cordón simple de diámetro 3/8"

CARGA (Kg)	DEFORM. (0,01mm)	ESFUERZO (Kg/cm²)	DEF. UNT. (10 ⁻⁴ cm/cm)
0	0,0	0	0,0
300	1,0	423	2,0
600	2,8	845	5,6
900	3,0	1268	6,0
1200	5,0	1690	10,0
1500	6,1	2113	12,2
1800	7,0	2535	14,0
2100	8,2	2958	16,4
2400	9,1	3380	18,2
2700	9,2	3803	18,4
3000	9,8	4225	19,6
3300	9,9	4648	19,8
3600	10,0	5070	20,0
3980	15,0	5606	30,0
3980	20,0	5606	40,0
3980	25,0	5606	50,0
4090	50,0	5761	100,0
4310	75,0	6070	150,0
4540	100,0	6394	200,0
4910	150,0	6915	300,0

Este ensayo se realizó midiendo la deformación cada 300 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. La muestra falló al alcanzar a una carga máxima de 5.480 Kg.

Gráfica 4.3 Resultado del ensayo de la muestra N°1 de solape con cordón simple de diámetro 3/8"

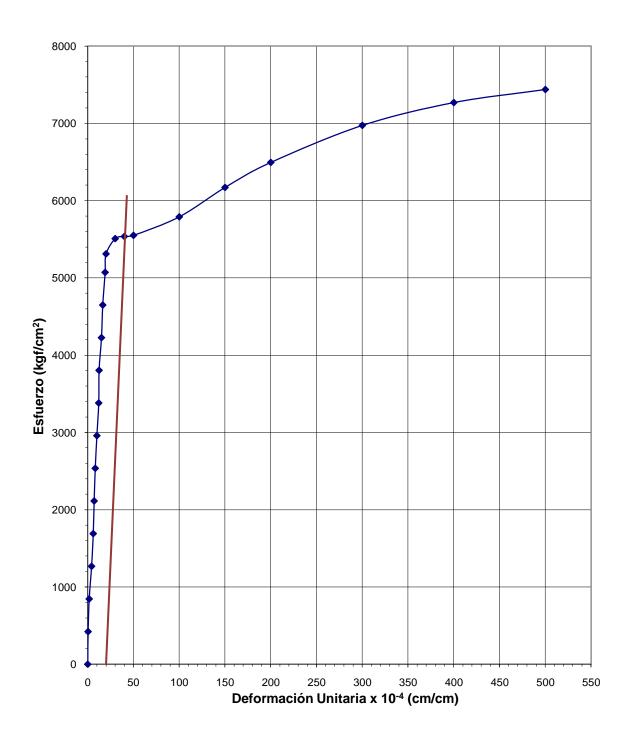


Tabla 4.4 Resultado del ensayo de la muestra N°2 de solape con cordón simple de diámetro 3/8"

CARGA (Kg)	DEFORM. (0,01mm)	ESFUERZO (Kg/cm²)	DEF. UNT. (10 ⁻⁴ cm/cm)
0	0,0	0	0,0
300	0,2	423	0,4
600	0,8	845	1,6
900	2,1	1268	4,2
1200	3,0	1690	6,0
1500	3,5	2113	7,0
1800	4,1	2535	8,2
2100	5,0	2958	10,0
2400	6,0	3380	12,0
2700	6,2	3803	12,4
3000	7,5	4225	15,0
3300	8,2	4648	16,4
3600	9,5	5070	19,0
3770	10,0	5310	20,0
3910	15,0	5507	30,0
3930	20,0	5535	40,0
3940	25,0	5549	50,0
4110	50,0	5789	100,0
4380	75,0	6169	150,0
4610	100,0	6493	200,0
4950	150,0	6972	300,0
5160	200,0	7268	400,0
5280	250,0	7437	500,0

Este ensayo se realizó midiendo la deformación cada 300 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. La muestra falló al alcanzar a una carga máxima de 5.430 Kg.

Gráfica 4.4 Resultado del ensayo de la muestra N°2 de solape con cordón simple de diámetro 3/8"

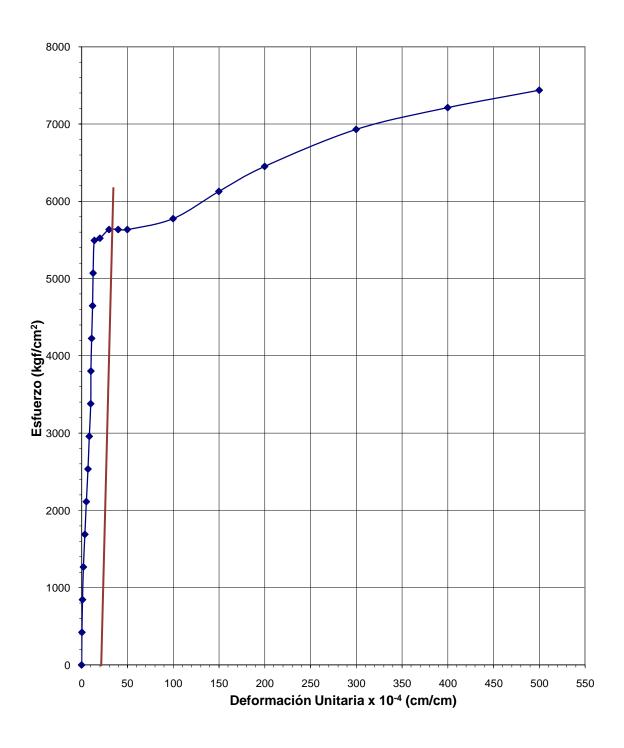


Tabla 4.5 Resultado del ensayo de la muestra N°3 de solape con cordón simple de diámetro 3/8"

CARGA (Kg)	DEFORM. (0,01mm)	ESFUERZO (Kg/cm2)	DEF. UNT. (10-4 cm/cm)
0	0,0	0	0,0
300	0,2	423	0,4
600	0,5	845	1,0
900	1,0	1268	2,0
1200	1,8	1690	3,6
1500	2,6	2113	5,2
1800	3,5	2535	7,0
2100	4,2	2958	8,4
2400	5,0	3380	10,0
2700	5,1	3803	10,2
3000	5,5	4225	11,0
3300	6,0	4648	12,0
3600	6,3	5070	12,6
3900	7,0	5493	14,0
3920	10,0	5521	20,0
4000	15,0	5634	30,0
4000	20,0	5634	40,0
4000	25,0	5634	50,0
4100	50,0	5775	100,0
4350	75,0	6127	150,0
4580	100,0	6451	200,0
4920	150,0	6930	300,0
5120	200,0	7211	400,0
5280	250,0	7437	500,0

Este ensayo se realizó midiendo la deformación cada 300 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. La muestra falló por la zona afectada por calor al alcanzar una carga máxima de 5.430 Kg.

Gráfica 4.5 Resultado del ensayo de la muestra N°3 de solape con cordón simple de diámetro 3/8"

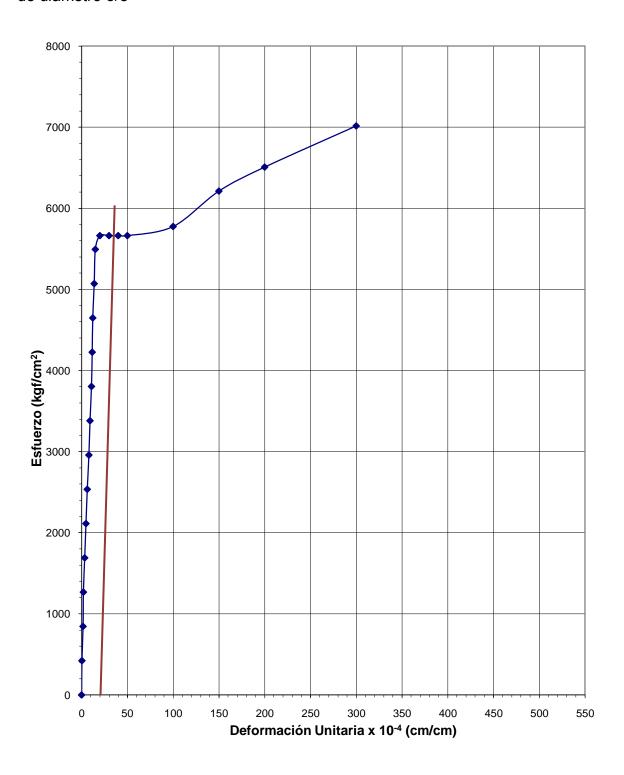


Tabla 4.6 Resultado del ensayo de la muestra N°1 de solape con cordón doble de diámetro 3/8"

CARGA (Kg)	DEFORM. (0,01mm)	ESFUERZO (Kg/cm²)	DEF. UNT. (10 ⁻⁴ cm/cm)
0	0,0	0	0,0
300	0,2	423	0,4
600	0,8	845	1,6
900	1,0	1268	2,0
1200	1,7	1690	3,4
1500	2,4	2113	4,8
1800	3,1	2535	6,2
2100	4,0	2958	8,0
2400	4,6	3380	9,2
2700	5,4	3803	10,8
3000	5,8	4225	11,6
3300	6,1	4648	12,2
3600	6,9	5070	13,8
3900	7,5	5493	15,0
4020	10,0	5662	20,0
4020	15,0	5662	30,0
4020	20,0	5662	40,0
4020	25,0	5662	50,0
4100	50,0	5775	100,0
4410	75,0	6211	150,0
4620	100,0	6507	200,0
4980	150,0	7014	300,0

Este ensayo se realizó midiendo la deformación cada 300 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. La muestra falló por la zona afectada por calor al alcanzar una carga máxima de 5.360 Kg.

Gráfica 4.6 Resultado del ensayo de la muestra N°1 de solape con cordón doble de diámetro 3/8"

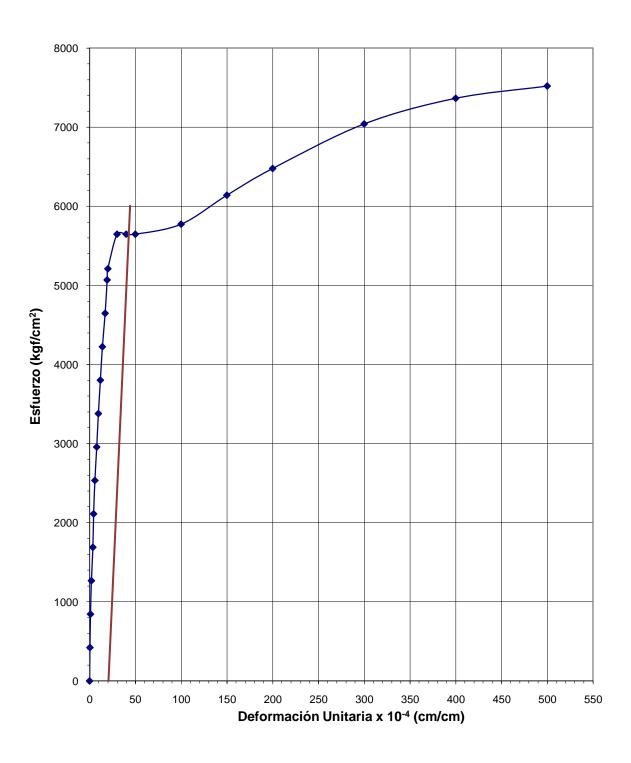


Tabla 4.7 Resultado del ensayo de la muestra N°2 de solape con cordón doble de diámetro 3/8"

CARGA (Kg)	DEFORM. (0,01mm)	ESFUERZO (Kg/cm²)	DEF. UNT. (10 ⁻⁴ cm/cm)
0	0,0	0	0,0
300	0,2	423	0,4
600	0,5	845	1,0
900	1,0	1268	2,0
1200	1,8	1690	3,6
1500	2,2	2113	4,4
1800	2,9	2535	5,8
2100	3,9	2958	7,8
2400	4,8	3380	9,6
2700	5,9	3803	11,8
3000	7,0	4225	14,0
3300	8,5	4648	17,0
3600	9,6	5070	19,2
3700	10,0	5211	20,0
4010	15,0	5648	30,0
4010	20,0	5648	40,0
4010	25,0	5648	50,0
4100	50,0	5775	100,0
4360	75,0	6141	150,0
4600	100,0	6479	200,0
5000	150,0	7042	300,0
5230	200,0	7366	400,0
5340	250,0	7521	500,0

Este ensayo se realizó midiendo la deformación cada 300 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. La muestra falló por la zona afectada por calor al alcanzar una carga máxima de 5.420 Kg.

Gráfica 4.7 Resultado del ensayo de la muestra N°2 de solape con cordón doble de diámetro 3/8"

Tabla 4.8 Resultado del ensayo de la muestra N°3 de solape con cordón doble de diámetro 3/8"

CARGA (Kg)	DEFORM. (0,01mm)	ESFUERZO (Kg/cm2)	DEF. UNT. (10-4 cm/cm)
0	0,0	0	0,0
300	0,5	423	1,0
600	1,3	845	2,6
900	2,2	1268	4,4
1200	3,1	1690	6,2
1500	4,0	2113	8,0
1800	4,9	2535	9,8
2100	6,0	2958	12,0
2400	6,5	3380	13,0
2700	7,8	3803	15,6
3000	9,5	4225	19,0
3300	10,0	4648	20,0
3980	15,0	5606	30,0
3980	20,0	5606	40,0
3980	25,0	5606	50,0
4000	50,0	5634	100,0
4390	75,0	6183	150,0
4520	100,0	6366	200,0
4910	150,0	6915	300,0
5030	200,0	7085	400,0
5280	250,0	7437	500,0

Este ensayo se realizó midiendo la deformación cada 300 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. La muestra falló por la zona afectada por calor al alcanzar una carga máxima de 5.380 Kg.

Gráfica 4.8 Resultado del ensayo de la muestra N°3 de solape con cordón doble de diámetro 3/8"

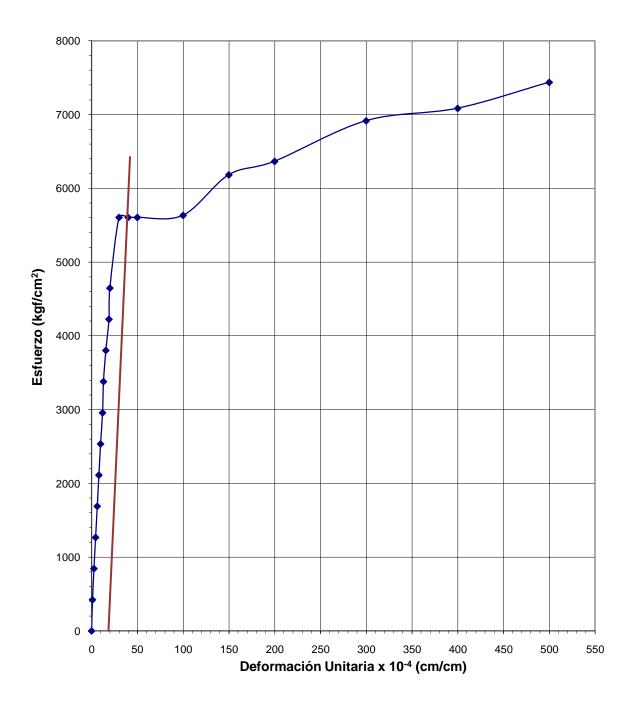


Tabla 4.9 Resultado del ensayo de la barra patrón N°1 de diámetro 1/2"

CARGA	DEFORM.	ESFUERZO	DEF. UNT. (10 ⁻⁴
(Kg)	(0,01mm)	(Kg/cm²)	cm/cm)
0	0,0	0	0,0
500	0,2	394	0,4
1000	1,0	787	2,0
1500	1,7	1181	3,4
2000	2,5	1575	5,0
2500	3,2	1969	6,4
3000	4,0	2362	8,0
3500	4,8	2756	9,6
4000	5,5	3150	11,0
4500	6,1	3543	12,2
5000	7,0	3937	14,0
5500	7,9	4331	15,8
6000	8,6	4724	17,2
6500	9,1	5118	18,2
7010	10,0	5520	20,0
7800	15,0	6142	30,0
7800	20,0	6142	40,0
7800	25,0	6142	50,0
7800	50,0	6142	100,0
8200	75,0	6457	150,0
8680	100,0	6835	200,0
9180	150,0	7228	300,0
9610	200,0	7567	400,0
9880	250,0	7780	500,0

Este ensayo se realizó midiendo la deformación cada 500 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. El patrón falló al alcanzar una carga máxima de 10.100 Kg.

Gráfica 4.9 Resultado del ensayo de la barra patrón N°1 de diámetro 1/2"

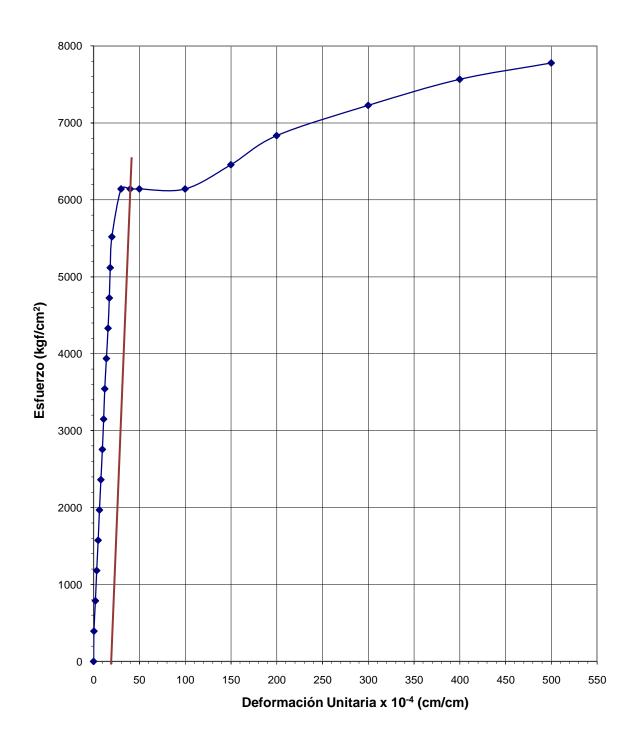
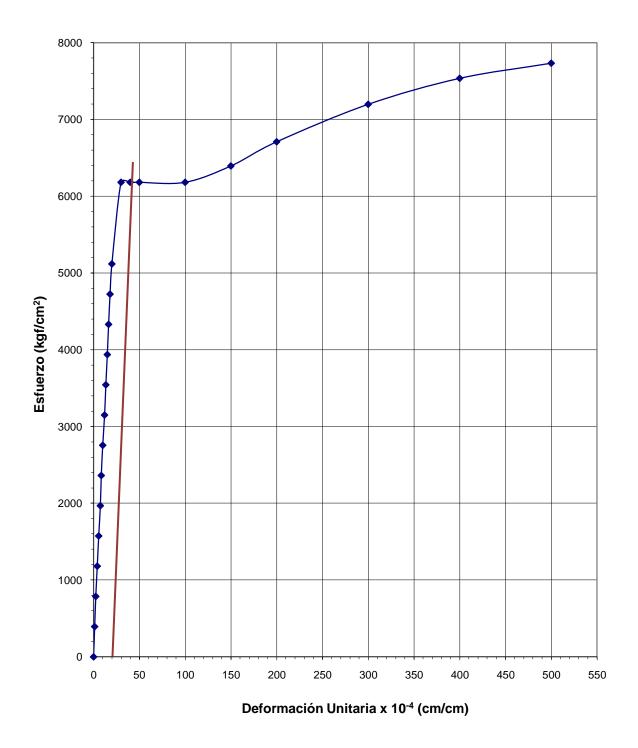



Tabla 4.10 Resultado del ensayo de la barra patrón N°2 de diámetro 1/2"

CARGA	DEFORM.	ESFUERZO	DEF. UNT. (10 ⁻⁴
(Kg)	(0,01mm)	(Kg/cm²)	cm/cm)
0	0,0	0	0,0
500	0,6	394	1,2
1000	1,2	787	2,4
1500	2,0	1181	4,0
2000	2,8	1575	5,6
2500	3,7	1969	7,4
3000	4,2	2362	8,4
3500	5,0	2756	10,0
4000	6,0	3150	12,0
4500	6,7	3543	13,4
5000	7,5	3937	15,0
5500	8,2	4331	16,4
6000	9,0	4724	18,0
6500	10,0	5118	20,0
7850	15,0	6181	30,0
7850	20,0	6181	40,0
7850	25,0	6181	50,0
7850	50,0	6181	100,0
8120	75,0	6394	150,0
8520	100,0	6709	200,0
9140	150,0	7197	300,0
9570	200,0	7535	400,0
9820	250,0	7732	500,0

Este ensayo se realizó midiendo la deformación cada 500 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. El patrón falló al alcanzar una carga máxima de 10.160 Kg.

Gráfica 4.10 Resultado del ensayo de la barra patrón N°2 de diámetro 1/2"

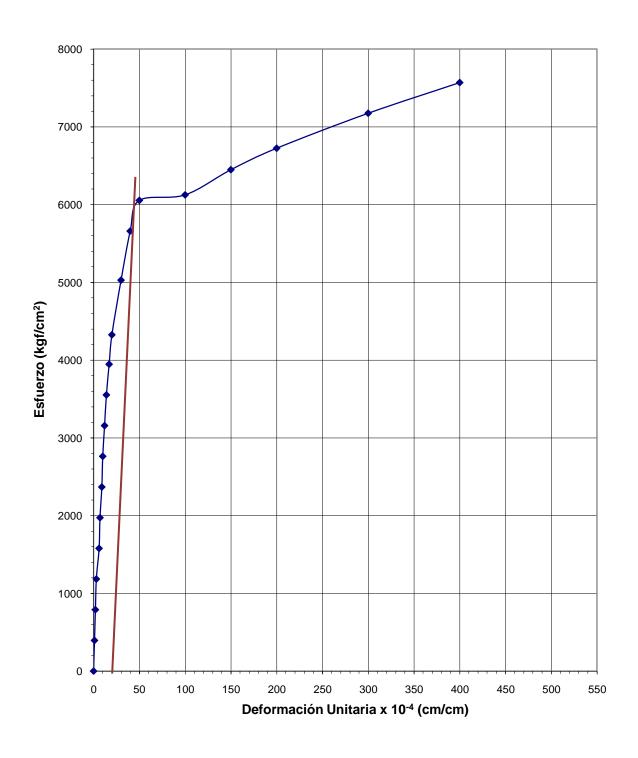


Tabla 4.11 Resultado del ensayo de la muestra N°1 de solape con cordón simple de diámetro 1/2"

CARGA (Kg)	DEFORM. (0,01mm)	ESFUERZO (Kg/cm²)	DEF. UNT. (10 ⁻⁴ cm/cm)
0	0,0	0	0,0
500	0,5	395	1,0
1000	1,0	789	2,0
1500	1,5	1184	3,0
2000	3,0	1579	6,0
2500	3,5	1973	7,0
3000	4,5	2368	9,0
3500	5,0	2762	10,0
4000	6,0	3157	12,0
4500	7,0	3552	14,0
5000	8,5	3946	17,0
5480	10,0	4325	20,0
6370	15,0	5028	30,0
7170	20,0	5659	40,0
7670	25,0	6054	50,0
7760	50,0	6125	100,0
8170	75,0	6448	150,0
8520	100,0	6725	200,0
9090	150,0	7174	300,0
9590	200,0	7569	400,0

Este ensayo se realizó midiendo la deformación cada 500 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. La muestra falló al alcanzar una carga máxima de 10.140 Kg.

