
TRABAJO ESPECIAL DE GRADO

SIMULACIÓN Y ESTUDIO DE REDES VEHICULARES DE

FRECUENCIAS MÚLTIPLES

Presentado ante la Ilustre

Universidad Central de Venezuela

por el Br. Rojas M. Corina G.

para optar al Título de

Ingeniero Electricista

Caracas, 2011

TRABAJO ESPECIAL DE GRADO

SIMULACIÓN Y ESTUDIO DE REDES VEHICULARES DE

FRECUENCIAS MÚLTIPLES

Tutor Académico: Dr. Carla-Fabiana Chiasserini

Presentado ante la Ilustre

Universidad Central de Venezuela

por el Br. Rojas M. Corina G.

para optar al Título de

Ingeniero Electricista

Caracas, 2011

! ii

! iii

Corina Gabriela Rojas Martínez

SIMULACIÓN Y ESTUDIO DE REDES VEHICULARES DE

FRECUENCIAS MÚLTIPLES

Tutor Académico en el Politecnico di Torino: Dr. Carla-Fabiana Chiasserini.
Tesis. Caracas. U.C.V. Facultad de Ingeniería. Escuela de Ingeniería Eléctrica.
Ingeniero Electricista. Mención Comunicaciones. Politecnico di Torino. Trabajo
de grado 2011. Hojas 93.

Palabras Claves: Redes vehiculares; Protocolo de señalización; Frecuencias

mútiples; Descarga de contenido multimedia; NS-2 (Network Simulator 2).

Resumen. Se espera que en los próximos años el número de descargas de contenido

multimedia a través de redes vehiculares sea bastante elevado. Por tanto, una gran

variedad de protocolos está siendo desarrollada de manera de maximizar la

flexibilidad y la eficiencia de las redes, tratando de disminuir al máximo los costos. A

fin de mejorar la eficiencia de las descargas, trabajos de investigación realizados

recientemente proponen que el intercambio de mensajes de señalización y control

entre los nodos se realice a través de un canal dedicado, lo que permitiría

descongestionar el canal de tráfico y maximizar el throughput del sistema. Este

trabajo de grado presenta la implementación en el simulador de redes Network

Simulator 2, de un protocolo de control y señalización para la descarga de contenido

multimedia en redes vehiculares. Dicho protocolo emplea bandas de frecuencia

disjuntas; específicamente la banda de 700 MHz, liberada luego del cese de las

emisiones analógicas de los operadores de televisión, y la banda de frecuencia de 5

GHz, que corresponde a la banda especificada en el estándar de la IEEE para el

acceso inalámbrico en el entorno de redes vehiculares. Adicionalmente, distintas

simulaciones de escenarios urbanos fueron realizadas con el fin de evaluar el

rendimiento del protocolo mencionado anteriormente.

! iv

Corina Gabriela Rojas Martinez

SIMULATION STUDY OF MULTIFREQUENCY VEHICULAR
NETWORKS

Academic Advisor: Dr. Carla-Fabiana Chiasserini. Thesis. Caracas. U.C.V.
Faculty of Engineering. School of Electrical Engineering. Electrical Engineer.
Major in Communications. Politecnico di Torino. Final Degree Project 2011.
Pages 93.

Key Words: Vehicular networks; Signaling protocol; Content downloading;

Multifrequency; NS-2 (Network Simulator 2).

Summary. Content downloading in Vehicular Networks is expected to become very

popular among vehicle users, hence a variety of protocols are currently being

developed in order to achieve high performance, maximize the network capacity and

minimize costs in a highly dynamic environment. In order to improve the

downloading efficiency, research works propose that the exchange of signaling

messages between nodes be done over a dedicated channel, since it alleviates the data

channel traffic and maximizes the overall system throughput. Before proceeding to

the practical implementation of any protocol under development, networks simulators

are used as an effective tool to evaluate their performance; then, further

improvements can be made depending on the results obtained. In this sense, network

simulations allow saving time and reducing costs. This thesis presents the

implementation in the Network Simulator 2 of a signaling and information exchange

protocol for content downloading in vehicular networks that uses disjoint frequency

bands. Specifically, the 700 MHz band, which was recently liberated by the

conversion from analog to digital television, and the 5 GHz band, which is the

frequency band specified by the IEEE standard for Wireless Access in Vehicular

Environments. In order to test the aforementioned protocol, several scenarios in an

urban environment were simulated.

! v

ACKNOWLEDGEMENTS

First of all, I praise God the almighty for conceding me the opportunity of completing

this work and giving me the capability and perseverance to proceed successfully. May

his name be exalted, honored, and glorified.

The contributions of different people in their different ways have made this work

possible. I would like to I offer my sincerest gratitude to all of them.

I would like to thank my advisor Dr. Carla-Fabiana Chiasserini, for giving me the

opportunity to work in this topic. For her support, guidance, and advices throughout

the entire project.

I owe my deepest gratitude to the Ph.D. student Massimo Reinieri, for his help and

support throughout the development of this project.