Gráfica 4.11 Resultado del ensayo de la muestra N°1 de solape con cordón simple de diámetro 1/2"

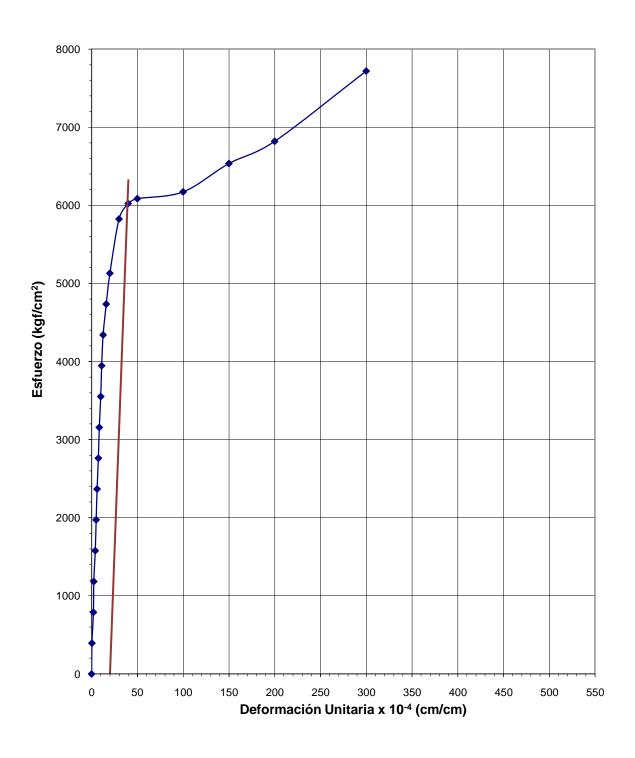


Tabla 4.12 Resultado del ensayo de la muestra N°2 de solape con cordón simple de diámetro 1/2"

CARGA (Kg)	DEFORM. (0,01mm)	ESFUERZO (Kg/cm²)	DEF. UNT. (10 ⁻⁴ cm/cm)
0	0,0	0	0,0
500	0,2	395	0,4
1000	1,0	789	2,0
1500	1,2	1184	2,4
2000	2,0	1579	4,0
2500	2,5	1973	5,0
3000	3,0	2368	6,0
3500	3,7	2762	7,4
4000	4,2	3157	8,4
4500	5,0	3552	10,0
5000	5,5	3946	11,0
5500	6,3	4341	12,6
6000	8,0	4736	16,0
6500	10,0	5130	20,0
7380	15,0	5825	30,0
7630	20,0	6022	40,0
7710	25,0	6085	50,0
7820	50,0	6172	100,0
8280	75,0	6535	150,0
8640	100,0	6819	200,0
9780	150,0	7719	300,0

Este ensayo se realizó midiendo la deformación cada 500 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. La muestra falló por la zona afectada por calor al alcanzar una carga máxima de 9.860 Kg.

Gráfica 4.12 Resultado del ensayo de la muestra N°2 de solape con cordón simple de diámetro 1/2"

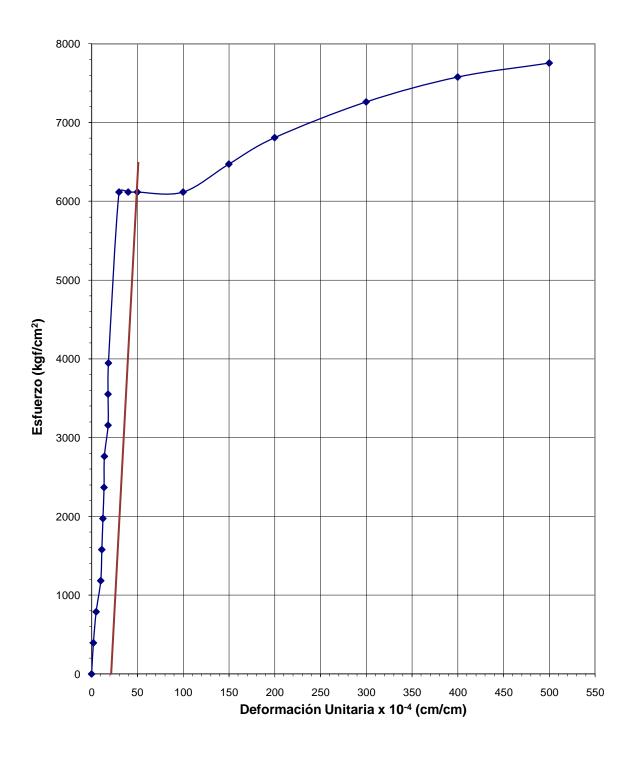


Tabla 4.13 Resultado del ensayo de la muestra N°3 de solape con cordón simple de diámetro 1/2"

CARGA (Kg)	DEFORM. (0,01mm)	ESFUERZO (Kg/cm²)	DEF. UNT. (10 ⁻⁴ cm/cm)
0	0,0	0	0,0
500	1,0	395	2,0
1000	2,5	789	5,0
1500	5,0	1184	10,0
2000	5,6	1579	11,2
2500	6,2	1973	12,4
3000	6,8	2368	13,6
3500	7,0	2762	14,0
4000	9,0	3157	18,0
4500	9,0	3552	18,0
5000	9,2	3946	18,4
7750	15,0	6117	30,0
7750	20,0	6117	40,0
7750	25,0	6117	50,0
7750	50,0	6117	100,0
8200	75,0	6472	150,0
8625	100,0	6807	200,0
9200	150,0	7261	300,0
9600	200,0	7577	400,0
9825	250,0	7755	500,0

Este ensayo se realizó midiendo la deformación cada 500 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. La muestra falló al alcanzar una carga máxima de 10.100 Kg.

Gráfica 4.13 Resultado del ensayo de la muestra N°3 de solape con cordón simple de diámetro 1/2"

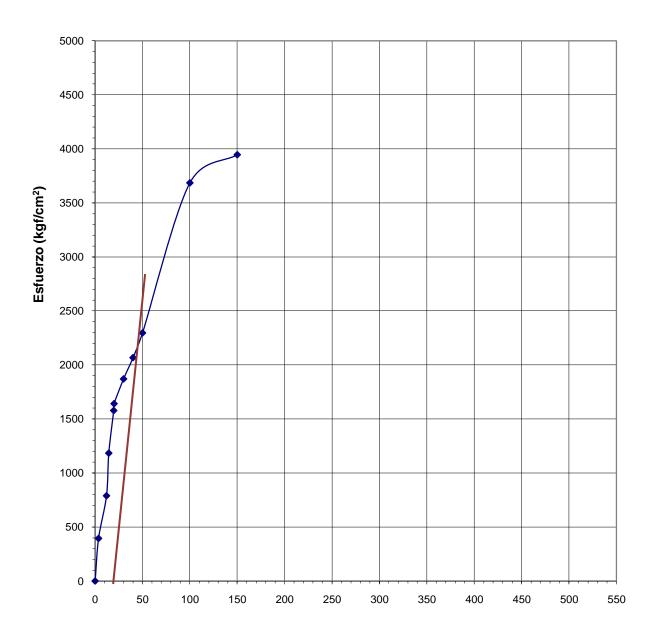


Tabla 4.14 Resultado del ensayo de la muestra N°1 de solape con cordón doble de diámetro 1/2"

CARGA (Kg)	DEFORM. (0,01mm)	ESFUERZO (Kg/cm²)	DEF. UNT. (10 ⁻⁴ cm/cm)
0	0,0	0	0,0
500	1,8	395	3,6
1000	6,0	789	12,0
1500	7,2	1184	14,4
2000	9,8	1579	19,6
2080	10,0	1642	20,0
2370	15,0	1871	30,0
2620	20,0	2068	40,0
2910	25,0	2297	50,0
4670	50,0	3686	100,0
5000	75,0	3946	150,0

Este ensayo se realizó midiendo la deformación cada 500 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. La muestra falló en la soldadura al alcanzar una carga máxima de 8.950 Kg.

Gráfica 4.14 Resultado del ensayo de la muestra N°1 de solape con cordón doble de diámetro 1/2"

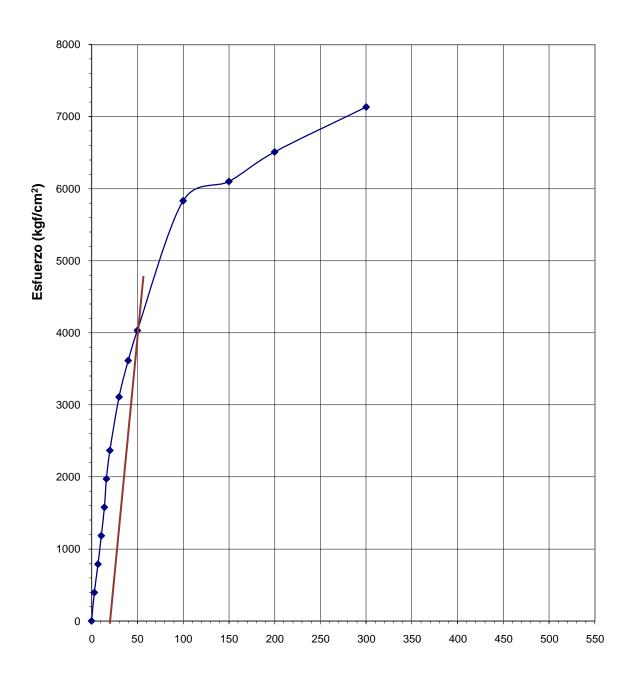

Deformación Unitaria x 10⁻⁴ (cm/cm)

Tabla 4.15 Resultado del ensayo de la muestra N°2 de solape con cordón doble de diámetro 1/2"

CARGA (Kg)	DEFORM. (0,01mm)	ESFUERZO (Kg/cm²)	DEF. UNT. (10 ⁻⁴ cm/cm)
0	0,0	0	0,0
500	1,5	395	3,0
1000	3,5	789	7,0
1500	5,3	1184	10,6
2000	7,0	1579	14,0
2500	8,1	1973	16,2
3000	10,0	2368	20,0
3940	15,0	3110	30,0
4580	20,0	3615	40,0
5110	25,0	4033	50,0
7390	50,0	5833	100,0
7730	75,0	6101	150,0
8250	100,0	6511	200,0
9040	150,0	7135	300,0

Este ensayo se realizó midiendo la deformación cada 500 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. La muestra falló por la zona afectada por calor al alcanzar una carga máxima de 9.450 Kg.

Gráfica 4.15 Resultado del ensayo de la muestra N°2 de solape con cordón doble de diámetro 1/2"

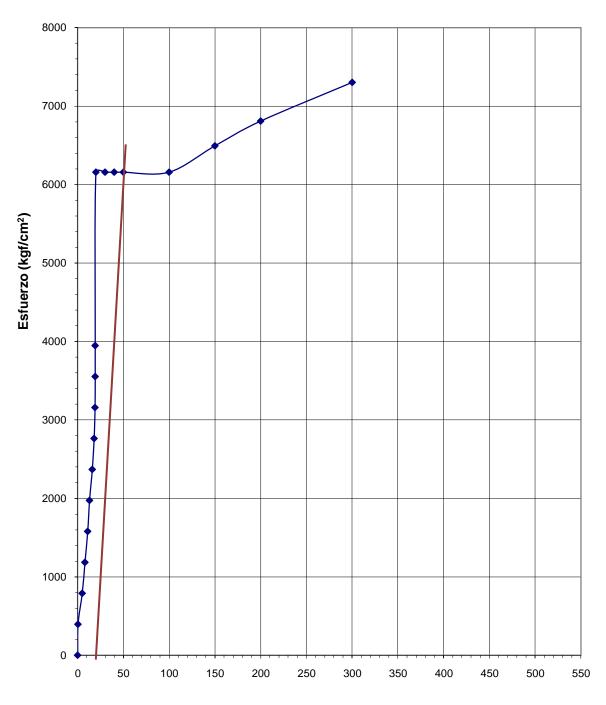

Deformación Unitaria x 10-4 (cm/cm)

Tabla 4.16 Resultado del ensayo de la muestra N°3 de solape con cordón doble de diámetro 1/2"

CARGA (Kg)	DEFORM. (0,01mm)	ESFUERZO (Kg/cm²)	DEF. UNT. (10 ⁻⁴ cm/cm)
0	0,0	0	0,0
500	0,2	395	0,4
1000	2,5	789	5,0
1500	4,0	1184	8,0
2000	5,5	1579	11,0
2500	6,5	1973	13,0
3000	8,0	2368	16,0
3500	9,0	2762	18,0
4000	9,5	3157	19,0
4500	9,6	3552	19,2
5000	9,6	3946	19,2
7800	10,0	6156	20,0
7800	15,0	6156	30,0
7800	20,0	6156	40,0
7800	25,0	6156	50,0
7800	50,0	6156	100,0
8225	75,0	6492	150,0
8625	100,0	6807	200,0
9250	150,0	7301	300,0

Este ensayo se realizó midiendo la deformación cada 500 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. La muestra falló en la soldadura al alcanzar una carga máxima de 9.425 Kg.

Gráfica 4.16 Resultado del ensayo de la muestra N°3 de solape con cordón doble de diámetro 1/2"

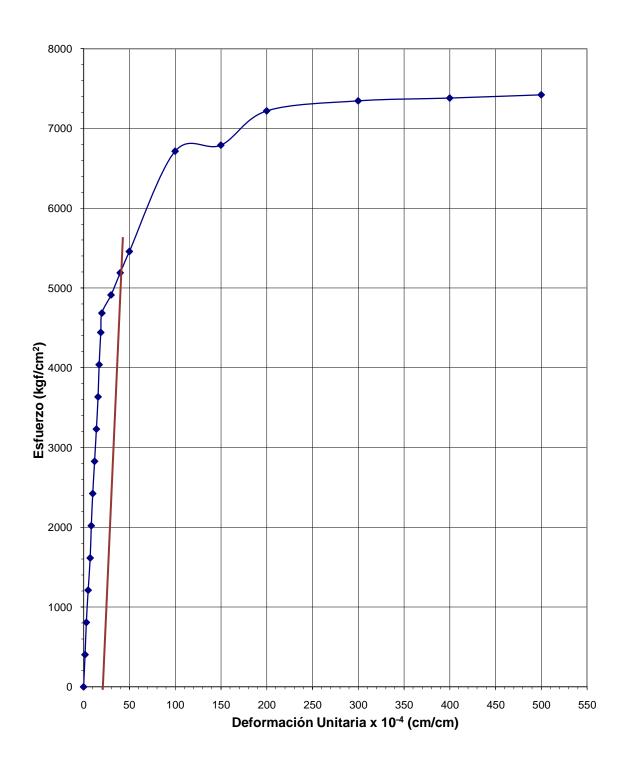

Deformación Unitaria x 10⁻⁴ (cm/cm)

Tabla 4.17 Resultado del ensayo de la barra patrón N°1 de diámetro 5/8"

CARGA (Kg)	DEFORM. (0,01mm)	ESFUERZO (Kg/cm²)	DEF. UNT. (10 ⁻⁴ cm/cm)
0	0,0	0	0,0
800	0,8	404	1,6
1600	1,5	808	3,0
2400	2,5	1212	5,0
3200	3,6	1615	7,2
4000	4,2	2019	8,4
4800	5,0	2423	10,0
5600	6,0	2827	12,0
6400	7,0	3231	14,0
7200	7,9	3635	15,8
8000	8,5	4038	17,0
8800	9,4	4442	18,8
9280	10,0	4685	20,0
9730	15,0	4912	30,0
10280	20,0	5189	40,0
10810	25,0	5457	50,0
13300	50,0	6714	100,0
13450	75,0	6790	150,0
14300	100,0	7219	200,0
14550	150,0	7345	300,0
14620	200,0	7380	400,0
14700	250,0	7420	500,0

Este ensayo se realizó midiendo la deformación cada 800 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. El patrón falló al alcanzar una carga máxima de 14.200 Kg.

Gráfica 4.17 Resultado del ensayo de la barra patrón N°1 de diámetro 5/8"

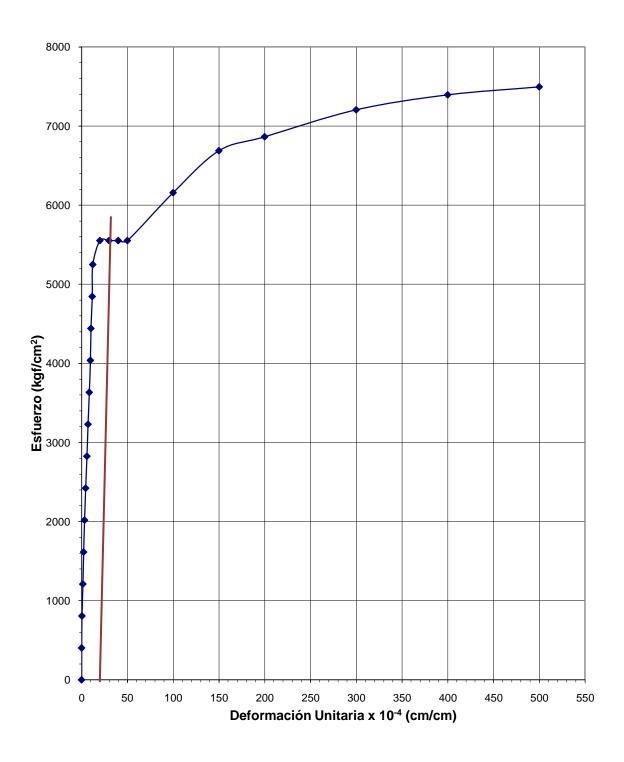


Tabla 4.18 Resultado del ensayo de la barra patrón N°2 de diámetro 5/8"

CARGA (Kg)	DEFORM. (0,01mm)	ESFUERZO (Kg/cm²)	DEF. UNT. (10 ⁻⁴ cm/cm)
0	0,0	0	0,0
800	0,0	404	0,0
1600	0,2	808	0,4
2400	0,7	1212	1,4
3200	1,1	1615	2,2
4000	1,6	2019	3,2
4800	2,2	2423	4,4
5600	2,9	2827	5,8
6400	3,5	3231	7,0
7200	4,2	3635	8,4
8000	4,8	4038	9,6
8800	5,1	4442	10,2
9600	5,8	4846	11,6
10400	6,1	5250	12,2
11000	10,0	5553	20,0
11000	15,0	5553	30,0
11000	20,0	5553	40,0
11000	25,0	5553	50,0
12200	50,0	6159	100,0
13250	75,0	6689	150,0
13600	100,0	6865	200,0
14275	150,0	7206	300,0
14650	200,0	7395	400,0
14850	250,0	7496	500,0

Este ensayo se realizó midiendo la deformación cada 800 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. El patrón falló al alcanzar una carga máxima de 15.000 Kg.

Gráfica 4.18 Resultado del ensayo de la barra patrón N°2 de diámetro 5/8"

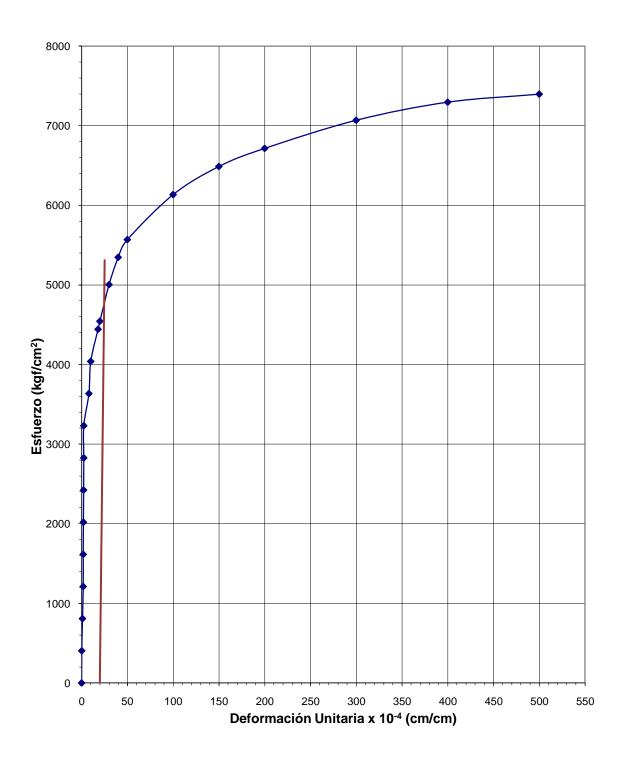


Tabla 4.19 Resultado del ensayo de la muestra N°1 de solape con cordón simple de diámetro 5/8"

CARGA (Kg)	DEFORM. (0,01mm)	ESFUERZO (Kg/cm²)	DEF. UNT. (10 ⁻⁴ cm/cm)
0	0,0	0	0,0
800	0,1	404	0,2
1600	0,5	808	1,0
2400	0,9	1212	1,8
3200	0,9	1615	1,8
4000	1,0	2019	2,0
4800	1,1 1,2 1,2	2423	2,2
5600	1,2	2827	2,4
6400	1,2	3231	2,4
7200	4,0	3635	8,0
8000	5,0	4038	10,0
8800	9,0	4442	18,0
9000	10,0	4543	20,0
9910	15,0	5003	30,0
10590	20,0	5346	40,0
11030	25,0	5568	50,0
12150	50,0	6133	100,0
12850	75,0	6487	150,0
13300	100,0	6714	200,0
14000	150,0	7067	300,0
14450	200,0	7294	400,0
14650	250,0	7395	500,0

Este ensayo se realizó midiendo la deformación cada 800 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. La muestra falló por la zona afectada por calor al alcanzar una carga máxima de 14.900 Kg.

Gráfica 4.19 Resultado del ensayo de la muestra N°1 de solape con cordón simple de diámetro 5/8"

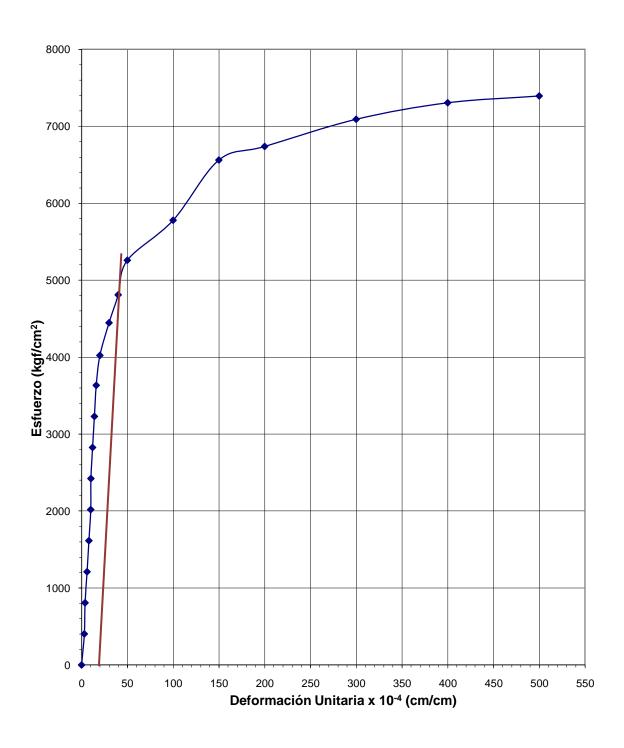


Tabla 4.20 Resultado del ensayo de la muestra N°2 de solape con cordón simple de diámetro 5/8"

CARGA (Kg)	DEFORM. (0,01mm)	ESFUERZO (Kg/cm²)	DEF. UNT. (10 ⁻⁴ cm/cm)
0	0,0	0	0,0
800	1,5	404	3,0
1600	1,9	808	3,8
2400	3,0	1212	6,0
3200	4,0	1615	8,0
4000	5,0	2019	10,0
4800	5,1	2423	10,2
5600	6,0	2827	12,0
6400	7,0	3231	14,0
7200	8,0	3635	16,0
7970	10,0	4023	20,0
8810	15,0	4447	30,0
9530	20,0	4811	40,0
10420	25,0	5260	50,0
11450	50,0	5780	100,0
13000	75,0	6562	150,0
13350	100,0	6739	200,0
14050	150,0	7092	300,0
14475	200,0	7307	400,0
14650	250,0	7395	500,0

Este ensayo se realizó midiendo la deformación cada 800 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. La muestra falló al alcanzar una carga máxima de 14.850 Kg.

Gráfica 4.20 Resultado del ensayo de la muestra N°2 de solape con cordón simple de diámetro 5/8"

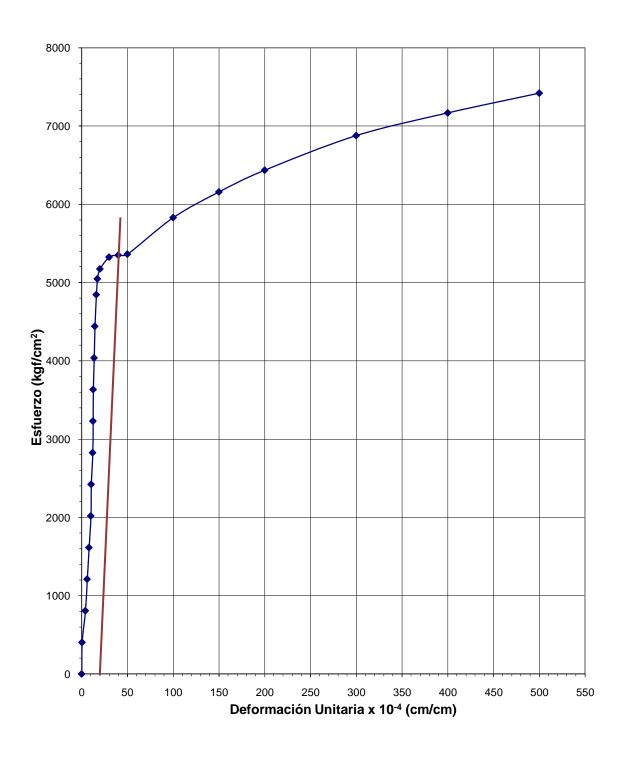


Tabla 4.21 Resultado del ensayo de la muestra N°3 de solape con cordón simple de diámetro 5/8"

CARGA (Kg)	DEFORM. (0,01mm)	ESFUERZO (Kg/cm2)	DEF. UNT. (10-4 cm/cm)
0	0,0	0	0,0
800	0,2	404	0,4
1600	2,0	808	4,0
2400	3,0	1212	6,0
3200	4,0	1615	8,0
4000	5,0	2019	10,0
4800	5,2	2423	10,4
5600	6,0	2827	12,0
6400	6,2	3231	12,4
7200	6,3	3635	12,6
8000	6,8	4038	13,6
8800	7,2	4442	14,4
9600	8,0	4846	16,0
10000	8,6	5048	17,2
10250	10,0	5174	20,0
10550	15,0	5326	30,0
10600	20,0	5351	40,0
10625	25,0	5363	50,0
11550	50,0	5830	100,0
12200	75,0	6159	150,0
12750	100,0	6436	200,0
13625	150,0	6878	300,0
14200	200,0	7168	400,0
14700	250,0	7420	500,0

Este ensayo se realizó midiendo la deformación cada 800 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. La muestra falló por la zona afectada por calor al alcanzar una carga máxima de 14.750 Kg.

Gráfica 4.21 Resultado del ensayo de la muestra N°3 de solape con cordón simple de diámetro 5/8"

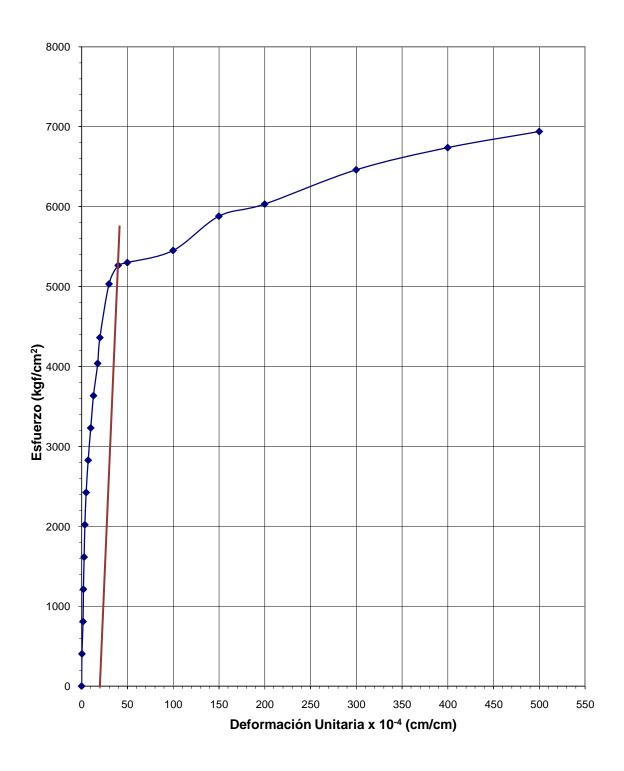


Tabla 4.22 Resultado del ensayo de la muestra N°1 de solape con cordón doble de diámetro 5/8"

CARGA (Kg)	DEFORM. (0,01mm)	ESFUERZO (Kg/cm²)	DEF. UNT. (10 ⁻⁴ cm/cm)
0	0,0	0	0,0
800	0,2	404	0,4
1600	0,8	808	1,6
2400	1,0	1212	2,0
3200	1,4	1615	2,8
4000	1,8	2019	3,6
4800	2,5	2423	5,0
5600	3,6	2827	7,2
6400	5,0	3231	10,0
7200	6,5	3635	13,0
8000	8,8	4038	17,6
8640	10,0	4361	20,0
9970	15,0	5033	30,0
10430	20,0	5265	40,0
10500	25,0	5300	50,0
10800	50,0	5452	100,0
11650	75,0	5881	150,0
11950	100,0	6032	200,0
12800	150,0	6461	300,0
13350	200,0	6739	400,0
13750	250,0	6941	500,0

Este ensayo se realizó midiendo la deformación cada 800 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. La muestra falló por la zona afectada por calor al alcanzar una carga máxima de 14.100 Kg.

Gráfica 4.22 Resultado del ensayo de la muestra N°1 de solape con cordón doble de diámetro 5/8"

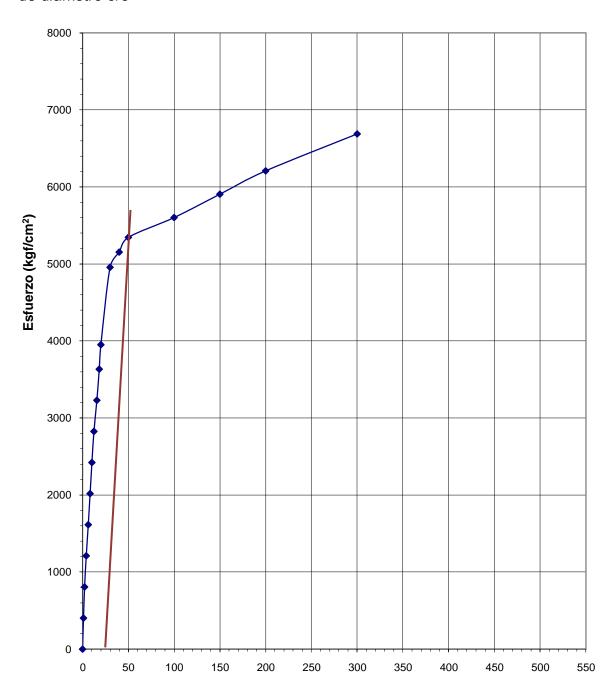


Tabla 4.23 Resultado del ensayo de la muestra N°2 de solape con cordón doble de diámetro 5/8"

CARGA (Kg)	DEFORM. (0,01mm)	ESFUERZO (Kg/cm²)	DEF. UNT. (10 ⁻⁴ cm/cm)
0	0,0	0	0,0
800	0,5	404	1,0
1600	1,1	808	2,2
2400	2,0	1212	4,0
3200	3,1	1615	6,2
4000	4,1	2019	8,2
4800	5,1	2423	10,2
5600	6,2	2827	12,4
6400	7,8	3231	15,6
7200	9,1	3635	18,2
7830	10,0	3953	20,0
9820	15,0	4957	30,0
10210	20,0	5154	40,0
10590	25,0	5346	50,0
11100	50,0	5603	100,0
11700	75,0	5906	150,0
12300	100,0	6209	200,0
13250	150,0	6689	300,0

Este ensayo se realizó midiendo la deformación cada 800 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. La muestra falló en la soldadura al alcanzar una carga máxima de 13.250 Kg.

Gráfica 4.23 Resultado del ensayo de la muestra N°2 de solape con cordón doble de diámetro 5/8"

Tabla 4.24 Resultado del ensayo de la muestra N°3 de solape con cordón doble de diámetro 5/8"

CARGA (Kg)	DEFORM. (0,01mm)	ESFUERZO (Kg/cm2)	DEF. UNT. (10-4 cm/cm)
0	0,0	0	0,0
800	0,0	404	0,0
1600	0,3	808	0,6
2400	1,0	1212	2,0
3200	1,3	1615	2,6
4000	2,0	2019	4,0
4800	2,5	2423	5,0
5600	3,8	2827	7,6
6400	5,6	3231	11,2
7200	7,0	3635	14,0
8000	9,0	4038	18,0
8500	10,0	4291	20,0
9740	15,0	4917	30,0
10450	20,0	5275	40,0
10500	25,0	5300	50,0

Este ensayo se realizó midiendo la deformación cada 800 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. La muestra falló en la soldadura al alcanzar una carga máxima de 13.500 Kg.

Gráfica 4.24 Resultado del ensayo de la muestra N°3 de solape con cordón doble de diámetro 5/8"

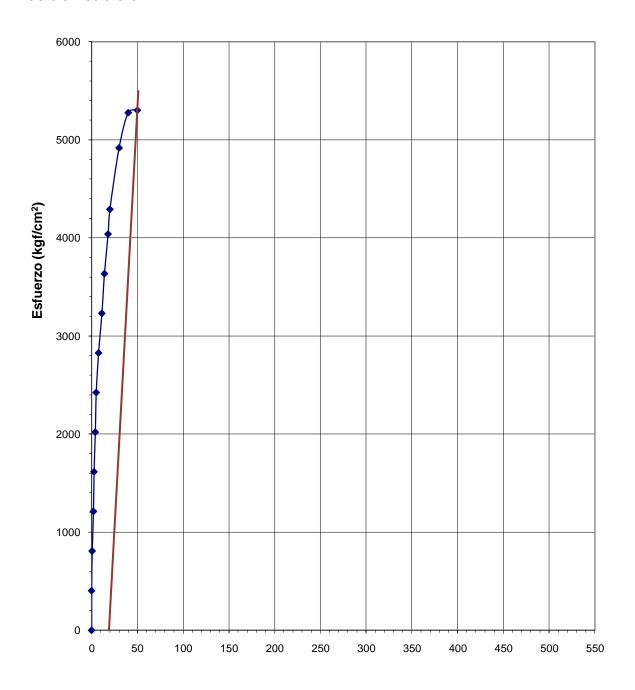


Tabla 4.25 Resultado del ensayo de la barra patrón N°1 de diámetro 3/4"

CARGA	DEFORM.	ESFUERZO	DEF. UNT. (10 ⁻⁴
(Kg)	(0,01mm)	(Kg/cm²)	cm/cm)
0	0,0	0	0,0
1000	0,0	351	0,0
2000	0,3	702	0,6
3000	1,2	1053	2,4
4000	2,0	1404	4,0
5000	2,8	1754	5,6
6000	3,3	2105	6,6
7000	3,8	2456	7,6
8000	4,5	2807	9,0
9000	5,2	3158	10,4
10000	5,8	3509	11,6
11000	6,4	3860	12,8
12000	7,1	4211	14,2
13000	7,9	4561	15,8
14000	8,6	4912	17,2
15000	9,3	5263	18,6
16000	10,0	5614	20,0
17000	15,0	5965	30,0
17000	20,0	5965	40,0
17250	25,0	6053	50,0
18350	50,0	6439	100,0
19250	75,0	6754	150,0
20200	100,0	7088	200,0
21750	150,0	7632	300,0
22500	200,0	7895	400,0
23200	250,0	8140	500,0

Este ensayo se realizó midiendo la deformación cada 1000 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. El patrón falló al alcanzar una carga máxima de 23.725 Kg.

Gráfica 4.25 Resultado del ensayo de la barra patrón N°1 de diámetro 3/4"

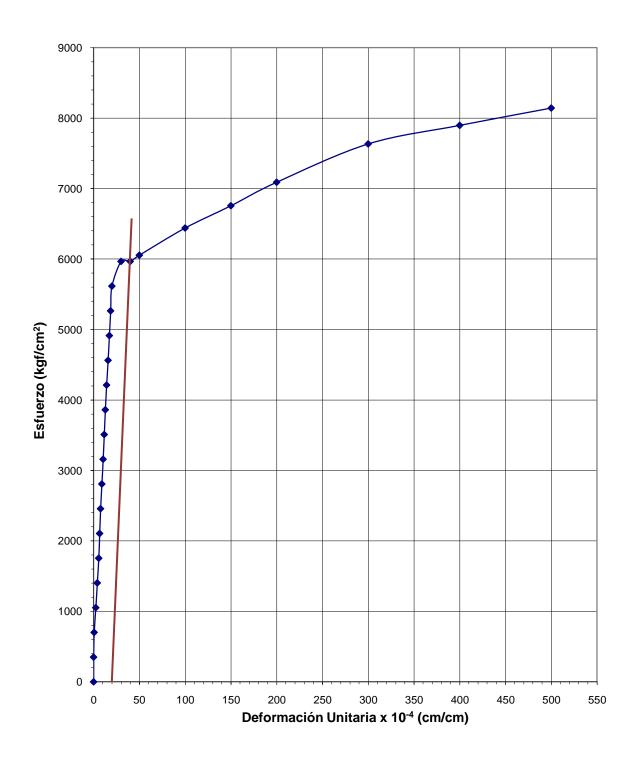
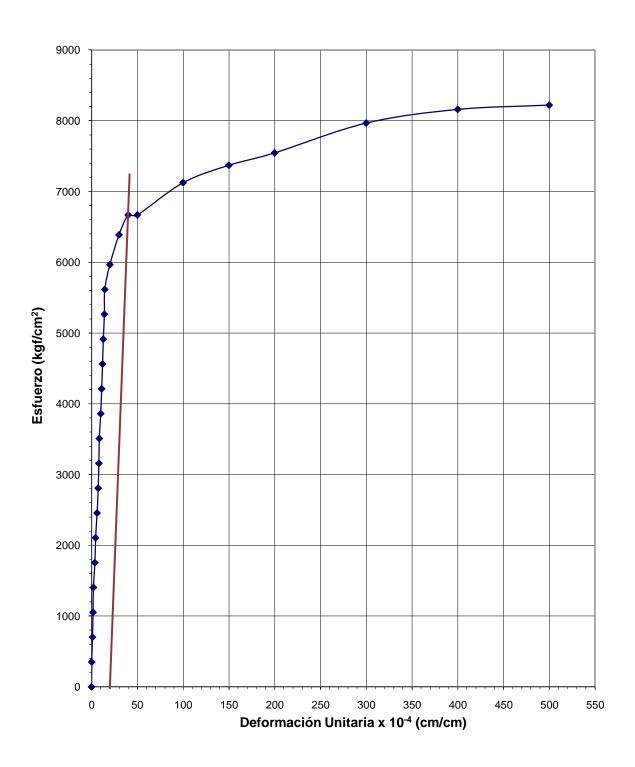



Tabla 4.26 Resultado del ensayo de la barra patrón N°2 de diámetro 3/4"

CARGA (Kg)	DEFORM. (0,01mm)	ESFUERZO (Kg/cm2)	DEF. UNT. (10-4 cm/cm)
0	0,0	0	0,0
1000	0,1	351	0,0
2000	0,5	702	1,0
3000	0,8	1053	1,6
4000	1,0	1404	2,0
5000	1,8	1754	3,6
6000	2,2	2105	4,4
7000	3,0	2456	6,0
8000	3,6	2807	7,2
9000	4,0	3158	8,0
10000	4,2	3509	8,4
11000	5,0	3860	10,0
12000	5,5	4211	11,0
13000	6,0	4561	12,0
14000	6,4	4912	12,8
15000	7,0	5263	14,0
16000	7,0	5614	14,4
17000	10,0	5965	20,0
18200	15,0	6386	30,0
19000	20,0	6667	40,0
19000	25,0	6667	50,0
20300	50,0	7123	100,0
21000	75,0	7368	150,0
21500	100,0	7544	200,0
21300	150,0	7965	300,0
23250	200,0	8158	400,0
23425	250,0	8219	500,0

Este ensayo se realizó midiendo la deformación cada 1000 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. El patrón falló al alcanzar una carga máxima de 23.425 Kg.

Gráfica 4.26 Resultado del ensayo de la barra patrón N°2 de diámetro 3/4"

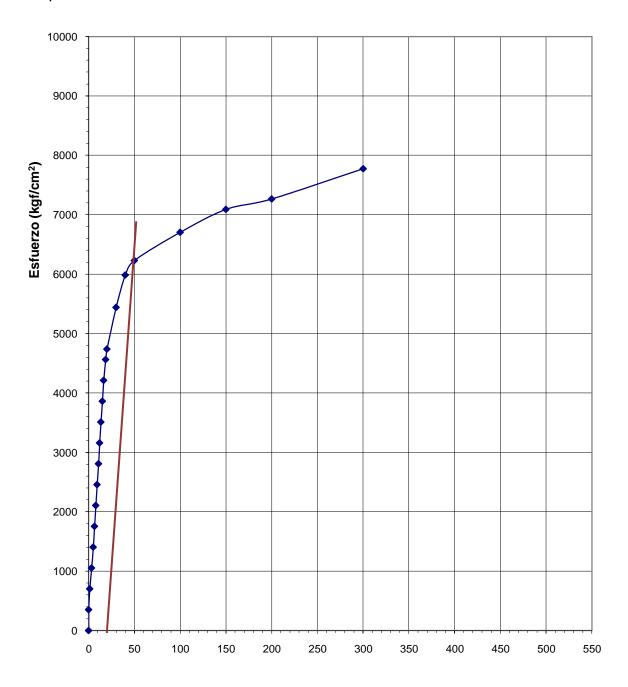


Tabla 4.27 Resultado del ensayo de la muestra N°1 de solape con cordón simple de diámetro 3/4"

CARGA (Kg)	DEFORM. (0,01mm)	ESFUERZO (Kg/cm²)	DEF. UNT. (10 ⁻⁴ cm/cm)
0	0,0	0	0,0
1000	0,0	351	0,0
2000	0,6	702	1,2
3000	1,6	1053	3,2
4000	2,5	1404	5,0
5000	3,2	1754	6,4
6000	3,9	2105	7,8
7000	4,6	2456	9,2
8000	5,4	2807	10,8
9000	6,0	3158	12,0
10000	6,7	3509	13,4
11000	7,5	3860	15,0
12000	8,2	4211	16,4
13000	9,3	4561	18,6
13500	10,0	4737	20,0
15500	15,0	5439	30,0
17050	20,0	5982	40,0
17750	25,0	6228	50,0
19100	50,0	6702	100,0
20200	75,0	7088	150,0
20700	100,0	7263	200,0
22150	150,0	7772	300,0

Este ensayo se realizó midiendo la deformación cada 1000 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. La muestra falló en la soldadura al alcanzar una carga máxima de 22.300 Kg.

Gráfica 4.27 Resultado del ensayo de la muestra N°1 de solape con cordón simple de diámetro 3/4"

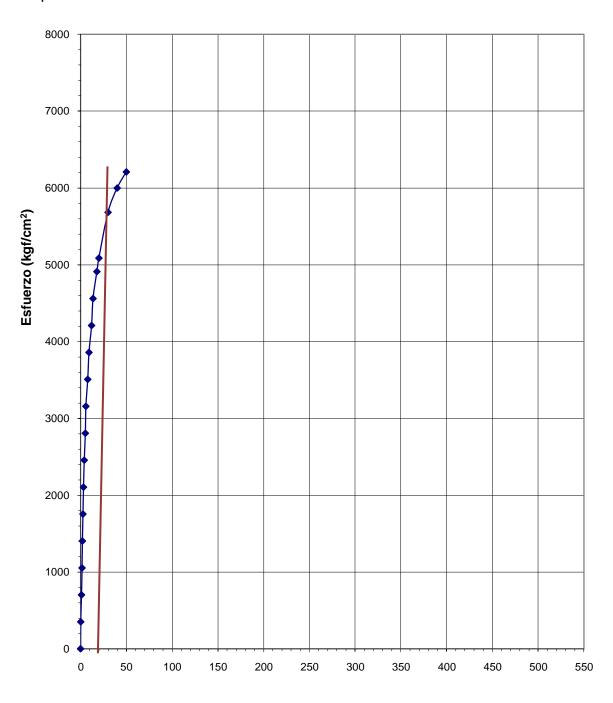


Tabla 4.28 Resultado del ensayo de la muestra N°2 de solape con cordón simple de diámetro 3/4"

CARGA (Kg)	DEFORM. (0,01mm)	ESFUERZO (Kg/cm²)	DEF. UNT. (10 ⁻⁴ cm/cm)
0	0,0	0	0,0
1000	0,1	351	0,2
2000	0,5	702	1,0
3000	0,8	1053	1,6
4000	1,0	1404	2,0
5000	1,3	1754	2,6
6000	1,6	2105	3,2
7000	2,0	2456	4,0
8000	2,6	2807	5,2
9000	2,9	3158	5,8
10000	3,9	3509	7,8
11000	4,6	3860	9,2
12000	6,0	4211	12
13000	6,8	4561	13,6
14000	8,9	4912	17,8
14500	10,0	5088	20,0
16200	15,0	5684	30,0
17100	20,0	6000	40,0
17700	25,0	6211	50,0

Este ensayo se realizó midiendo la deformación cada 1000 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. La muestra falló por la zona afectada por calor al alcanzar una carga máxima de 17.900 Kg.