My family for their unconditional support, both emotionally and financially

throughout my entire degree. In particular, I am grateful for the understanding and the

patience shown by my mom and my aunt during the last years. They taught me that “I

can do all things through Christ who gives me strength” Philippians 4:13.

Lastly, I offer my regards and blessings to all of those who supported me in any way

during the completion of this work.

!

!"#!

TABLE OF CONTENTS!
!
!
RESUMEN . iii

SUMMARY . iv

ACKNOWLEDGEMENTS . v

TABLE OF CONTENTS . vi

LIST OF FIGURES . viii

LISTINGS. x

CHAPTER I

INTRODUCTION . 1

CHAPTER II

VEHICULAR NETWORKS . 3

 2.1 Introduction . 3

 2.2 Content Downloading in Vehicular Networks 7

 2.3 Related Work . 8

!
CHAPTER III

SIGNALING AND INFORMATION EXCHANGE PROTOCOL 10

3.1 Network Scenario . 10

 3.2 Protocol Packet Sequence 12

3.3 Signaling Packets Format 15

!

CHAPTER IV

PROTOCOL IMPLEMENTATION IN NS2 21

 4.1 The Network Simulator 2 21

 4.2 Adding Multiple Interface Support 23

!"##!

 4.2.1 Changes on Tcl Code 25

! ! 4.2.2 Changes on C++ code. 26

 4.3 Adding New Modules . 27

 4.3.1 Application Modules 27

 4.3.1.1 Central Controller Application 28

 4.3.1.2 Access Point Application 39

 4.3.1.3 On Board Unit Application 41

 4.3.2 Routing Module . 45
 !
CHAPTER V

SIMULATION RESULTS . 48

 5.1 Simulation Scenario . 48

 5.1.1 Mobility Parameters 48

 5.1.2 Network Parameters 50

 5.2 Small Topology . 51

 5.2.1 Network Scenario 51

 5.2.2 Small Topology Results. 52

5.3 Large Topology . 66

 5.3.1 Network Scenario 66

 5.3.2 Large Topology Results. 67

CHAPTER VI

CONCLUSIONS. 79

BIBLIOGRAPHY . 82

!

!

!

! viii!

LIST OF FIGURES
!
!
2.1 Illustration of a VANET . 6

2.2 WAVE protocol stack . 6

2.3 Control and Service Channel Switching 7

3.1 Ideal Scenario for the radio coverage at 700 MHz and 5 GHz 12

3.2 Real Scenario for the radio coverage at 700 MHz and 5 GHz 12

3.3 Protocol Packet Sequence. 14

4.1 Basic architecture of NS2. 22

4.2 Mobile node architecture . 23

4.3 Modified mobile node architecture with multiple interface support. . . . 24

4.4 Different regions for AP selection 31

4.5 Case in which algorithm number two is employed 32

4.6 Direction approximation . 37

4.7 Case 1 – upper bound distance . 38

5.1 Vehicle cardinal direction. 49

5.2 Small Road Topology . 52

5.3 File size vs number of requests (Small topology) 53

5.4 Cumulative distribution function . 54

5.5 File size vs completion percentage (Small topology) 56

5.6 File size vs download time (Small topology) 58

5.7 File size vs coverage time (Small topology) 60

5.8 File size vs download/coverage time (Small topology). 62

5.9 Average throughput and standard deviation (Small topology). 63

5.10 Throughput over time, best case (Small topology) 64

5.11 Throughput over time, average case (Small topology) 65

5.12 Throughput over time, worst case (Small topology) 65

5.13 Trip time, Coverage time (Small topology) 66

5.14 Large Road Topology . 67

!

! ix!

5.15 File size vs number of requests (Large topology) 68

5.16 File size vs completion percentage (Large topology) 70

5.17 File size vs download time (Large topology) 72

5.18 File size vs coverage time (Large topology) 73

5.19 File size vs download/coverage time (Large topology) 74

5.20 Average throughput and standard deviation (Large topology). 75

5.21 Trip time, Coverage time (Large topology) 76

5.22 Throughput over time, best case (Large topology) 77

5.23 Throughput over time, average case (Large topology) 77

5.24 Throughput over time, worst case (Large topology) 78

!
!

! x!

LISTINGS
!
!
4.1 Pseudo code for the network configuration in the TCL script 26
4.2 Pseudo code for the AP selection . 29

4.3 Pseudo code for the AP selection (second version) 30
4.4 Pseudo code to derive the expected number of chunks. 34

4.5 Pseudo code to compute the AP waiting time 38
4.6 Pseudo code for the AP cache verification . 40

4.7 Pseudo code for resource size obtainment . 42
4.8 Pseudo code for obtaining the BEACON waiting time 43

4.9 Pseudo code for chunk reception . 45
4.10 Pseudo code for interface selection (unicast packets) 47

4.11 Pseudo code for interface selection (broadcast packets) 47
!
!

!