Gráfica 4.28 Resultado del ensayo de la muestra N°2 de solape con cordón simple de diámetro 3/4"

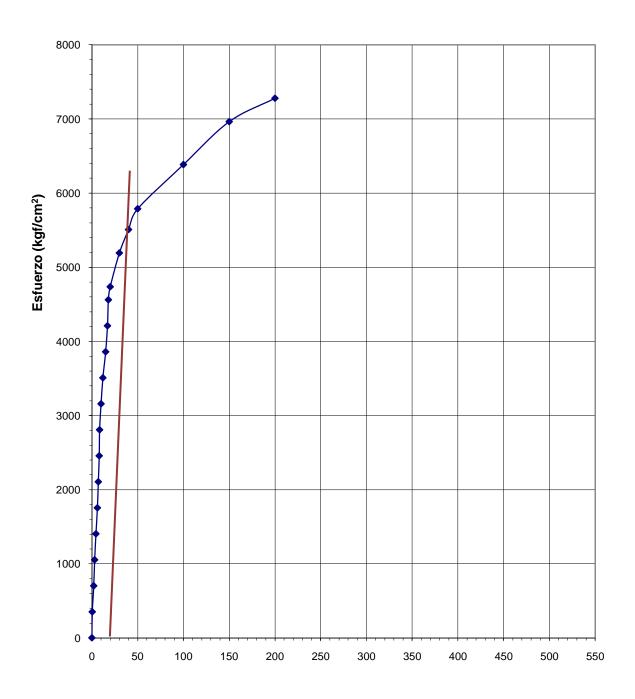


Tabla 4.29 Resultado del ensayo de la muestra N°3 de solape con cordón simple de diámetro 3/4"

CARGA (Kg)	DEFORM. (0,01mm)	ESFUERZO (Kg/cm2)	DEF. UNT. (10-4 cm/cm)
0	0,0	0	0,0
1000	0,2	351	0,4
2000	1,0	702	2,0
3000	1,5	1053	3,0
4000	2,2	1404	4,4
5000	3,0	1754	6,0
6000	3,5	2105	7,0
7000	4,0	2456	8,0
8000	4,2	2807	8,4
9000	5,0	3158	10,0
10000	6,0	3509	12,0
11000	7,5	3860	15,0
12000	8,5	4211	17,0
13000	9,0	4561	18,0
13500	10,0	4737	20,0
14800	15,0	5193	30,0
15700	20,0	5509	40,0
16500	25,0	5789	50,0
18200	50,0	6386	100,0
19850	75,0	6965	150,0
20750	100,0	7281	200,0

Este ensayo se realizó midiendo la deformación cada 1000 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. La muestra falló por la zona afectada por calor al alcanzar una carga máxima de 21.575 Kg.

Gráfica 4.29 Resultado del ensayo de la muestra N°3 de solape con cordón simple de diámetro 3/4"

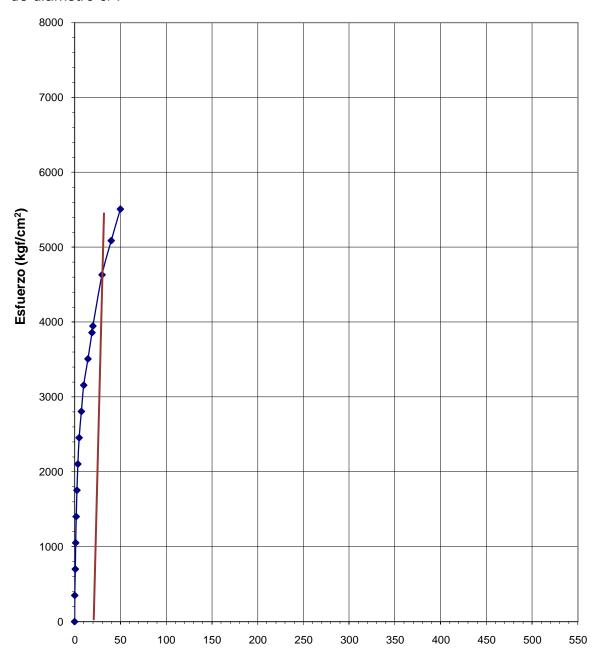


Tabla 4.30 Resultado del ensayo de la muestra N°1 de solape con cordón doble de diámetro 3/4"

CARGA	DEFORM.	ESFUERZO	DEF. UNT. (10 ⁻⁴
(Kg)	(0,01mm)	(Kg/cm²)	cm/cm)
0	0,0	0	0,0
1000	0,1	351	0,2
2000	0,4	702	0,8
3000	0,6	1053	1,2
4000	0,9	1404	1,8
5000	1,3	1754	2,6
6000	1,8	2105	3,6
7000	2,5	2456	5,0
8000	3,7	2807	7,4
9000	5,0	3158	10,0
10000	7,3	3509	14,6
11000	9,5	3860	19,0
11250	10,0	3947	20,0
13200	15,0	4632	30,0
14500	20,0	5088	40,0
15700	25,0	5509	50,0

Este ensayo se realizó midiendo la deformación cada 1000 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. La muestra falló en la soldadura al alcanzar una carga máxima de 17.250 Kg.

Gráfica 4.30 Resultado del ensayo de la muestra N°1 de solape con cordón doble de diámetro 3/4"

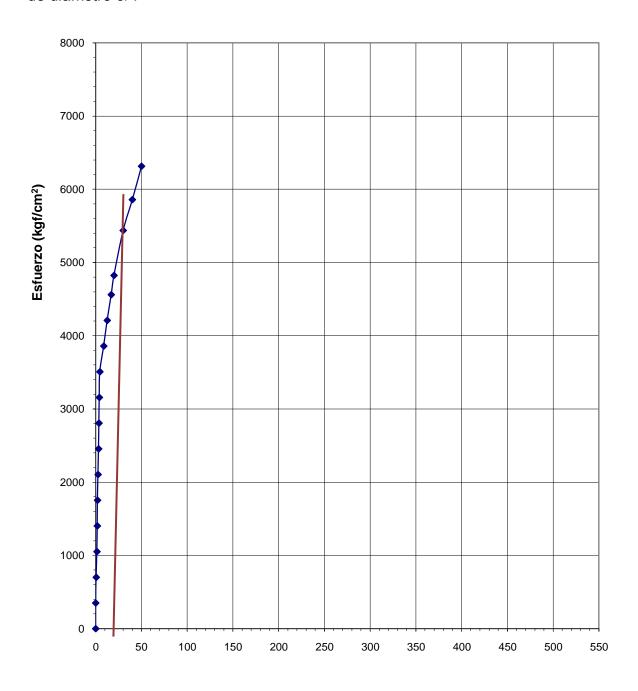


Tabla 4.31 Resultado del ensayo de la muestra N°2 de solape con cordón doble de diámetro 3/4"

CARGA (Kg)	DEFORM. (0,01mm)	ESFUERZO (Kg/cm²)	DEF. UNT. (10 ⁻⁴ cm/cm)
0	0,0	0	0,0
1000	0,0	351	0,0
2000	0,3	702	0,6
3000	0,7	1053	1,4
4000	0,9	1404	1,8
5000	1,0	1754	2,0
6000	1,3	2105	2,6
7000	1,6	2456	3,2
8000	1,8	2807	3,6
9000	2,0	3158	4,0
10000	2,3	3509	4,6
11000	4,4	3860	8,8
12000	6,3	4211	12,6
13000	8,5	4561	17,0
13750	10,0	4825	20,0
15500	15,0	5439	30,0
16700	20,0	5860	40,0
18000	25,0	6316	50,0

Este ensayo se realizó midiendo la deformación cada 1000 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. La muestra en falló en la soldadura al alcanzar una carga máxima de 19.775 Kg.

Gráfica 4.31 Resultado del ensayo de la muestra N°2 de solape con cordón doble de diámetro 3/4"

Tabla 4.32 Resultado del ensayo de la muestra N°3 de solape con cordón doble de diámetro 3/4"

CARGA (Kg)	DEFORM. (0,01mm)	ESFUERZO (Kg/cm2)	DEF. UNT. (10-4 cm/cm)
0	0,0	0	0,0
1000	0,5	351	1,0
2000	1,8	702	3,6
3000	3,0	1053	6,0
4000	4,0	1404	8,0
5000	5,0	1754	10,0
6000	6,2	2105	12,4
7000	8,0	2456	16,0
8000	10,0	2807	20,0
9400	15,0	3298	30,0
10900	20,0	3825	40,0
12500	25,0	4386	50,0

Este ensayo se realizó midiendo la deformación cada 1000 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. La muestra falló en la soldadura al alcanzar una carga máxima de 18.475 Kg.

Gráfica 4.32 Resultado del ensayo de la muestra N°3 de solape con cordón doble de diámetro 3/4"

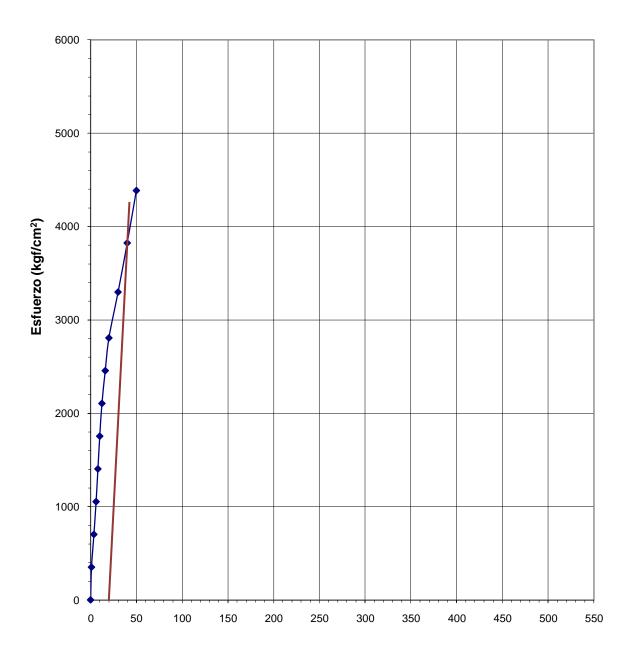


Tabla 4.33 Resultado del ensayo de la barra patrón N°1 de diámetro 7/8"

CARGA	DEFORM.	ESFUERZO	DEF. UNT. (10 ⁻⁴
(Kg)	(0,01mm)	(Kg/cm ²)	cm/cm)
0	0,0	0	0,0
1500	0,2	387	0,4
3000	0,9	774	1,8
4500	2,0	1160	4,0
6000	3,0	1547	6,0
7500	3,8	1934	7,6
9000	4,2	2321	8,4
10500	5,1	2708	10,2
12000	6,0	3094	12,0
13500	6,8	3481	13,6
15000	7,5	3868	15,0
16500	8,4	4255	16,8
18000	9,2	4642	18,4
19300	10,0	4977	20,0
19300	15,0	4977	30,0
19300	20,0	4977	40,0
21250	25,0	5480	50,0
21250	50,0	5480	100,0
22450	75,0	5789	150,0
23750	100,0	6124	200,0
25600	150,0	6601	300,0
27000	200,0	6962	400,0
28050	250,0	7233	500,0

Este ensayo se realizó midiendo la deformación cada 1500 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. El patrón falló al alcanzar una carga máxima de 28.600 Kg.

Gráfica 4.33 Resultado del ensayo de la barra patrón N°1 de diámetro 7/8"

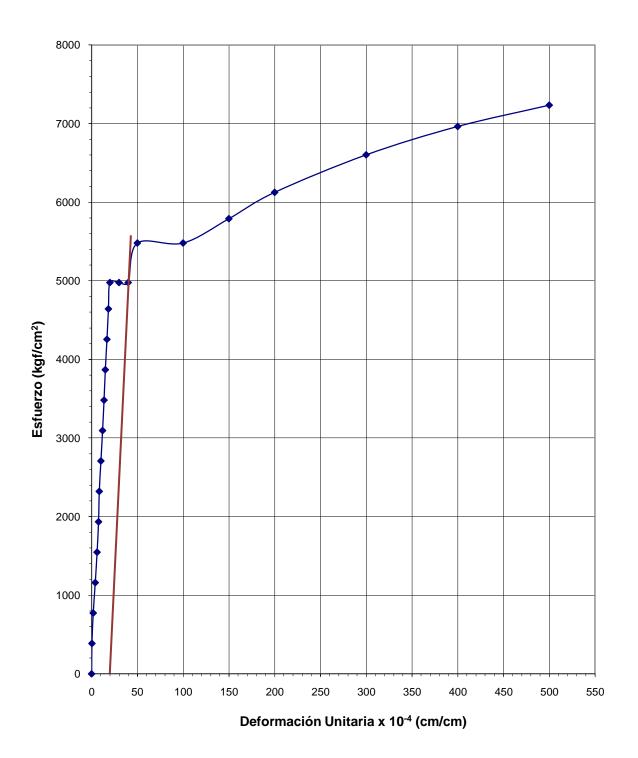
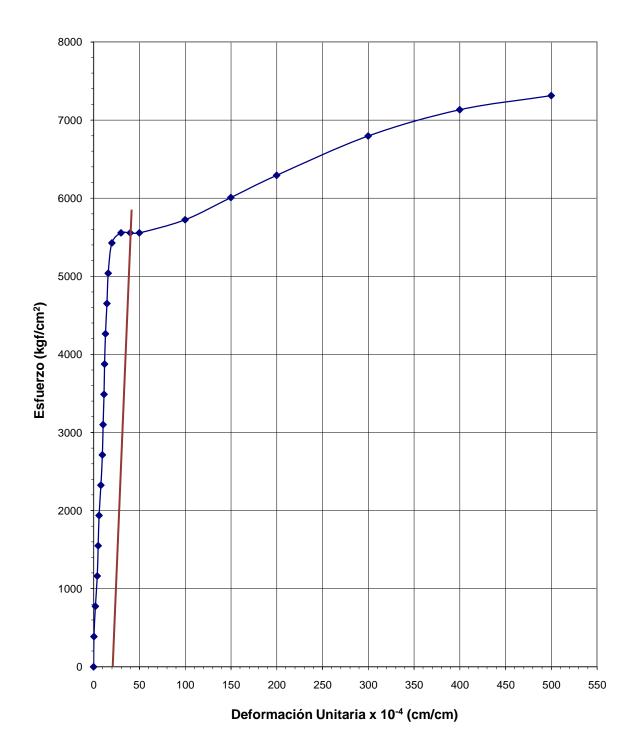



Tabla 4.34 Resultado del ensayo de la barra patrón N°2 de diámetro 7/8"

CARGA	DEFORM.	ESFUERZO	DEF. UNT. (10 ⁻⁴
(Kg)	(0,01mm)	(Kg/cm²)	cm/cm)
0	0,0	0	0,0
1500	0,2	388	0,4
3000	1,0	775	2,0
4500	2,0	1163	4,0
6000	2,5	1550	5,0
7500	3,0	1938	6,0
9000	4,0	2326	8,0
10500	4,8	2713	9,6
12000	5,2	3101	10,4
13500	5,7	3488	11,4
15000	6,0	3876	12,0
16500	6,5	4264	13,0
18000	7,3	4651	14,6
19500	8,0	5039	16,0
21000	10,0	5426	20,0
21500	15,0	5556	30,0
21500	20,0	5556	40,0
21500	25,0	5556	50,0
22150	50,0	5724	100,0
23250	75,0	6008	150,0
24350	100,0	6292	200,0
26300	150,0	6796	300,0
27600	200,0	7132	400,0
28300	250,0	7313	500,0

Este ensayo se realizó midiendo la deformación cada 1500 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. El patrón falló al alcanzar una carga máxima de 29.350 Kg.

Gráfica 4.34 Resultado del ensayo de la barra patrón N°2 de diámetro 7/8"

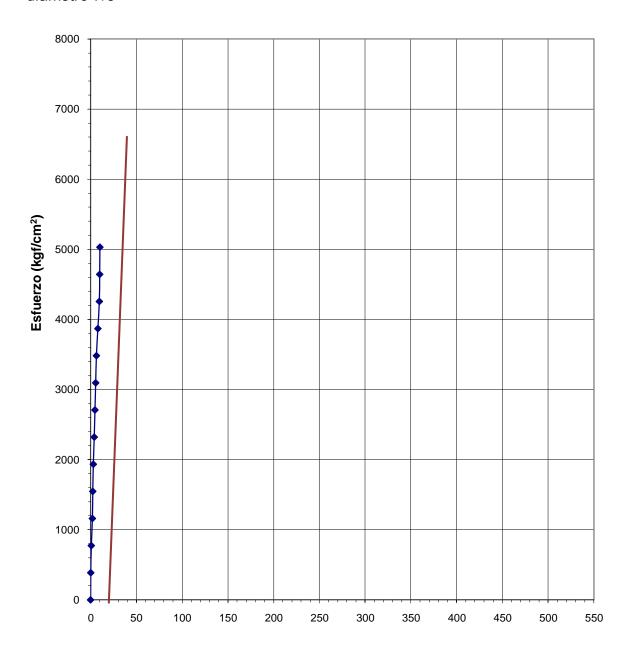


Tabla 4.35 Resultado del ensayo de la muestra N°1 de tope con bisel sencillo de diámetro 7/8"

CARGA (Kg)	DEFORM. (0,01mm)	ESFUERZO (Kg/cm²)	DEF. UNT. (10 ⁻⁴ cm/cm)
0	0,0	0	00
1500	0,1	387	0,2
3000	0,4	774	0,8
4500	1,0	1160	2,0
6000	1,2	1547	2,4
7500	1,5	1934	3,0
9000	2,0	2321	4,0
10500	2,4	2708	4,8
12000	2,8	3094	5,6
13500	3,2	3481	6,4
15000	4,0	3868	8,0
16500	4,8	4255	9,6
18000	5,0	4642	10,0
19500	5,1	5028	10,2

Este ensayo se realizó midiendo la deformación cada 1500 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. La muestra falló en la soldadura al alcanzar una carga máxima de 20.200 Kg.

Gráfica 4.35 Resultado del ensayo de la muestra $N^{\circ}1$ de tope con bisel sencillo de diámetro 7/8"

Tabla 4.36 Resultado del ensayo de la muestra N°2 de tope con bisel sencillo de diámetro 7/8"

CARGA (Kg)	DEFORM. (0,01mm)	ESFUERZO (Kg/cm²)	DEF. UNT. (10 ⁻⁴ cm/cm)
0	0,0	0	0,0
1500	0,2	387	0,4
3000	1,0	774	2,0
4500	1,2	1160	2,4
6000	2,0	1547	4,0
7500	2,4	1934	4,8
9000	3,0	2321	6,0
10500	4,0	2708	8,0
12000	4,5	3094	9,0
13500	5,0	3481	10,0
15000	5,2	3868	10,4
16500	6,0	4255	12,0
18000	6,8	4642	13,6
19500	7,2	5028	14,4

Este ensayo se realizó midiendo la deformación cada 1500 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. La muestra falló en la soldadura al alcanzar una carga máxima de 20.200 Kg.

Gráfica 4.36 Resultado del ensayo de la muestra N°2 de tope con bisel sencillo de diámetro 7/8"

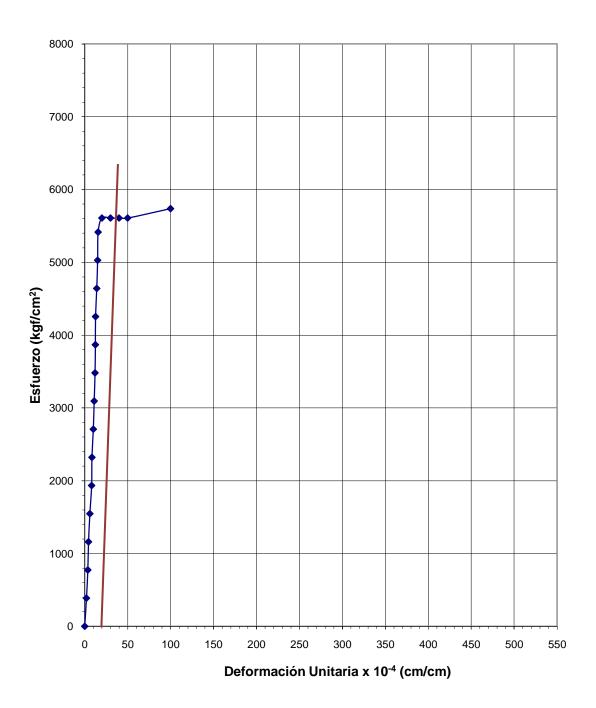


Tabla 4.37 Resultado del ensayo de la muestra N°3 de tope con bisel sencillo de diámetro 7/8"

CARGA (Kg)	DEFORM. (0,01mm)	ESFUERZO (Kg/cm2)	DEF. UNT. (10-4 cm/cm)
0	0,0	0	0,0
1500	1,0	387	2,0
3000	1,8	774	3,6
4500	2,2	1160	4,4
6000	3,0	1547	6,0
7500	4,0	1934	8,0
9000	4,2	2321	8,4
10500	5,0	2708	10,0
12000	5,5	3094	11,0
13500	6,0	3481	12,0
15000	6,2	3868	12,4
16500	6,3	4255	12,6
18000	7,0	4642	14,0
19500	7,5	5028	15,0
21000	7,8	5415	15,6
21750	10,0	5609	20,0
21750	15,0	5609	30,0
21750	20,0	5609	40,0
21750	25,0	5609	50,0
22250	50,0	5737	100,0

Este ensayo se realizó midiendo la deformación cada 1.500 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. La muestra falló en la soldadura al alcanzar una carga máxima de 22.800 Kg.

Gráfica 4.37 Resultado del ensayo de la muestra N°3 de tope con bisel sencillo de diámetro 7/8"

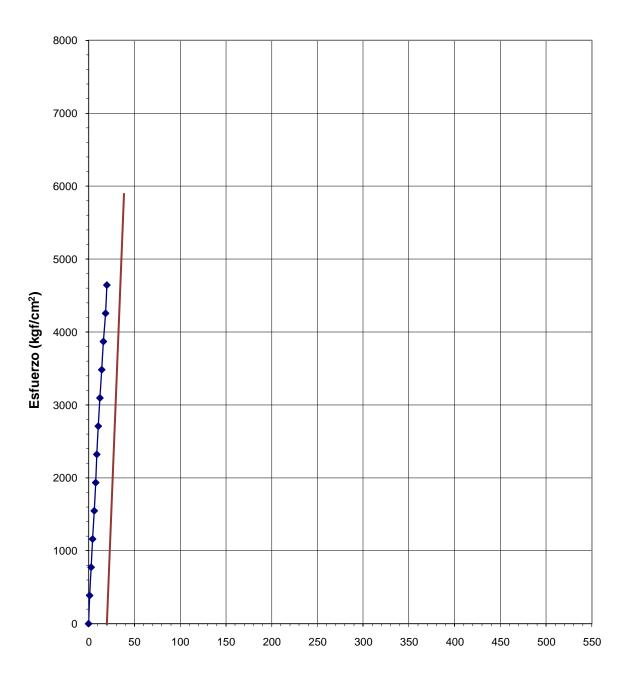


Tabla 4.38 Resultado del ensayo de la muestra N°1 de tope con bisel doble de diámetro 7/8"

CARGA (Kg)	DEFORM. (0,01mm)	ESFUERZO (Kg/cm²)	DEF. UNT. (10 ⁻⁴ cm/cm)
0	0,0	0	0,0
1500	0,6	387	1,2
3000	1,4	774	2,8
4500	2,2	1160	4,4
6000	3,1	1547	6,2
7500	3,9	1934	7,8
9000	4,5	2321	9,0
10500	5,3	2708	10,6
12000	6,2	3094	12,4
13500	7,2	3481	14,4
15000	8,1	3868	16,2
16500	9,3	4255	18,6
18000	10,0	4642	20,0

Este ensayo se realizó midiendo la deformación cada 1500 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. La muestra falló en la soldadura al alcanzar una carga máxima de 19.000 Kg.

Gráfica 4.38 Resultado del ensayo de la muestra N°1 de tope con bisel doble de diámetro 7/8"

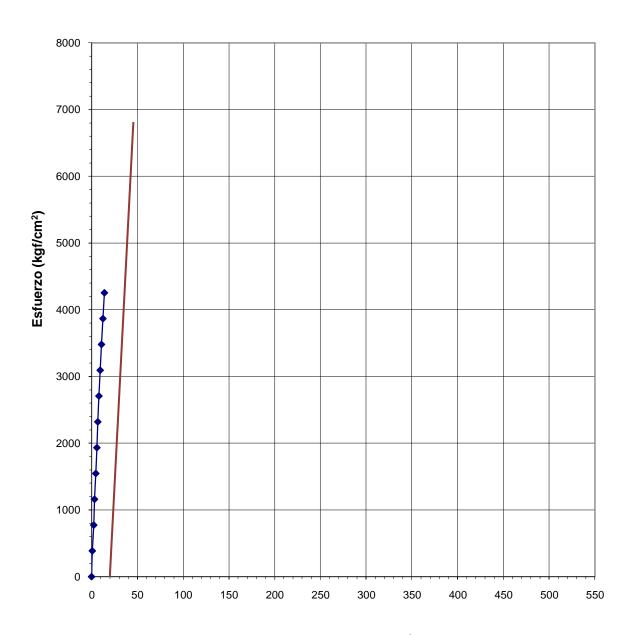


Tabla 4.39 Resultado del ensayo de la muestra N°2 de tope con bisel doble de diámetro 7/8"

CARGA (Kg)	DEFORM. (0,01mm)	ESFUERZO (Kg/cm²)	DEF. UNT. (10 ⁻⁴ cm/cm)
0	0,0	0	0,0
1500	0,4	387	0,8
3000	1,2	774	2,4
4500	1,6	1160	3,2
6000	2,3	1547	4,6
7500	2,9	1934	5,8
9000	3,4	2321	6,8
10500	4,0	2708	8,0
12000	4,7	3094	9,4
13500	5,4	3481	10,8
15000	6,2	3868	12,4
16500	7,0	4255	14,0

Este ensayo se realizó midiendo la deformación cada 1500 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. La muestra falló en la soldadura al alcanzar una carga máxima de 17.750 Kg.

Gráfica 4.39 Resultado del ensayo de la muestra N°2 de tope con bisel doble de diámetro 7/8"

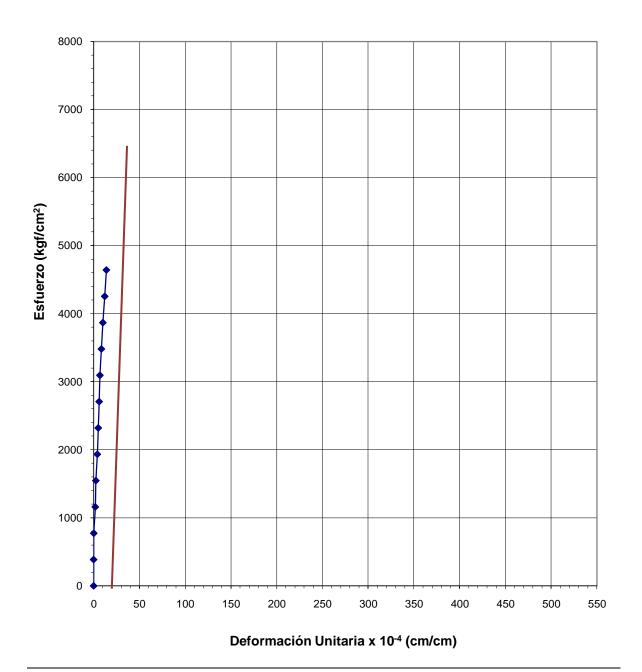


Tabla 4.40 Resultado del ensayo de la muestra N°3 de tope con bisel doble de diámetro 7/8"

CARGA (Kg)	DEFORM. (0,01mm)	ESFUERZO (Kg/cm2)	DEF. UNT. (10-4 cm/cm)
0	0,0	0	0,0
1500	0,0	387	0,0
3000	0,1	774	0,2
4500	0,9	1160	1,8
6000	1,2	1547	2,4
7500	2,0	1934	4,0
9000	2,5	2321	5,0
10500	3,0	2708	6,0
12000	3,4	3094	6,8
13500	4,2	3481	8,4
15000	5,0	3868	10,0
16500	6,0	4255	12,0
18000	6,9	4642	13,8

Este ensayo se realizó midiendo la deformación cada 1500 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. La muestra falló en la soldadura al alcanzar una carga máxima de 18.550 Kg.

Gráfica 4.40 Resultado del ensayo de la muestra N°3 de tope con bisel doble de diámetro 7/8"

Tabla 4.41 Resultado del ensayo de la barra patrón N°1 de diámetro 1 3/8"

CARGA	DEFORM.	ESFUERZO	DEF. UNT. (10 ⁻⁴
(Kg)	(0,01mm)	(Kg/cm²)	cm/cm)
0	0,0	0	0,0
2000	0,2	199	0,4
4000	0,6	397	1,2
6000	1,0	596	2,0
8000	1,6	794	3,2
10000	2,2	993	4,4
12000	3,0	1191	6,0
14000	3,8	1390	7,6
16000	4,0	1589	8,0
18000	5,8	1787	11,6
20000	6,5	1986	13,0
22000	6,9	2184	13,8
24000	7,1	2383	14,2
26000	7,3	2581	14,6
28000	7,9	2780	15,8
30000	8,5	2979	17,0
32000	8,8	3177	17,6
34000	9,0	3376	18,0
36000	10,0	3574	20,0
50200	15,0	4984	30,0
53600	20,0	5322	40,0
53600	25,0	5322	50,0
58200	50,0	5778	100,0
59000	75,0	5858	150,0
61000	100,0	6056	200,0
64600	150,0	6414	300,0
70400	200,0	6990	400,0
71000	250,0	7049	500,0

Este ensayo se realizó midiendo la deformación cada 2000 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. El patrón falló al alcanzar una carga máxima de 73.000 Kg.

Gráfica 4.41 Resultado del ensayo de la barra patrón N°1 de diámetro 1 3/8"

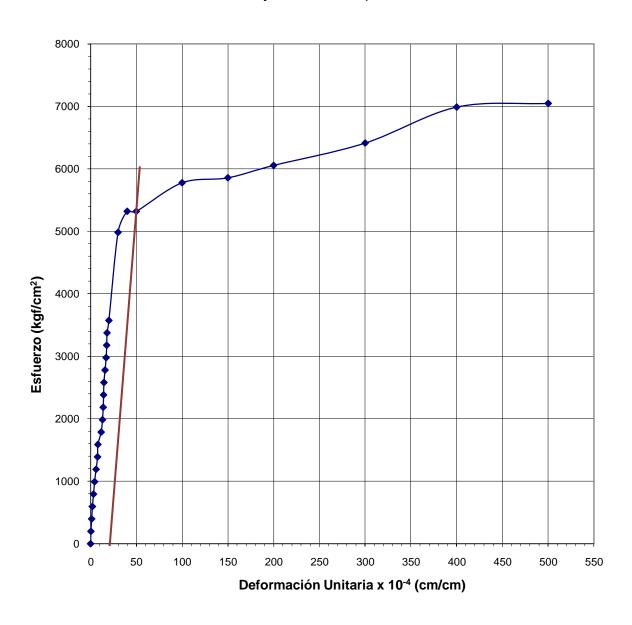
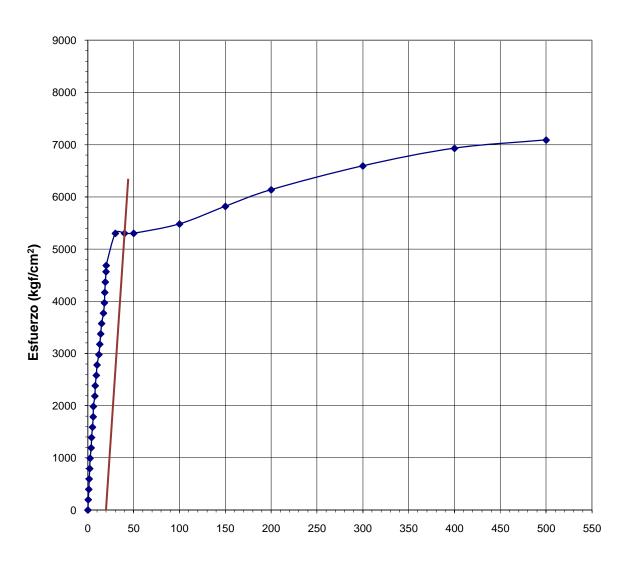



Tabla 4.42 Resultado del ensayo de la barra patrón N°2 de diámetro 1 3/8"

CARGA	DEFORM.	ESFUERZO	DEF. UNT. (10-4
(Kg)	(0,01mm)	(Kg/cm2)	cm/cm)
0	0,0	0	0,0
2000	0,2	199	0,4
4000	0,5	397	1,0
6000	0,7	596	1,4
8000	1,0	794	2,0
10000	1,2	993	2,4
12000	1,8	1192	3,6
14000	2,0	1390	4,0
16000	2,5	1589	5,0
18000	2,9	1787	5,8
20000	3,0	1986	6,0
22000	3,8	2185	7,6
24000	4,0	2383	8,0
26000	4,6	2582	9,2
28000	5,0	2781	10,0
30000	6,0	2979	12,0
32000	6,5	3178	13,0
34000	7,0	3376	14,0
36000	7,5	3575	15,0
38000	8,5	3774	17,0
40000	9,0	3972	18,0
42000	9,2	4171	18,4
44000	9,5	4369	19,0
46000	9,9	4568	19,8
47200	10,0	4687	20,0
53400	15,0	5303	30,0
53400	20,0	5303	40,0
53400	25,0	5303	50,0
55200	50,0	5482	100,0
58600	75,0	5819	150,0
61800	100,0	6137	200,0
66400	150,0	6594	300,0
69800	200,0	6931	400,0
71400	250,0	7090	500,0

Este ensayo se realizó midiendo la deformación cada 2000 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. El patrón falló al alcanzar una carga máxima de 73.800 Kg.

Gráfica 4.42 Resultado del ensayo de la barra patrón N°2 de diámetro 1 3/8"

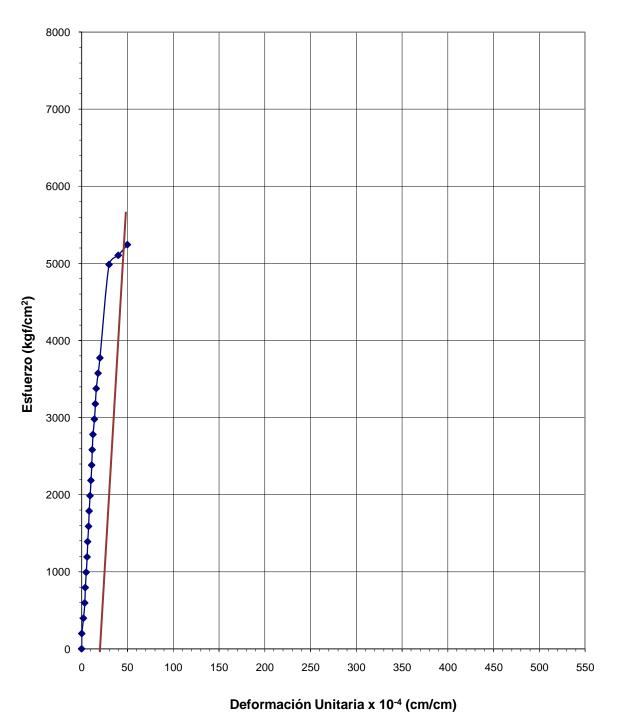


Tabla 4.43 Resultado del ensayo de la muestra N°1 de tope con bisel sencillo de diámetro 1 3/8"

CARGA (Kg)	DEFORM. (0,01mm)	ESFUERZO (Kg/cm²)	DEF. UNT. (10 ⁻⁴ cm/cm)
0	0,0	0	0,0
2000	0,1	199	0,2
4000	1,0	397	2,0
6000	1,7	596	3,4
8000	2,0	794	4,0
10000	2,5	993	5,0
12000	3,0	1191	6,0
14000	3,3	1390	6,6
16000	3,8	1589	7,6
18000	4,1	1787	8,2
20000	4,6	1986	9,2
22000	5,1	2184	10,2
24000	5,5	2383	11,0
26000	5,8	2581	11,6
28000	6,2	2780	12,4
30000	7,0	2979	14,0
32000	7,5	3177	15,0
34000	8,0	3376	16,0
36000	9,0	3574	18,0
38000	10,0	3773	20,0
50200	15,0	4984	30,0
51400	20,0	5103	40,0
52800	25,0	5242	50,0

Este ensayo se realizó midiendo la deformación cada 2000 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. La muestra falló en la soldadura al alcanzar una carga máxima de 52.800 Kg.

Gráfica 4.43 Resultado del ensayo de la muestra N°1 de tope con bisel sencillo de diámetro 1 3/8"

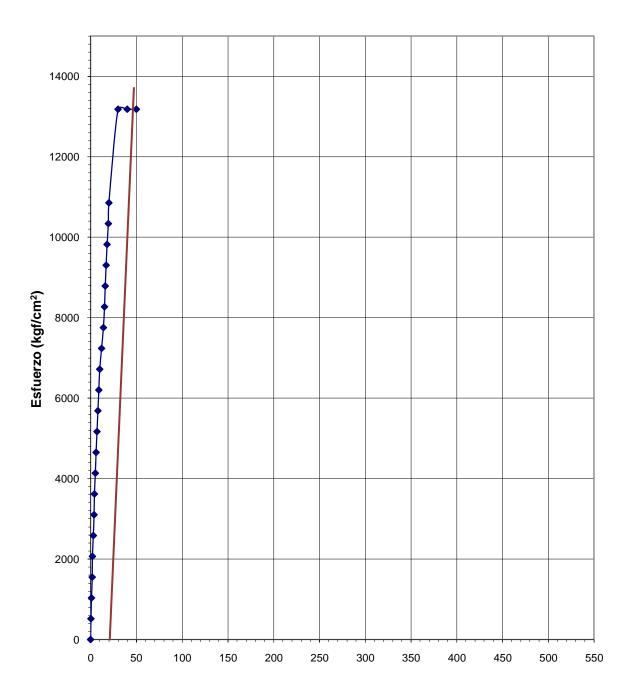


Tabla 4.44 Resultado del ensayo de la muestra N°2 de tope con bisel sencillo de diámetro 1 3/8"

	DEFORM.	ESFUERZO	DEF. UNT. (10 ⁻⁴
CARGA (Kg)	(0,01mm)	(Kg/cm²)	cm/cm)
0	0,0	0	0,0
2000	0,2	199	0,4
4000	0,5	397	1,0
6000	0,9	596	1,8
8000	1,0	794	2,0
10000	1,5	993	3,0
12000	1,9	1192	3,8
14000	2,1	1390	4,2
16000	2,6	1589	5,2
18000	3,0	1787	6,0
20000	3,5	1986	7,0
22000	4,0	2185	8,0
24000	4,5	2383	9,0
26000	5,0	2582	10,0
28000	6,0	2781	12,0
30000	7,0	2979	14,0
32000	7,6	3178	15,2
34000	8,0	3376	16,0
36000	8,5	3575	17,0
38000	9,0	3774	18,0
40000	9,7	3972	19,4
42000	10,0	4171	20,0
51000	15,0	5065	30,0
51000	20,0	5065	40,0
51000	25,0	5065	50,0

Este ensayo se realizó midiendo la deformación cada 2000 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. La muestra falló en la soldadura al alcanzar una carga máxima de 54.000 Kg.

Gráfica 4.44 Resultado del ensayo de la muestra N°2 de tope con bisel sencillo de diámetro 1 3/8"

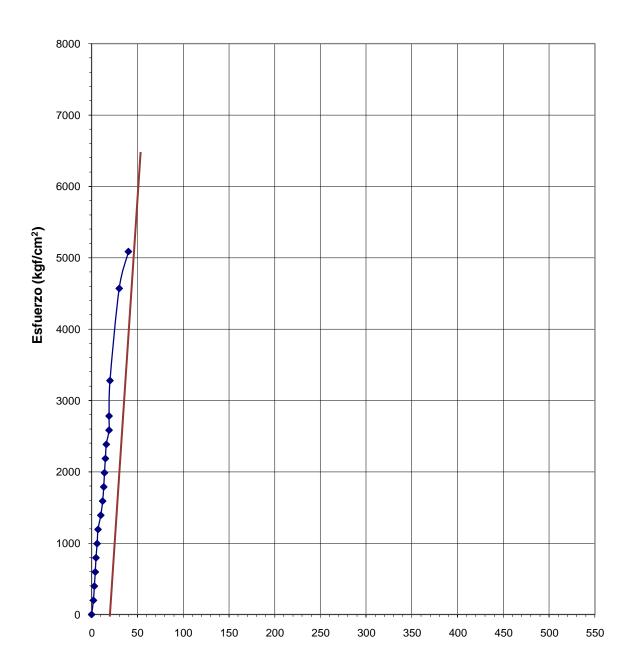


Tabla 4.45 Resultado del ensayo de la muestra N°3 de tope con bisel sencillo de diámetro 1 3/8"

CARGA (Kg)	DEFORM. (0,01mm)	ESFUERZO (Kg/cm2)	DEF. UNT. (10-4 cm/cm)
0	0,0	0	0,0
2000	1,0	199	2,0
4000	1,5	397	3,0
6000	2,0	596	4,0
8000	2,4	794	4,8
10000	3,0	993	6,0
12000	3,5	1192	7,0
14000	5,0	1390	10,0
16000	6,0	1589	12,0
18000	6,6	1787	13,2
20000	7,0	1986	14,0
22000	7,5	2185	15,0
24000	8,0	2383	16,0
26000	9,5	2582	19,0
28000	9,5	2781	19,0
33000	10,0	3277	20,0
46000	15,0	4568	30,0
51200	20,0	5084	40,0

Este ensayo se realizó midiendo la deformación cada 2000 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. La muestra falló en la soldadura al alcanzar una carga máxima de 61.200 Kg.

Gráfica 4.45 Resultado del ensayo de la muestra N°3 de tope con bisel sencillo de diámetro 1 3/8"

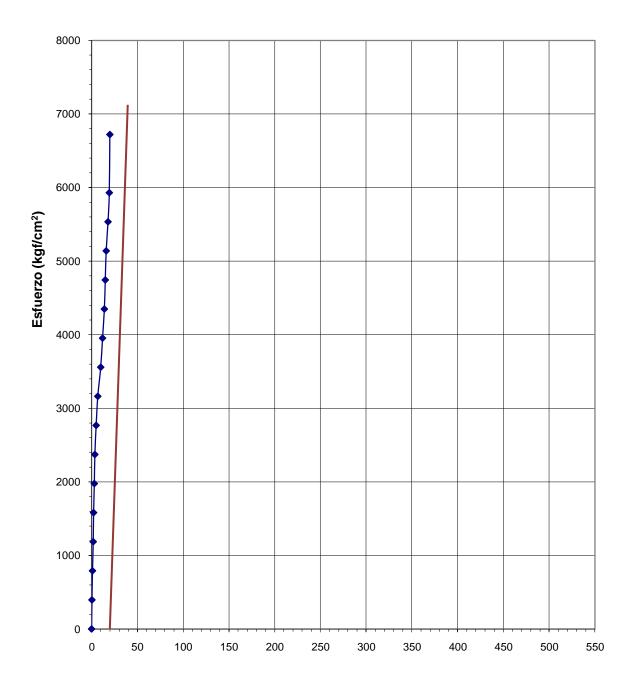


Tabla 4.46 Resultado del ensayo de la muestra N°1 de tope con bisel doble de diámetro 1 3/8"

CARGA (Kg)	DEFORM. (0,01mm)	ESFUERZO (Kg/cm²)	DEF. UNT. (10 ⁻⁴ cm/cm)
0	0,0	0	0,0
2000	0,2	395	0,4
4000	0,5	791	1,0
6000	0,9	1186	1,8
8000	1,1	1581	2,2
10000	1,5	1976	3,0
12000	1,8	2372	3,6
14000	2,5	2767	5,0
16000	3,4	3162	6,8
18000	5,0	3557	10,0
20000	6,0	3953	12,0
22000	7,0	4348	14,0
24000	7,5	4743	15,0
26000	8,0	5138	16,0
28000	9,0	5534	18,0
30000	9,7	5929	19,4
34000	10,0	6719	20,0

Este ensayo se realizó midiendo la deformación cada 2000 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. La muestra falló en la soldadura al alcanzar una carga máxima de 41.400 Kg.

Gráfica 4.46 Resultado del ensayo de la muestra N°1 de tope con bisel doble de diámetro 1 3/8"

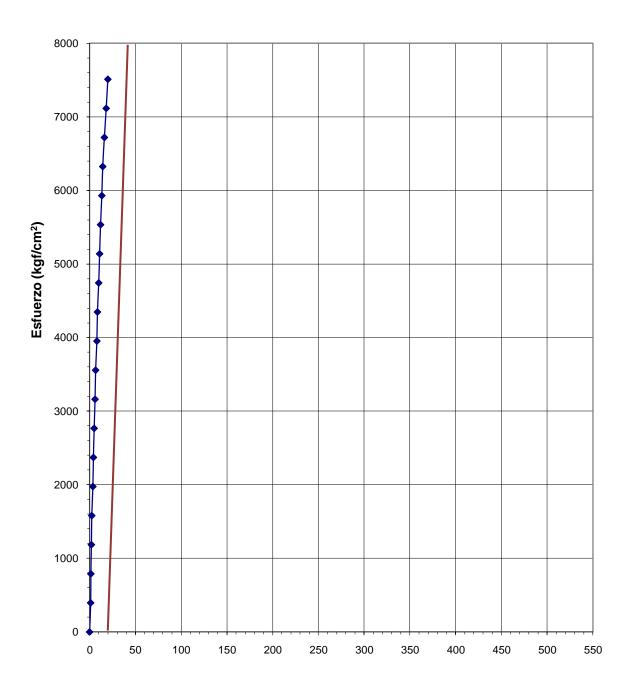


Tabla 4.47 Resultado del ensayo de la muestra N°2 de tope con bisel doble de diámetro 1 3/8"

CARGA (Kg)	DEFORM. (0,01mm)	ESFUERZO (Kg/cm²)	DEF. UNT. (10 ⁻⁴ cm/cm)
0	0,0	0	0,0
2000	0,6	395	1,2
4000	0,6 0,7	791	1,2 1,4
6000	1,0	1186	2,0
8000	1,2	1581	2,4
10000	1,8	1976	3,6
12000	2,1	2372	4,2
14000	2,5	2767	5,0
16000	3,0	3162	6,0
18000	3,3	3557	6,6
20000	4,0	3953	8,0
22000	4,3	4348	8,6
24000	5,0	4743	10,0
26000	5,5	5138	11,0
28000	6,0	5534	12,0
30000	6,7	5929	13,4
32000	7,2	6324	14,4
34000	8,1	6719	16,2
36000	9,1	7115	18,2
38000	10,0	7510	20,0

Este ensayo se realizó midiendo la deformación cada 2000 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. La muestra falló en la soldadura al alcanzar una carga máxima de 44.200 Kg.

Gráfica 4.47 Resultado del ensayo de la muestra N°2 de tope con bisel doble de diámetro 1 3/8"

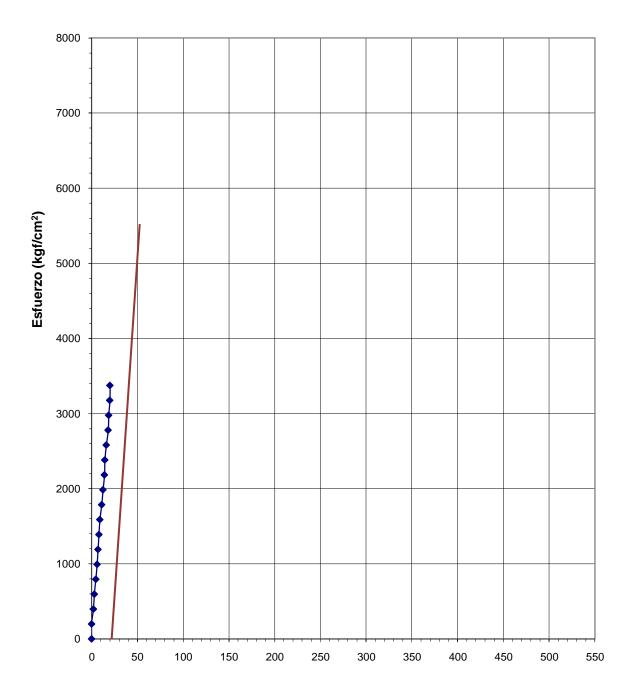


Tabla 4.48 Resultado del ensayo de la muestra N°3 de tope con bisel doble de diámetro 1 3/8"

CARGA	DEFORM.	ESFUERZO	DEF. UNT. (10-4
(Kg)	(0,01mm)	(Kg/cm2)	cm/cm)
0	0,0	0	0,0
2000	0,0	199	0,0
4000	1,0	397	2,0
6000	1,5	596	3,0
8000	2,3	794	4,6
10000	3,0	993	6,0
12000	3,5	1192	7,0
14000	4,0	1390	8,0
16000	4,5	1589	9,0
18000	5,5	1787	11,0
20000	6,2	1986	12,4
22000	7,0	2185	14,0
24000	7,2	2383	14,4
26000	8,0	2582	16,0
28000	9,0	2781	18,0
30000	9,3	2979	18,6
32000	9,9	3178	19,8
34000	10,0	3376	20,0

Este ensayo se realizó midiendo la deformación cada 2000 Kg, obtenidos según el diámetro de la barra correspondiente. En el gráfico se muestra una recta paralela a la zona elástico-lineal cuyo origen es ε = 0,002 para obtener el limite elástico convencional. La muestra falló en la soldadura al alcanzar una carga máxima de 41400 Kg.

Gráfica 4.48 Resultado del ensayo de la muestra N°3 de tope con bisel doble de diámetro 1 3/8"

Tabla 4.49 Comparación del criterio fy* ≤ 1,25fy con las muestras de diámetro 3/8"

Fy= 5000 kg/cm2	3/8"
-----------------	------

Muestra	Limite elástico	Criterio
Muestra	convencional real (fy*)	fy* ≤ 1,25 fy
Patrón 1	5563	cumple
Patrón 2	5563	cumple
N°1 Solape cordón simple	5606	cumple
N°2 Solape cordón simple	5535	cumple
N°3 Solape cordón simple	5634	cumple
N°1 Solape cordón doble	5662	cumple
N°2 Solape cordón doble	5648	cumple
N°3 Solape cordón doble	5606	cumple

Tabla 4.50 Comparación del criterio fy* ≤ 1,25fy con las muestras de diámetro 1/2"

Fy= 5000 kg/cm2 1/2"

	Limite elástico	Criterio
Muestra		Cilleilo
Maccina	convencional real (fy*)	fy* ≤ 1,25 fy
Patrón 1	6142	cumple
Patrón 2	6181	cumple
N°1 Solape cordón simple	5659	cumple
N°2 Solape cordón simple	6022	cumple
N°3 Solape cordón simple	6117	cumple
N°1 Solape cordón doble	2068	cumple
N°2 Solape cordón doble	4033	cumple
N°3 Solape cordón doble	6156	cumple

Tabla 4.51 Comparación del criterio fy* ≤ 1,25fy con las muestras de diámetro 5/8"

Fy= 5000 kg/cm2	5/8"
-----------------	------

Mucotro	Limite elástico	Criterio
Muestra	convencional real (fy*)	fy* ≤ 1,25 fy
Patrón 1	4543	cumple
Patrón 2	4811	cumple
N°1 Solape cordón simple	4543	cumple
N°2 Solape cordón simple	4447	cumple
N°3 Solape cordón simple	5351	cumple
N°1 Solape cordón doble	5265	cumple
N°2 Solape cordón doble	5346	cumple
N°3 Solape cordón doble	4917	cumple

Tabla 4.52 Comparación del criterio fy* ≤ 1,25fy con las muestras de diámetro 3/4"

Fy= 5000 kg/cm2 3/4"

	1 2 14 17 17	
Muestra	Limite elástico	Criterio
Muestra	convencional real (fy*)	fy* ≤ 1,25 fy
Patrón 1	5965	cumple
Patrón 2	6667	no cumple
N°1 Solape cordón simple	5982	cumple
N°2 Solape cordón simple	5684	cumple
N°3 Solape cordón simple	5509	cumple
N°1 Solape cordón doble	4632	cumple
N°2 Solape cordón doble	4825	cumple
N°3 Solape cordón doble	3298	cumple

Tabla 4.53 Comparación del criterio fy* ≤ 1,25fy con las muestras de diámetro 7/8"

Fy= 5000 kg/cm2	7/8"
•	

	Limite elástico	
Muestra		Criterio
	convencional real (fy*)	fy* ≤ 1,25 fy
Patrón 1	4977	cumple
Patrón 2	5556	cumple
N°1 Tope bisel sencillo	No Corta	no cumple
N°2 Tope bisel sencillo	No Corta	no cumple
N°3 Tope bisel sencillo	5609	cumple
N°1 Tope bisel doble	No Corta	no cumple
N°2 Tope bisel doble	No Corta	no cumple
N°3 Tope bisel doble	No Corta	no cumple

Tabla 4.54 Comparación del criterio fy* ≤ 1,25fy con las muestras de diámetro 1 3/8"

Fy= 5000 kg/cm2 1 3/8"

Muestra	Limite elástico	Criterio	
Muestra	convencional real (fy*)	fy* ≤ 1,25 fy	
Patrón 1	5332	cumple	
Patrón 2	5303	cumple	
N°1 Tope bisel sencillo	5103	cumple	
N°2 Tope bisel sencillo	13178	no cumple	
N°3 Tope bisel sencillo	No Corta	no cumple	
N°1 Tope bisel doble	No Corta	no cumple	
N°2 Tope bisel doble	No Corta	no cumple	
N°3 Tope bisel doble	No Corta	no cumple	

Bajo el criterio de fy* \leq 1,25fy, se pudo observar que para las barras de diámetros 3/8", 1/2" y 5/8", los patrones y las muestras con junta a solape con cordón simple y con junta a solape con cordón doble cumplieron en todos los casos.

Para las barra de diámetro 3/4", el patrón n°1, las muestras con junta a solape con cordón simple y las muestras con junta a solape con cordón doble cumplieron con el criterio, a diferencia del patrón n° 2 que no cumplió con el mismo.

En el caso de las barras con diámetro 7/8", los 2 patrones y la muestra n°3 con junta a tope con bisel sencillo cumplieron con el criterio, a diferencia del resto de las muestras con junta a tope con bisel sencillo y bisel doble que no lo hicieron.

Finalmente, para las barras con diámetro de 1 3/8", solo los 2 patrones y la muestra n°1 con junta a tope con bisel sencillo cumplieron con el criterio, a diferencia del resto de las muestras con junta a tope con bisel sencillo y bisel doble que no cumplieron con este.

Tabla 4.55 Comparación del criterio fsu* ≥ 1, 25 fy* con las muestras de diámetro 3/8"

		Carga	Área	Esfuerzo	
Diámetro	Muestra	máxima			fsu* ≥ 1,25 fy*
		(kg)	(cm ²)	máximo (kgf/cm²)	
	Patrón 1	5410		7620	cumple
	Patrón 2	5420		7634	cumple
	N°1 Solape cordón simple	5480		7718	cumple
3/8"	N°2 Solape cordón simple	5430	0,71	7648	cumple
3/6	N°3 Solape cordón simple	5430	0,71	7648	cumple
	N°1 Solape cordón doble	5360		7549	cumple
	N°2 Solape cordón doble	5420		7634	cumple
	N°3 Solape cordón doble	5380		7577	cumple

Tabla 4.56 Comparación del criterio fsu* ≥ 1, 25 fy* con las muestras de diámetro 1/2"

		Carga	Área	Esfuerzo	
Diámetro	Muestra	máxima			fsu* ≥ 1,25 fy*
		(kg)	(cm ²)	máximo (kgf/cm²)	
	Patrón 1	10100		8016	cumple
	Patrón 2	10160		8063	cumple
	N°1 Solape cordón simple	10140		8048	cumple
1/2"	N°2 Solape cordón simple	9860	1 26	7825	cumple
1/2	N°3 Solape cordón simple	10100	1,26	8016	cumple
	N°1 Solape cordón doble	8950		7103	cumple
	N°2 Solape cordón doble	9450		7500	cumple
	N°3 Solape cordón doble	9425]	7480	no cumple

Tabla 4.57 Comparación del criterio fsu* ≥ 1, 25 fy* con las muestras de diámetro 5/8"

		Carga	Área	Esfuerzo	
Diámetro	Muestra	máxima		máximo	fsu* ≥ 1,25 fy*
		(kg)	(cm ²)	(kgf/cm ²)	
	Patrón 1	14200		7172	cumple
	Patrón 2	15000		7576	cumple
	N°1 Solape cordón simple	14900		7525	cumple
5/8"	N°2 Solape cordón simple	14850	1,98	7500	cumple
5/6	N°3 Solape cordón simple	14750	1,90	7449	cumple
	N°1 Solape cordón doble	14100		7121	cumple
	N°2 Solape cordón doble	13250		6692	cumple
	N°3 Solape cordón doble	13500		6818	cumple

Tabla 4.58 Comparación del criterio fsu* ≥ 1, 25 fy* con las muestras de diámetro 3/4"

		Carga	Área	Esfuerzo	
Diámetro	Muestra	máxima			fsu* ≥ 1,25 fy*
		(kg)	(cm ²)	máximo (kgf/cm²)	
	Patrón 1	23725		8325	cumple
	Patrón 2	23425		8219	no cumple
	N°1 Solape cordón simple	22300		7825	cumple
3/4"	N°2 Solape cordón simple	17900	2,85	6281	no cumple
3/4	N°3 Solape cordón simple	21575	2,65	7570	cumple
	N°1 Solape cordón doble	17250		6053	cumple
	N°2 Solape cordón doble	19775		6939	cumple
	N°3 Solape cordón doble	18475		6482	cumple

Tabla 4.59 Comparación del criterio fsu* ≥ 1, 25 fy* con las muestras de diámetro 7/8"

		Carga	Área	Esfuerzo	
Diámetro	Muestra	máxima			fsu* ≥ 1,25 fy*
		(kg)	(cm ²)	máximo (kgf/cm²)	
	Patrón 1	28000		7235	cumple
	Patrón 2	293500		7584	cumple
	N°1 Tope bisel sencillo	20200		5220	no cumple
7/8"	N°2 Tope bisel sencillo	sel sencillo 20200		5220	no cumple
1/0	N°3 Tope bisel sencillo	22800	3,87	5891	no cumple
	N°1 Tope bisel doble	19000		4910	no cumple
	N°2 Tope bisel doble	17750		4587	no cumple
	N°3 Tope bisel doble	18550		4793	no cumple

Tabla 4.60 Comparación del criterio fsu* ≥ 1, 25 fy* con las muestras de diámetro 1 3/8"

		Carga	Área	Esfuerzo	
Diámetro	Muestra	máxima			fsu* ≥ 1,25 fy*
		(kg)	(cm ²)	máximo (kgf/cm²)	
	Patrón 1	73000		7249	cumple
	Patrón 2	73800		7329	cumple
	N°1 Tope bisel sencillo	Tope bisel sencillo 52800		5243	no cumple
1 3/8"	N°2 Tope bisel sencillo	54000	10,07	5362	no cumple
1 3/6	N°3 Tope bisel sencillo	61200	10,07	6077	no cumple
	N°1 Tope bisel doble	41400		4111	no cumple
	N°2 Tope bisel doble	44200		4389	no cumple
	N°3 Tope bisel doble	41400		4111	no cumple

Para el criterio fsu* ≥ 1, 25 fy* se observó que para las barras de diámetro 3/8", los patrones y las muestras con junta a solape con cordón doble y cordón simple cumplieron en todos los casos.

Para las barras de diámetro 1/2", los patrones, las muestras con juntas a solape con cordón doble y cordón simple cumplieron a excepción de la muestra n°3 de la junta a solape con cordón doble que no cumplió.

En las barras de diámetro 5/8", los patrones y las muestras con junta a solape con cordón doble y cordón simple cumplieron en todos los casos.

Para las barras con diámetro de 3/4", el patrón n°1, las muestras n°1 y n°3 con junta a solape con cordón simple y todas las muestras con junta a solape con cordón doble cumplieron, a diferencia del patrón n°2 y la muestra n°2 de junta a solape y cordón simple que no cumplieron con el criterio.

Finalmente para las barras con diámetros de 7/8" y 1 3/8", solo los 2 patrones cumplieron en ambos casos, a diferencia del resto de las muestras con junta a tope con bisel sencillo y bisel doble que no cumplieron.

Tabla 4.61 Porcentaje de alargamiento en 20 cm incluida la estricción para las muestras de diámetro 3/8"

Diámetro	Muestra	Alargamiento	Alargamiento
	Muestra	(cm)	(%)
	Patrón 1	23,36	16,80
	Patrón 2	23,10	15,50
	N°1 Solape cordón simple	22,32	11,60
3/8"	N°2 Solape cordón simple	21,90	9,50
3/6	N°3 Solape cordón simple	21,66	8,30
	N°1 Solape cordón doble	21,72	8,60
	N°2 Solape cordón doble	22,12	10,60
	N°3 Solape cordón doble	21,20	6,00

Tabla 4.62 Porcentaje de alargamiento en 20 cm incluida la estricción para las muestras de diámetro 1/2"

Diámetro	Muestra	Alargamiento	Alargamiento
	Muestra	(cm)	(%)
	Patrón 1	23,09	15,45
	Patrón 2	23,18	15,90
	N°1 Solape cordón simple	21,20	6,00
1/2"	N°2 Solape cordón simple	20,42	2,10
1/2	N°3 Solape cordón simple	24,24	21,20
	N°1 Solape cordón doble	20,87	4,35
	N°2 Solape cordón doble	21,67	8,35
	N°3 Solape cordón doble	20,05	0,25

Tabla 4.63 Comparación Porcentaje de alargamiento en 20 cm incluida la estricción para las muestras de diámetro 5/8"

Diámetro	Muestra	Alargamiento	Alargamiento
	Muestra	(cm)	(%)
	Patrón 1	24,86	24,30
	Patrón 2	21,41	7,05
	N°1 Solape cordón simple	21,73	8,65
5/8"	N°2 Solape cordón simple	23,66	18,30
3/6	N°3 Solape cordón simple	22,30	11,50
	N°1 Solape cordón doble	22,56	12,80
	N°2 Solape cordón doble	20,10	0,50
	N°3 Solape cordón doble	20,08	0,40

Tabla 4.64 Porcentaje de alargamiento en 20 cm incluida la estricción para las muestras de diámetro 3/4"

Diámetro	Muestra	Alargamiento	Alargamiento
Diámetro	ividestra	(cm)	(%)
	Patrón 1	23,27	16,35
	Patrón 2	22,80	14,00
	N°1 Solape cordón simple	20,02	0,10
3/4"	N°2 Solape cordón simple	20,90	4,50
3/4	N°3 Solape cordón simple	21,10	5,50
	N°1 Solape cordón doble	20,08	0,40
	N°2 Solape cordón doble	20,13	0,65
	N°3 Solape cordón doble	20,07	0,35

Tabla 4.65 Porcentaje de alargamiento en 20 cm incluida la estricción para las muestras de diámetro 7/8"

Diámetro	Muestra	Alargamiento	Alargamiento
	iviuestra	(cm)	(%)
	Patrón 1	20,94	4,70
	Patrón 2	23,59	17,95
	N°1 Tope bisel sencillo	*	*
7/8"	N°2 Tope bisel sencillo	*	*
170	N°3 Tope bisel sencillo	*	*
	N°1 Tope bisel doble	*	*
	N°2 Tope bisel doble	*	*
	N°3 Tope bisel doble	*	*

Nota (*): No se pudo realizar la medición del alargamiento en los ensayos debido a que fallaron en la soldadura antes de llegar a la zona de deformación permanente.

Tabla 4.66 Porcentaje de alargamiento en 20 cm incluida la estricción para las muestras de diámetro 1 3/8"

Diámetro	Muestra	Alargamiento	Alargamiento
	Muestra	(cm)	(%)
	Patrón 1	21,88	9,40
	Patrón 2	25,34	26,70
	N°1 Tope bisel sencillo	*	*
1 3/8"	N°2 Tope bisel sencillo	*	*
1 3/0	N°3 Tope bisel sencillo	*	*
	N°1 Tope bisel doble	*	*
	N°2 Tope bisel doble	*	*
	N°3 Tope bisel doble	*	*

Nota (*): No se pudo realizar la medición del alargamiento en los ensayos debido a que fallaron en la soldadura antes de llegar a la zona de deformación permanente.

Tabla 4.67 95% del promedio del esfuerzo máximo de las muestras patrón de diámetro 3/8"

Muestra	Carga máxima (kg)	Área (cm²)	Esfuerzo máximo (kgf/cm²)	Promedio muestras patrón (kgf/cm²)	95% promedio muestras patrón (kgf/cm²)
Patrón 1	5410	0.71	7620	7627	7245
Patrón 2	5420	0,71	7634	7627	7245

Tabla 4.68 95% del promedio del esfuerzo máximo de las muestras patrón de diámetro 1/2"

Muestra	Carga	Área	Esfuerzo	Promedio muestras	95% promedio
iviuestra	máxima (kg)	(cm ²)	máximo (kgf/cm²)	patrón (kgf/cm²)	muestras patrón (kgf/cm²)
Patrón 1	10100	1 26	8016	8040	7629
Patrón 2	10160	1,26	8063	0040	7638

Tabla 4.69 95% del promedio del esfuerzo máximo de las muestras patrón de diámetro 5/8"

Musetre	Carga	Área	Esfuerzo	Promedio muestras	95% promedio
Muestra	máxima (kg)	(cm ²)	máximo (kgf/cm²)	patrón (kgf/cm²)	muestras patrón (kgf/cm²)
Patrón 1	14200	1.00	7172	7074	7005
Patrón 2	15000	1,98	7576	7374	7005

Tabla 4.70 95% del promedio del esfuerzo máximo de las muestras patrón de diámetro 3/4"

Musatra	Musetra Carga Área		Esfuerzo	Promedio muestras	95% promedio
Muestra	máxima (kg)	(cm ²)	máximo (kgf/cm²)	patrón (kgf/cm²)	muestras patrón (kgf/cm²)
Patrón 1	23725	2,85	8325	8272	7858
Patrón 2	23425	2,00	8219	0212	7000

Tabla 4.71 95% del promedio del esfuerzo máximo de las muestras patrón de diámetro 7/8"

Muestra	Carga	Área	Esfuerzo	Promedio muestras	95% promedio
Muestra	máxima (kg)	(cm ²)	máximo (kgf/cm²)	patrón (kgf/cm²)	muestras patrón (kgf/cm²)
Patrón 1	28000	2 07	7235	7/10	7020
Patrón 2	29350	3,87	7584	7410	7039

Tabla 4.72 95% del promedio del esfuerzo máximo de las muestras patrón de diámetro 1 3/8"

Musetra Carga		Área	Esfuerzo	Promedio muestras	95% promedio
Muestra	máxima (kg)	(cm ²)	máximo (kgf/cm²)	patrón (kgf/cm²)	muestras patrón (kgf/cm²)
Patrón 1	73000	10,07	7249	7289	6925
Patrón 2	73800	10,07	7329	7209	0925

Tabla 4.73 Comparación de los esfuerzos máximos de las muestras soldadas versus el 95% del promedio del esfuerzo máximo de las muestras patrón de diámetro 3/8"

Muestra	Carga	Área	Esfuerzo	Esfuerzo máximo vs. 95%
iviuestra	máxima (kg)	(cm ²)	máximo (kgf/cm²)	promedio muestras patrón
N°1 Solape cordón simple	5480		7718	cumple
N°2 Solape cordón simple	5430	130	7648	cumple
N°3 Solape cordón simple	5430	0.71	7648	cumple
N°1 Solape cordón doble	5360	0,71	7549	cumple
N°2 Solape cordón doble	5420		7634	cumple
N°3 Solape cordón doble	5380		7577	cumple

Tabla 4.74 Comparación de los esfuerzos máximos de las muestras soldadas versus el 95% del promedio del esfuerzo máximo de las muestras patrón de diámetro 1/2"

Muestra	Carga	Área	Esfuerzo	Esfuerzo máximo vs. 95%
iviuestra	máxima (kg)	(cm ²)	máximo (kgf/cm²)	promedio muestras patrón
N°1 Solape cordón simple	10140		8048	cumple
N°2 Solape cordón simple	9860		7825	cumple
N°3 Solape cordón simple	10100	1,26	8016	cumple
N°1 Solape cordón doble	8950	1,20	7103	no cumple
N°2 Solape cordón doble	9450		7500	no cumple
N°3 Solape cordón doble	9425		7480	no cumple

Tabla 4.75 Comparación de los esfuerzos máximos de las muestras soldadas versus el 95% del promedio del esfuerzo máximo de las muestras patrón de diámetro 5/8"

Muestra	Carga	Área	Esfuerzo	Esfuerzo máximo vs. 95%
iviuestra	máxima (kg)	(cm ²)	máximo (kgf/cm²)	promedio muestras patrón
N°1 Solape cordón simple	14900		7525	cumple
N°2 Solape cordón simple	14850		7500	cumple
N°3 Solape cordón simple	14750	4.00	7449	cumple
N°1 Solape cordón doble	14100	1,98	7121	cumple
N°2 Solape cordón doble	13250		6692	no cumple
N°3 Solape cordón doble	13500		6818	no cumple

Tabla 4.76 Comparación de los esfuerzos máximos de las muestras soldadas versus el 95% del promedio del esfuerzo máximo de las muestras patrón de diámetro 3/4"

Muestra	Carga	Área	Esfuerzo	Esfuerzo máximo vs. 95%
iviuestra	máxima (kg)	(cm^2)	máximo (kgf/cm²)	promedio muestras patrón
N°1 Solape cordón simple	22300		7825	no cumple
N°2 Solape cordón simple	17900		6281	no cumple
N°3 Solape cordón simple	21575	2,85	7570	no cumple
N°1 Solape cordón doble	17250	2,00	6053	no cumple
N°2 Solape cordón doble	19775		6939	no cumple
N°3 Solape cordón doble	18475		6482	no cumple

Tabla 4.77 Comparación de los esfuerzos máximos de las muestras soldadas versus el 95% del promedio del esfuerzo máximo de las muestras patrón de diámetro 7/8"

Muestra	Carga	Área	Esfuerzo	Esfuerzo máximo vs. 95%
iviuestra	máxima (kg)	(cm ²)	máximo (kgf/cm²)	promedio muestras patrón
N°1 Tope bisel sencillo	20200		5220	no cumple
N°2 Tope bisel sencillo	20200		5220	no cumple
N°3 Tope bisel sencillo	22800	3,87	5891	no cumple
N°1 Tope bisel doble	19000	3,07	4910	no cumple
N°2 Tope bisel doble	17750		4587	no cumple
N°3 Tope bisel doble	18550		4793	no cumple

Tabla 4.78 Comparación de los esfuerzos máximos de las muestras soldadas versus el 95% del promedio del esfuerzo máximo de las muestras patrón de diámetro 1 3/8"

Mucatra	Carga	Área	Esfuerzo	Esfuerzo máximo vs. 95%
Muestra	máxima (kg)	(cm ²)	máximo (kgf/cm²)	promedio muestras patrón
N°1 Tope bisel sencillo	52800		5243	no cumple
N°2 Tope bisel sencillo	54000		5362	no cumple
N°3 Tope bisel sencillo	61200	10,07	6077	no cumple
N°1 Tope bisel doble	41400	10,07	4111	no cumple
N°2 Tope bisel doble	44200		4389	no cumple
N°3 Tope bisel doble	41400		4111	no cumple

Para las barras de diámetro 3/8", las muestras con junta a solape con cordón simple y cordón doble cumplieron en todos los casos.

Para las barras de diámetro 1/2", las muestras con junta a solape con cordón simple cumplieron a diferencia de las muestras con cordón doble que no cumplieron con este criterio.

Para las barras de diámetro 5/8", las muestras con junta a solape con cordón simple y la muestra n°1 de junta a solape con cordón doble cumplieron, a diferencia de las muestras n°2 y n°3 con junta a solape con cordón doble que no cumplieron. Representando el 36,11% de los ensayos que cumplieron.

Para las barras con diámetros de 3/4", 7/8" y 1 3/8", las muestras con junta a solape con cordón simple y con cordón doble no cumplieron, en ninguno de los casos al igual que los casos con junta a tope con bisel sencillo y bisel doble, con el 95% del promedio del esfuerzo máximo de las muestras patrón. Representando así un 63,89 % de los ensayos que no cumplieron.

Tabla 4.79 95% del promedio del alargamiento en 20 cm de las muestras patrón de diámetro 3/8"

Muestra	Alarg.	Prom. muestras	95% promedio	Alarg.	Prom. muestras	95% promedio
Muestra	(cm)	patrón (cm)	patrón (cm)	(%)	patrón (%)	patrón (%)
Patrón 1	23,36	23,23	22.07	16,80	16,15	15 24
Patrón 2	23,10	23,23	22,07	15,50	10,13	15,34

Tabla 4.80 95% del promedio del alargamiento en 20 cm de las muestras patrón de diámetro 1/2"

Muestra	Alarg.	Prom. muestras	95% promedio	Alarg.	Prom. muestras	95% promedio
Muestra	(cm)	patrón (cm)	patrón (cm)	(%)	patrón (%)	patrón (%)
Patrón 1	23,09	23,14	21,98	15,45	15,68	14.89
Patrón 2	23,18	23,14	21,90	15,90	15,00	14,09

Tabla 4.81 95% del promedio del alargamiento en 20 cm de las muestras patrón de diámetro 5/8"

Muestra	Alarg.	Prom. muestras 95% promedio Alarg		Alarg.	Prom. muestras	95% promedio
Muestra	(cm)	patrón (cm)	patrón (cm)	(%)	patrón (%)	patrón (%)
Patrón 1	24,86	23.14	24.00	24,30	15,68	14,89
Patrón 2	21,41	23,14	21,98	7,05	10,00	14,09

Tabla 4.82 del promedio del alargamiento en 20 cm de las muestras patrón de diámetro 3/4"

Musotro	Alarg.	Prom. muestras	95% promedio Alarg. F		Prom. muestras	95% promedio
Muestra	(cm)	patrón (cm)	patrón (cm)	(%)	patrón (%)	patrón (%)
Patrón 1	23,27	22.04	24 00	16,35	15 10	14,42
Patrón 2	22,80	23,04	21,88	14,00	15,18	14,42

Tabla 4.83 95% del promedio del alargamiento en 20 cm de las muestras patrón de diámetro 7/8"

Muestra	Alarg.	Prom. muestras	95% promedio	Alarg.	Prom. muestras	95% promedio
IVIUESTIA	(cm)	patrón (cm)	patrón (cm)	(%)	patrón (%)	patrón (%)
Patrón 1	20,94	22,27	21.15	4,70	11 22	10.76
Patrón 2	23,59	22,21	21,15	17,95	11,33	10,76

Tabla 4.84 95% del promedio del alargamiento en 20 cm de las muestras patrón de diámetro 1 3/8"

Muestra	Alarg.	Prom. muestras	95% promedio	Alarg.	Prom. muestras	95% promedio
Muestra	(cm)	patrón (cm)	patrón (cm)	(%)	patrón (%)	patrón (%)
Patrón 1	21,88	23,61	22,43	9,40	18,05	17.15
Patrón 2	25,34	23,01	22,43	26,70	10,03	17,13

Tabla 4.85 Comparación del alargamiento en 20 cm de las muestras soldadas versus el 95% del alargamiento en 20 cm del promedio de las muestras patrón de diámetro 3/8"

Muestra	Alarg.	Alarg. en 20 cm vs. 95%	Alarg.	Alarg. en 20 cm vs. 95%
iviuestra	(cm)	prom. muestras patrón (cm)	(%)	prom. muestras patrón (%)
N°1 Solape cordón simple	21,62	no cumple	8,10	no cumple
N°2 Solape cordón simple	21,90	no cumple	9,50	no cumple
N°3 Solape cordón simple	21,66	no cumple	8,30	no cumple
N°1 Solape cordón doble	21,72	no cumple	8,60	no cumple
N°2 Solape cordón doble	21,12	no cumple	5,60	no cumple
N°3 Solape cordón doble	21,20	no cumple	6,00	no cumple

Tabla 4.86 Comparación del alargamiento en 20 cm de las muestras soldadas versus el 95% del alargamiento en 20 cm del promedio de las muestras patrón de diámetro 1/2"

Muestra	Alarg.	Alarg. en 20 cm vs. 95%	Alarg.	Alarg. en 20 cm vs. 95%
iviuestra	(cm)	prom. muestras patrón (cm)	(%)	prom. muestras patrón (%)
N°1 Solape cordón simple	21,20	no cumple	6,00	no cumple
N°2 Solape cordón simple	20,42	no cumple	2,10	no cumple
N°3 Solape cordón simple	24,24	cumple	21,20	cumple
N°1 Solape cordón doble	20,87	no cumple	4,35	no cumple
N°2 Solape cordón doble	21,67	no cumple	8,35	no cumple
N°3 Solape cordón doble	20,05	no cumple	0,25	no cumple

Tabla 4.87 Comparación del alargamiento en 20 cm de las muestras soldadas versus el 95% del alargamiento en 20 cm del promedio de las muestras patrón de diámetro 5/8"

Muestra	Alarg.	Alarg. en 20 cm vs. 95%	Alarg.	Alarg. en 20 cm vs. 95%
iviuestra	(cm)	prom. muestras patrón (cm)	(%)	prom. muestras patrón (%)
N°1 Solape cordón simple	21,73	no cumple	8,65	no cumple
N°2 Solape cordón simple	23,66	cumple	18,30	cumple
N°3 Solape cordón simple	21,30	no cumple	11,50	no cumple
N°1 Solape cordón doble	21,56	no cumple	12,80	no cumple
N°2 Solape cordón doble	20,08	no cumple	0,40	no cumple
N°3 Solape cordón doble	20,02	no cumple	0,10	no cumple

Tabla 4.88 Comparación del alargamiento en 20 cm de las muestras soldadas versus el 95% del alargamiento en 20 cm del promedio de las muestras patrón de diámetro 3/4"

Muestra	Alarg.	Alarg. en 20 cm vs. 95%	Alarg.	Alarg. en 20 cm vs. 95%
iviuestra	(cm)	prom. muestras patrón (cm)	(%)	prom. muestras patrón (%)
N°1 Solape cordón simple	20,08	no cumple	0,40	no cumple
N°2 Solape cordón simple	20,90	no cumple	4,50	no cumple
N°3 Solape cordón simple	21,10	no cumple	5,50	no cumple
N°1 Solape cordón doble	20,08	no cumple	0,40	no cumple
N°2 Solape cordón doble	20,13	no cumple	0,65	no cumple
N°3 Solape cordón doble	20,07	no cumple	0,35	no cumple

Tabla 4.89 Comparación del alargamiento en 20 cm de las muestras soldadas versus el 95% del alargamiento en 20 cm del promedio de las muestras patrón de diámetro 7/8"

Muestra	Alarg.	Alarg. en 20 cm vs. 95%	Alarg.	Alarg. en 20 cm vs. 95%
ividestra	(cm)	prom. muestras patrón (cm)	(%)	prom. muestras patrón (%)
N°1 Tope bisel sencillo	*	no cumple	*	no cumple
N°2 Tope bisel sencillo	*	no cumple	*	no cumple
N°3 Tope bisel sencillo	*	no cumple	*	no cumple
N°1 Tope bisel doble	*	no cumple	*	no cumple
N°2 Tope bisel doble	*	no cumple	*	no cumple
N°3 Tope bisel doble	*	no cumple	*	no cumple

Tabla 4.90 Comparación del alargamiento en 20 cm de las muestras soldadas versus el 95% del alargamiento en 20 cm del promedio de las muestras patrón de diámetro 1 3/8"

Muestra	Alarg.	Alarg. en 20 cm vs. 95%	Alarg.	Alarg. en 20 cm vs. 95%
iviuestra	(cm)	prom. muestras patrón (cm)	(%)	prom. muestras patrón (%)
N°1 Tope bisel sencillo	*	no cumple	*	no cumple
N°2 Tope bisel sencillo	*	no cumple	*	no cumple
N°3 Tope bisel sencillo	*	no cumple	*	no cumple
N°1 Tope bisel doble	*	no cumple	*	no cumple
N°2 Tope bisel doble	*	no cumple	*	no cumple
N°3 Tope bisel doble	*	no cumple	*	no cumple

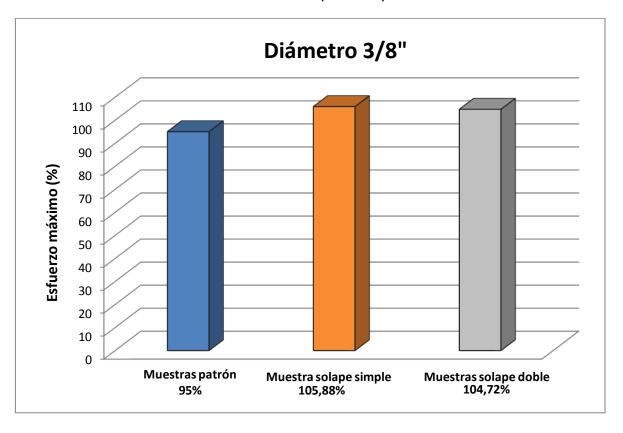
Nota (*): No se pudo realizar la medición del alargamiento en los ensayos debido a que fallaron en la soldadura antes de llegar a la zona de deformación permanente.

Para las barras de diámetro 3/8" las muestras de solape cordón simple y cordón doble no cumplieron en ninguno de los casos.

Para el diámetro de 1/2" la muestra de solape con cordón simple n°3 cumplió a diferencia del resto de las muestras de solape con cordón simple que no cumplieron, así como tampoco cumplieron ninguna de las muestras de solape con cordón doble.

Para el diámetro de 5/8", y siguiendo el mismo criterio, la muestra de solape con cordón simple n°2 cumplió a diferencia del resto de las muestras de solape con cordón simple que no cumplieron, así como tampoco cumplieron ninguna de las muestras de solape con cordón doble.

Para los diámetros de 3/4", 7/8" y 1 3/8" las muestras de solape con cordón simple y solape con cordón doble no cumplieron en ninguno de los casos al igual que las muestras con juntas a tope con bisel sencillo y bisel doble.

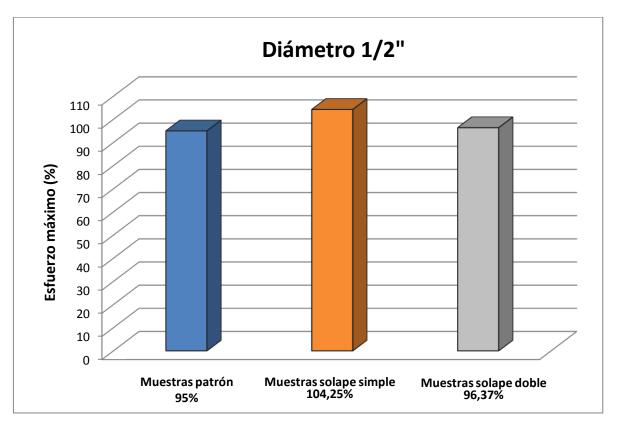

Tabla 4.91 95% del promedio del esfuerzo máximo de las muestras patrón versus promedio del esfuerzo máximo de las muestras de diámetro 3/8"

95% Promedio esfuerzo	Promedio esfuerzo máximo	Promedio esfuerzo máximo	
máximo muestras patrón	muestras solape simple	muestras solape doble	
7245	7671	7587	

Tabla 4.92 Comparación del 95% del promedio del esfuerzo máximo de las muestras patrón versus porcentaje de esfuerzo máximo de las muestras de diámetro 3/8"

% Muestras	%Muestras	%Muestras	Diferencia en % entre el patrón	
patrón	solape simple	solape doble	y las muestras	s soldadas
95	105,88	104,72	-10,88	-9,72

Grafica 4.49 Eficiencia de las muestras respecto al patrón

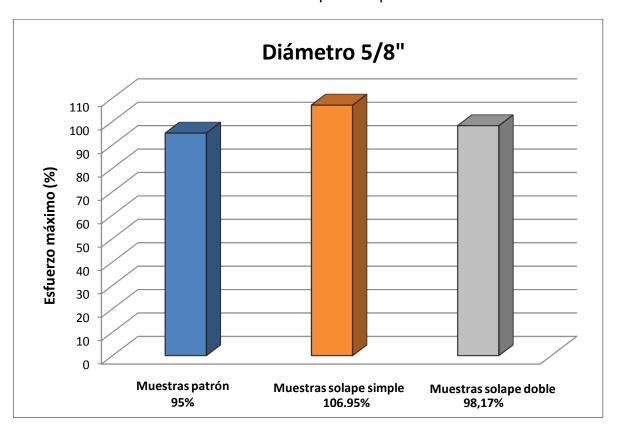

Tabla 4.93 95% del promedio del esfuerzo máximo de las muestras patrón versus promedio del esfuerzo máximo de las muestras de diámetro 1/2"

	Promedio esfuerzo máximo	
máximo muestras patrón	muestras solape simple	muestras solape doble
7638	7963	7361

Tabla 4.94 Comparación del 95% del promedio del esfuerzo máximo de las muestras patrón versus porcentaje de esfuerzo máximo de las muestras de diámetro 1/2"

% Muestras	%Muestras	%Muestras	Diferencia en % entre el patrón	
patrón	solape simple	solape doble	y las muestr	as soldadas
95	104,25	96,37	-9,25	-1,37

Grafica 4.50 Eficiencia de las muestras respecto al patrón

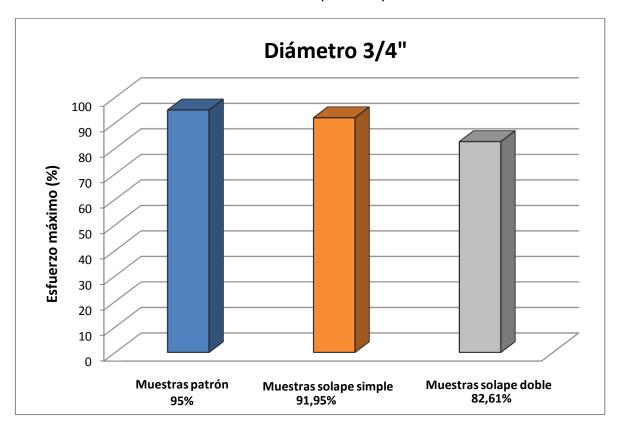

Tabla 4.95 95% del promedio del esfuerzo máximo de las muestras patrón versus promedio del esfuerzo máximo de las muestras de diámetro 5/8"

95% Promedio esfuerzo	Promedio esfuerzo máximo	Promedio esfuerzo máximo
máximo muestras patrón	muestras solape simple	muestras solape doble
7005	7492	6877

Tabla 4.96 Comparación del 95% del promedio del esfuerzo máximo de las muestras patrón versus porcentaje de esfuerzo máximo de las muestras de diámetro 5/8"

% Muestras	%Muestras	%Muestras	Diferencia en % entre el patrón	
patrón	solape simple	solape doble	y las muestras	s soldadas
95	106,95	98,17	-11,95	-3,17

Grafica 4.51 Eficiencia de las muestras respecto al patrón

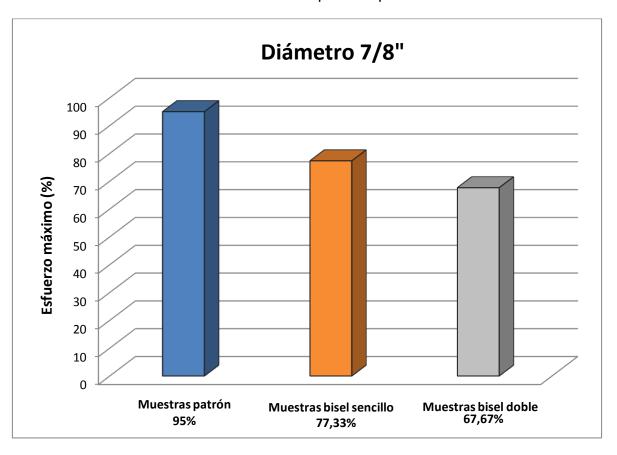

Tabla 4.97 95% del promedio del esfuerzo máximo de las muestras patrón versus promedio del esfuerzo máximo de las muestras de diámetro 3/4"

95% Promedio esfuerzo	Promedio esfuerzo máximo	Promedio esfuerzo máximo	
máximo muestras patrón	muestras solape simple	muestras solape doble	
7858	7225	6491	

Tabla 4.98 Comparación del 95% del promedio del esfuerzo máximo de las muestras patrón versus porcentaje de esfuerzo máximo de las muestras de diámetro 3/4"

% Muestras	%Muestras	%Muestras	Diferencia en % entre el patrón	
patrón	solape simple	solape doble	y las muestras soldadas	
95	91,95	82,61	3,05	12,39

Grafica 4.52 Eficiencia de las muestras respecto al patrón

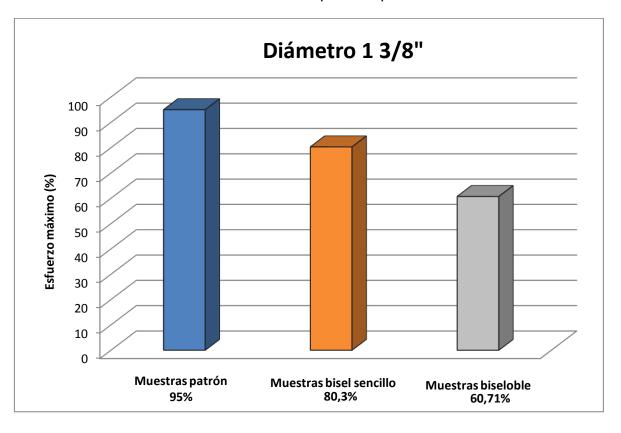

Tabla 4.99 95% del promedio del esfuerzo máximo de las muestras patrón versus promedio del esfuerzo máximo de las muestras de diámetro 7/8"

95% Promedio esfuerzo máximo muestras patrón	Promedio esfuerzo máximo muestras bisel sencillo	Promedio esfuerzo máximo muestras bisel doble	
7039	5444	4763	

Tabla 4.100 Comparación del 95% del promedio del esfuerzo máximo de las muestras patrón versus porcentaje de esfuerzo máximo de las muestras de diámetro 7/8"

% Muestras	%Muestras	%Muestras	Diferencia en % entre el patrón	
patrón	bisel sencillo	bisel doble	y las muestr	as soldadas
95	77,33	67,67	17,67	27,33

Grafica 4.53 Eficiencia de las muestras respecto al patrón

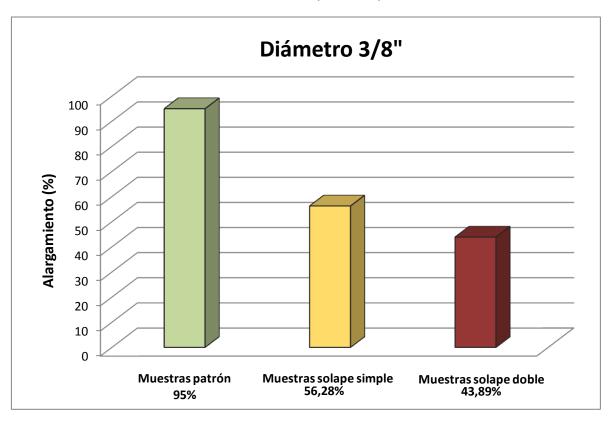

Tabla 4.101 95% del promedio del esfuerzo máximo de las muestras patrón versus promedio del esfuerzo máximo de las muestras de diámetro 1 3/8"

95% Promedio esfuerzo	Promedio esfuerzo máximo	Promedio esfuerzo máximo	
máximo muestras patrón	muestras bisel sencillo	muestras bisel doble	
6925	5561	4204	

Tabla 4.102 Comparación del 95% del promedio del esfuerzo máximo de las muestras patrón versus porcentaje de esfuerzo máximo de las muestras de diámetro 1 3/8"

% Muestras	%Muestras	%Muestras	Diferencia en % entre el patrón	
patrón	bisel sencillo	bisel doble	y las muestr	as soldadas
95	80,30	60,71	14,70	34,29

Grafica 4.54 Eficiencia de las muestras respecto al patrón

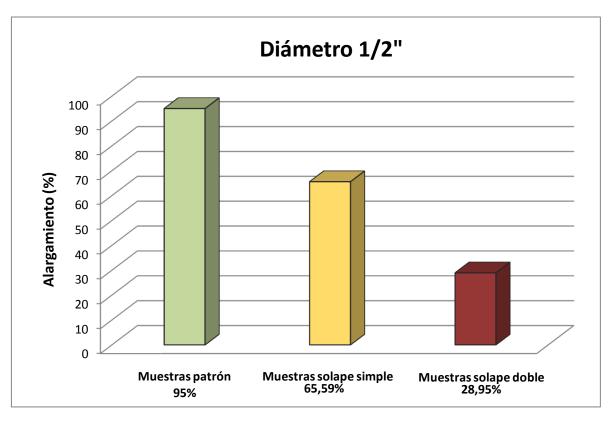

Tabla 4.103 95% del promedio del alargamiento de las muestras patrón versus promedio de alargamiento de las muestras de diámetro 3/8"

95% Promedio alarg.	Promedio alargamiento	Promedio alargamiento
muestras patrón	muestras solape simple	muestras solape doble
15,34	8,63	6,73

Tabla 4.104 Comparación del 95% del promedio del alargamiento de las muestras patrón versus porcentaje de alargamiento de las muestras de diámetro 3/8"

% Muestras	%Muestras	%Muestras	Diferencia en % entre el patrón	
patrón	solape simple	solape doble	y las muestras soldadas	
95	56,28	43,89	38,72	51,11

Grafica 4.55 Eficiencia de las muestras respecto al patrón

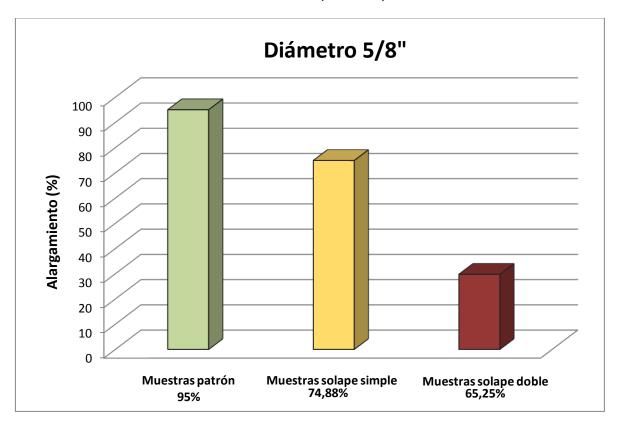

Tabla 4.105 95% del promedio del alargamiento de las muestras patrón versus promedio de alargamiento de las muestras de diámetro 1/2"

95% Promedio alarg.	Promedio alargamiento	Promedio alargamiento
muestras patrón	muestras solape simple	muestras solape doble
14.89	9.77	4.31
,55	J	.,

Tabla 4.106 Comparación del 95% del promedio del alargamiento de las muestras patrón versus porcentaje de alargamiento de las muestras de diámetro 1/2"

% Muestras	%Muestras	%Muestras	Diferencia en % entre el patrón	
patrón	solape simple	solape doble	y las muestras soldadas	
95	65,59	28,95	29,41	66,05

Grafica 4.56 Eficiencia de las muestras respecto al patrón

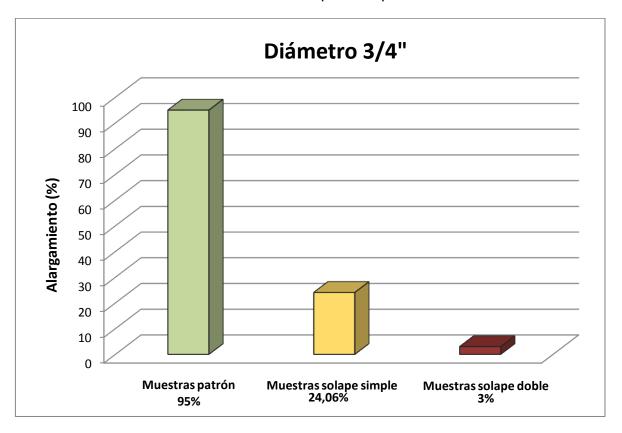

Tabla 4.107 95% del promedio del alargamiento de las muestras patrón versus promedio de alargamiento de las muestras de diámetro 5/8"

95% Promedio alarg.	Promedio alargamiento	Promedio alargamiento
muestras patrón	muestras solape simple	muestras solape doble
14,89	11,15	4,43

Tabla 4.108 Comparación del 95% del promedio del alargamiento de las muestras patrón versus porcentaje de alargamiento de las muestras de diámetro 5/8"

% Muestras	%Muestras	%Muestras	Diferencia en % entre el patrór	
patrón	solape simple	solape doble	y las muestr	as soldadas
95	74,88	29,75	20,12	65,25

Grafica 4.57 Eficiencia de las muestras respecto al patrón

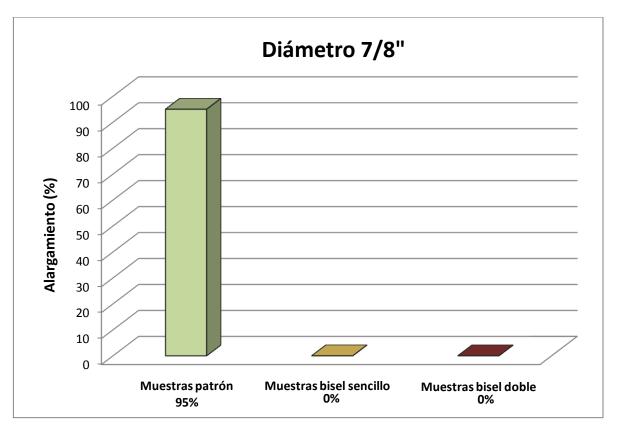

Tabla 4.109 95% del promedio del alargamiento de las muestras patrón versus promedio de alargamiento de las muestras de diámetro 3/4"

95% Promedio alarg.	Promedio alargamiento	Promedio alargamiento
muestras patrón	muestras solape simple	muestras solape doble
14,42	3,47	0,47

Tabla 4.110 Comparación del 95% del promedio del alargamiento de las muestras patrón versus porcentaje de alargamiento de las muestras de diámetro 3/4"

% Muestras	%Muestras	%Muestras	Diferencia en % entre el patrón	
patrón	solape simple	solape doble	y las muestr	as soldadas
95	24,06	3	70,94	91,74

Grafica 4.58 Eficiencia de las muestras respecto al patrón


Tabla 4.111 95% del promedio del alargamiento de las muestras patrón versus promedio de alargamiento de las muestras de diámetro 7/8"

95% Promedio alarg.	Promedio alargamiento	Promedio alargamiento
muestras patrón	muestras bisel sencillo	muestras bisel doble
10.76	0	0
10,70	O	Ĭ

Tabla 4.112 Comparación del 95% del promedio del alargamiento de las muestras patrón versus porcentaje de alargamiento de las muestras de diámetro 7/8"

% Muestras	%Muestras	%Muestras	Diferencia en %	entre el patrón
patrón	bisel sencillo	bisel doble	y las muestr	as soldadas
95	0,00	0,00	95,00	95,00

Grafica 4.59 Eficiencia de las muestras respecto al patrón

Tabla 4.113 95% del promedio del alargamiento de las muestras patrón versus promedio de alargamiento de las muestras de diámetro 1 3/8"

95% Promedio alarg.	Promedio alargamiento	Promedio alargamiento
muestras patrón	muestras bisel sencillo	muestras bisel doble
17,15	0	0

Tabla 4.114 Comparación del 95% del promedio del alargamiento de las muestras patrón versus porcentaje de alargamiento de las muestras de diámetro 1 3/8"

% Muestras	%Muestras	%Muestras	Diferencia en % entre el patrór	
patrón	bisel sencillo	bisel doble	y las muestr	as soldadas
95	0,00	0,00	95,00	95,00

Grafica 4.60 Eficiencia de las muestras respecto al patrón

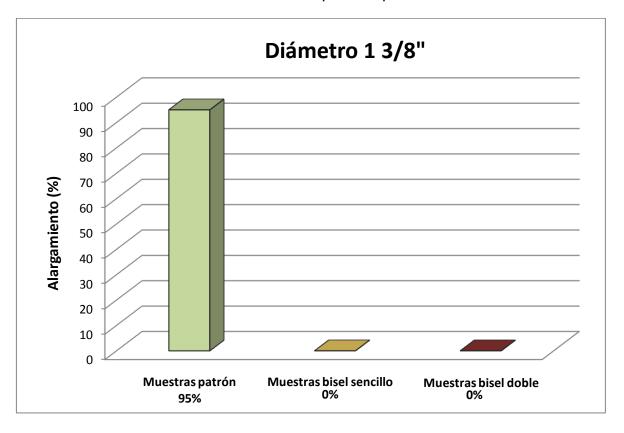


Tabla 4.115 Zona por donde falló la probeta de ensayo

		Z	ona por dono	de falló la muestra
Diámetro	Muestra	Metal Base	Soldadura	Zona afectada por el calor
	N°1 Solape cordón simple	Χ		
	N°2 Solape cordón simple	X		
3/8"	N°3 Solape cordón simple			X
0/0	N°1 Solape cordón doble			X
	N°2 Solape cordón doble			X
	N°3 Solape cordón doble			X
	N°1 Solape cordón simple	Χ		
	N°2 Solape cordón simple			X
1/2"	N°3 Solape cordón simple	X		
1/2	N°1 Solape cordón doble		Х	
	N°2 Solape cordón doble			X
	N°3 Solape cordón doble		Х	
	N°1 Solape cordón simple			X
	N°2 Solape cordón simple	Х		
5/8"	N°3 Solape cordón simple			Χ
3/0	N°1 Solape cordón doble			Х
	N°2 Solape cordón doble		Х	
	N°3 Solape cordón doble		Х	
	N°1 Solape cordón simple		Х	
	N°2 Solape cordón simple			Х
3/4"	N°3 Solape cordón simple			Х
3/4	N°1 Solape cordón doble		Х	
	N°2 Solape cordón doble		Х	
	N°3 Solape cordón doble		Х	

FUENTE: ELABORACIÓN PROPIA

Continuación Tabla 4.115

		Z	ona por don	de falló la muestra
Diámetro	Muestra	Metal Base	Soldadura	Zona afectada por el calor
	N°1 Tope bisel sencillo		Χ	
	N°2 Tope bisel sencillo		Χ	
7/8"	N°3 Tope bisel sencillo		Χ	
170	N°1 Tope bisel doble		Χ	
	N°2 Tope bisel doble		Χ	
	N°3 Tope bisel doble		Χ	
	N°1 Tope bisel sencillo		X	
	N°2 Tope bisel sencillo		X	
1 3/8"	N°3 Tope bisel sencillo		X	
1 3/0	N°1 Tope bisel doble		Χ	
	N°2 Tope bisel doble		X	
	N°3 Tope bisel doble		Χ	
TOTAL	100%	13,89%	55,56%	30,56%

FUENTE: ELABORACIÓN PROPIA

Tabla 4.116 Porcentaje de la zona por donde falló la probeta de ensayo

	Porcenta	je de la zona	donde fallo la muestra (%)	
Muestra	Metal Base	Soldadura	Zona afectada por el calor	Total
Solape cordón simple	41,67	8,33	50,00	100%
Solape cordón doble	0	66,67	33,33	100%
Tope bisel sencillo	0	100,00	0,00	100%
Tope bisel doble	0	100,00	0,00	100%

FUENTE: ELABORACIÓN PROPIA

CAPITULO V

CONCLUSIONES Y RECOMENDACIONES

5.1 Conclusiones

Se determinaron los valores de limite elástico convencional real (fy*), la resistencia a la tracción (fsu*) y el porcentaje de alargamiento en 20 cm de cada barra soldada con junta a solape y barras soldadas con junta a tope a partir de los ensayos de tracción que luego fueron comparados con la norma establecida en los objetivos.

Con los resultados obtenidos de los análisis de los ensayos se concluyó que las barras con menor diámetro como lo son las de 3/8", ½", 5/8" y ¾" cumplieron con el criterio establecido en la norma COVENIN 316 de fy* ≤ 1,25fy, mientras que las barras de mayor diámetro (7/8" y 1 3/8") por el contrario no cumplieron con éste, demostrando así, que las barras soldadas con junta a solape, ya sea cordón simple o cordón doble, se comportaron de una manera más eficiente que las barras soldadas con juntas a tope (bisel sencillo o bisel doble) con respecto al criterio. Esto significa que el 66,67% de los ensayos cumplió con el criterio señalado a diferencia de un 33,33% que no.

Se concluyó que las barras con diámetro menor o igual a ¾" cumplieron con el criterio fsu* ≥ 1, 25 fy* establecido en la norma COVENIN 316, en cambio las barras con diámetro mayor o igual a 7/8", no cumplieron con el antes mencionado. Las barras soldadas con junta a solape con cordón simple o doble, se comportaron de una forma más eficiente que las barras soldadas con juntas a tope con bisel sencillo o doble, con respecto al criterio. Esto significa que el 66,67% de los ensayos cumplió con el criterio señalado a diferencia de un 33,33% que no.

Para la determinación del alargamiento en 20 cm, se tomó como criterio el 95% del promedio de dicho alargamiento de las muestras patrón establecido en la norma.

Para las barras con el diámetro de 3/8", las muestras de junta a solape con cordón simple se encontraban en un 38,72% por debajo del porcentaje de alargamiento requerido, así como las muestras de junta a solape con cordón doble en un 51,11%.

Para las barras de 1/2", las muestras de junta a solape con cordón simple se encontraban en un 29,41% por debajo del porcentaje, así como las muestras con junta a solape con cordón doble en un 52,35% respecto al porcentaje de alargamiento requerido.

Para las barras de diámetro 5/8", las muestras con junta a solape con cordón simple además de las muestras de junta a solape con cordón doble se encontraban por debajo del porcentaje de alargamiento requerido del 20,12% y 42,62% respectivamente.

Para las barras con diámetro de 3/4", las muestras de junta a solape con cordón simple presentaron un 60,33% por debajo del porcentaje de alargamiento requerido, mientras que las muestras de junta a solape y cordón doble no pudieron ser registradas ya que fallaron en la soldadura.

Para las barras con diámetros 7/8" y 1 3/8", se realizaron las medidas correspondientes a los alargamientos, sin embargo, debido al modo de falla de las probetas, no se registraron deformaciones permanentes.

Las muestras con junta a solape con cordón simple fallaron un 41,67% en la zona metal base, un 8,33% en la zona de la soldadura y un 50% en la zona afectada por calor. Por otra parte las muestras de soldadura con junta a solape con cordón doble fallaron en un 66,67% en la zona de la soldadura y un 33.33%

en la zona afectada por calor. En el caso de las muestras de soldadura con junta a tope con bisel sencillo y junta a tope con bisel doble, fallaron en su totalidad en la zona de la soldadura.

Para la determinación del esfuerzo máximo, se tomó como criterio el 95% del promedio de dicho esfuerzo de las muestras patrón establecido en la norma.

Para las barras de diámetro 3/8", las muestras de junta a solape con cordón simple y las muestras con junta a solape con cordón doble superaron la eficiencia de las muestras patrón en un 10,88% y un 9,72% respectivamente.

Para las barras de 1/2", las muestras con junta a solape con cordón simple y las de junta a solape con cordón doble superaron en un 9,25% y en 1,37% respectivamente la eficiencia de las muestras patrón.

Para las barras de diámetro 5/8" las muestras con junta a solape con cordón simple superaron en un 11,95% a la eficiencia de las muestras patrón así como las muestras con junta a solape con cordón doble lo hicieron en un 3,17%.

Para las barras con el diámetro de 3/4", las muestras de junta a solape con cordón simple presentaron un 3,05% de aumento sobre la eficiencia de las barras patrón, las muestras de junta a solape con cordón doble presentaron un 12,39% por debajo de la eficiencia de las muestras patrón.

En las barras de menor diámetro, el material de aporte logró una mayor fusión ya que el área de aplicación era pequeña y lograba penetrar más en el material base. Se notó que la eficiencia de las soldaduras de estas juntas a solapes, tanto simples como dobles, superó el 95% del promedio del esfuerzo máximo de las muestras patrón.

Se observó que a medida que el diámetro de las barras aumentaba, la eficiencia de las muestras disminuía con respecto a la de los patrones de cada

una de ellas, donde a partir del diámetro ¾", las eficiencias estaban por debajo del 95% requerido.

Para las barras de 7/8", las muestras de junta a tope con bisel sencillo presentaron por debajo de la eficiencia de las muestras patrón un 17,67% y las muestras con junta a tope con bisel doble un 27,33% con respecto a la misma.

Para las barras de diámetro de 1 3/8" las muestras con junta a tope con bisel sencillo presentaron un 14,70% por debajo de la eficiencia de las muestras patrón al igual que las muestras con junta a tope con bisel doble con un 34,29%.

5.2 Recomendaciones

Se recomienda realizar ensayos donde se utilicen electrodos E-100XX que son los señalados por la norma AWS D1.4 para el tipo de barras W-70, haciendo énfasis al momento de realizar juntas a tope con bisel sencillo o bisel doble.

Se recomienda realizar ensayos de junta a tope con bisel sencillo y bisel doble con un ángulo menor a 60° entre los biseles.

Se recomienda estudiar el comportamiento de estas barras soldadas con otro tipo de juntas.

Se recomiendan las barras soldadas con junta a solape con cordón simple y cordón doble de los diámetros 3/8", 1/2" y 5/8" para ser utilizadas en construcciones, ya que estas presentaron una mayor eficiencia que la requerida.

CAPITULO VI

BIBLIOGRAFÍA

Andrade de Mattos Dias, L. (2006). Estructuras de Acero, Conceptos, Tecnicas y Lenguaje. Santiago: Zigurate Editora.

Córdova Aponte, J. E. (2007). Elaboración de los proyectos de investigación. Caracas.

Hernandez Sampieri, R., Fernandez Collado, C., & Baptista Lucio, P. (1997). *Metodología de la Investigación.* Mexico D.F.: Mc Graw Hill.

Horwitz, H. (1984). Welding: principles and practice. Pitman Publishing Company.

J.F. Lincoln Arc Welding Foundation. (1971). *Metals and how to weld them.*Cleveland, Ohio.

Martinez, V., & Rodriguez, R. (2008). Evaluación del comportamiento de barras de acero con alto contenido de carbono soldada a tope y solape. Caracas.

Neville, A., & Brooks, J. (1998). *Tecnología del Concreto.* Mexico D.F.: Editorial Trilla.

Norma AWS D1.4 "Structural welding code. Reinforcing Steel", American Welding Society.

Norma COVENIN 316-2000 "Barras y rollos de acero con resaltes para uso como refuerzo estructural".

Norma COVENIN 1753-2006 "Proyecto y construcción de obras en concreto estructural".

Norma COVENIN 299-1989 "Materiales metálicos. Ensayo de tracción".

Norma COVENIN 809-1989 "Aceros. Definiciones y clasificación".

Porrero, J. (2004). Manual del concreto estructural. Caracas: SIDETUR.

Sabino, C. A. (1994). Como hacer una tesis y elaborar todo tipo de escritos. Caracas: Editorial Panapo.

Suarez Ruiz, P.A. (2001). Metodología de la investigación: diseños y técnicas, Universidad pedagógica y tecnológica de Colombia, Santafé de Bogotá.

Universidad Pedagogica Experimental Libertador, Vicerrectorado de Investigación y Postgrado. (2008). Manual de Trabajos de Grado de Especialización y Maestria y Tesis Doctorales. Caracas.

ANEXOS

1.- Proceso de corte de las barras.

2.- Detalle del corte realizado por la máquina.

3.- Escala de las muestras de barras antes de ser soldadas.

4.- Colocación del bisel sencillo antes de soldar.

5.- Detalle del bisel doble.

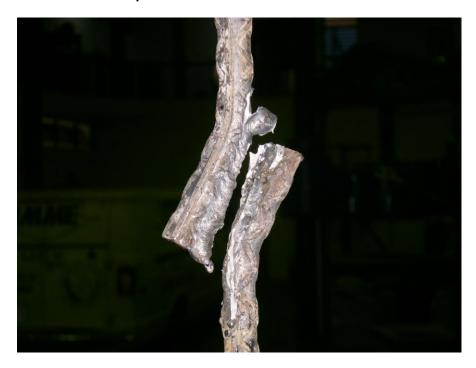
6.- Colocación del bisel doble antes de soldar.

7.- Colocación de las barras antes de ser soldadas a solape con cordón simple.

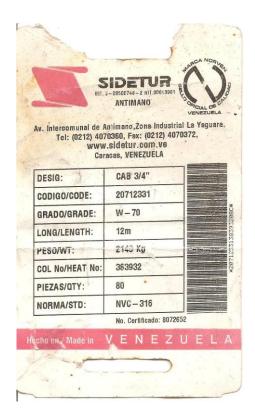
8.- Grupo completo de las muestras antes de ser ensayadas.

9.- Máquina AMSLER utilizada para marcar las barras

10.- Extensómetro.


11.- Prensa Universal Baldwin (capacidad 1.200 – 30.000 kg)

12.- Reloj indicador de carga de la Prensa Universal.


13.- Falla atípica entre las dos soldaduras de la muestra.

14.- Falla en la soldadura de la muestra.

15.- Medición del alargamiento luego del ensayo.

16.- Etiqueta de especificaciones del atado de las barras de acero W

Deformación Unitaria (10 ⁻⁴ cm/cm)													
Esfuerzo Kg/cm²													
Deformación 0.01 mm													
Carga (kg)													

Nº de Laboratorio	
Fabricante:	
Diametro Nominal: Base:	cm
Longitud Muestra:	cm
Peso en el aire:	Kg
Ancho: Espesor:	cm
Area: cm² Carga Máxima:	kg
Esfuerzo Máximo	Kg/cm ²
Alarg. En 20 cm incluye la estricción:	E
% Alarg. En 20 cm incluye la estricción:	%
Alarg. en 10 cm sin incluir la estricción:	E
% Alarg. en 10 cm sin incluir la estricción:	%
Clasificación:	
Doblado en Frío: Diámetro mandril	E
Angulo de Doblado:	grados
Resultado de Ensayo:	
OBSERVACIONES:	
División encargada:	
Técnico: Fecha:	

17.- Modelo de Planilla Facilitada por personal del IMME