1

CHAPTER I

INTRODUCTION

Development of “smart” vehicles, arising from advances in wireless

communication and computing technologies, is becoming a reality. The aim of

equipping vehicles with wireless communication devices and computing technologies

is mainly to provide car safety, improve driving efficiency and increase passengers’

comfort. In this sense, a wide range of applications is currently being developed,

among which the following can be mentioned: collision avoidance warnings,

emergency messages dissemination, real-time traffic conditions and infotainment

content dissemination. It is expected that numerous vehicle passengers will be

interested in downloading best-effort traffic from the Internet. Thus, development of

efficient protocols in order to achieve a high performance is required. Since this

technology is still under development, those protocols have to be tested using

networks simulators in order to evaluate their performance before proceeding to the

practical implementation.

In cognitive radio networks, nodes are equipped with radios capable of

sensing the available spectrum band, selecting a frequency band, and using it in an

efficient way. Moreover, higher network throughput can be achieved using multiple

channels rather than using a single channel, since multiple transmissions can take

place at the same time without interfering with each other. So, equipping vehicles

with cognitive radios and developing protocols that use multiple channels is seen as a

feasible solution to achieve high performance.

This thesis presents the implementation in the Network Simulator 2 (NS2) of

a signaling and information exchange protocol for content downloading in vehicular

networks that uses disjoint frequency bands. Namely, the 700 MHz band, which

presents very favorable propagation characteristics and was recently liberated by

conversion from analog to digital television, and the 5 GHz band, which is the

!

! 2!

frequency band specified by the IEEE standard for Wireless Access in Vehicular

Environments (WAVE). The use of disjoint frequency bands, that is, the transmission

of signaling messages over an alternative frequency alleviates the data channel traffic

and allows improving the downloading performance. Additionally, due to the

importance of signaling, it is fundamental to provide good radio coverage to

guarantee the exchange of the signaling messages. So, the fact that the 700 MHz band

offers a significantly larger radio coverage area than the 5 GHz band, for the same

transmission power, is definitely an advantage. Given that network simulations allow

testing new communication protocols and predicting the behavior of network

systems, several scenarios in an urban environment were simulated. The rest of the

thesis is organized as follows. A general discussion of the topic and previous works

are presented in Chapter 2. The signaling and information exchange protocol for

content downloading is described in Chapter 3. The implementation of the latter in

NS2 is explained in Chapter 3. Chapter 4 contains the description of the network

scenarios employed in order to test the implemented protocol with their respective

simulation results. Finally, the conclusions are presented in Chapter 6.

!

3

CHAPTER II

VEHICULAR NETWORKS

Intelligent Transportation Systems (ITS) are expected to significantly increase

safety and productivity of existing transportation infrastructure, in this sense,

vehicular networks are emerging as a new network environment for ITS. A general

description of vehicular networks including related research work is presented as

follows.

2.1 Introduction

Vehicular networking is receiving plenty of attention from the academic

research community and the industry since it is considered the foremost technological

solution that will consent improving the efficiency and safety of modern

transportation systems. A large number of applications that are expected to impact

and transform the way vehicular transportation is conceived are currently being

discussed and developed. These innovative applications can be classified into three

main categories:

• Safety-Oriented Applications: In this type of applications the main emphasis is

centered on disseminating safety critical alerts to neighboring vehicles. Examples

include collision alerts, road conditions warnings, traffic signal violation warnings,

curve speed warnings, and pre-crash sensing.

• Convenience-Oriented Applications: This kind of applications mainly support

traffic management and seek to enhance traffic efficiency by distributing real-time

information about the road situation and by providing assistance to the driver.

!

!4!

Examples include enhanced route guidance, green light optimal speed advisory, and

lane merging assistant.

• Non-safety-Oriented Applications: In this case the emphasis is on the availability of

high bandwidth Internet connectivity that can allow users of vehicular networks

accessing emails, browsing the web, streaming audio and video among others

possibilities.

Vehicular ad hoc networks (VANETs) belong to a general class of mobile ad

hoc communication networks. VANETs consist of on-board units (OBUs) built into

vehicles and roadside units (RSUs) deployed along the roads. As a result, two types

of communication are possible, i.e., vehicle-to-vehicle (V2V) communication and

vehicle-to-infrastructure (V2I) communication. An illustration of a functional

VANET is presented in Figure 2.1.

Through V2V or V2I communication, drivers can be informed of critical

traffic information such as hazardous road conditions and accident sites. With better

knowledge of traffic conditions, the problem of accidents can be mitigated. Traffic

monitoring and management can also be facilitated by vehicular communications so

as to elevate traffic flow capacity and optimize vehicle fuel consumption.

Additionally, convenience and commercial in-vehicle applications are envisioned to

be supported in future automobiles, that is, live video streaming, file sharing, mobile

office, advertisement, gaming, remote vehicle diagnostics, traffic jam notification,

parking lot availability and automatic tolling among others. These on-the-road data

and entertainment services can greatly increase vehicle passengers’ productivity,

satisfaction and comfort. In short, communication-based automotive applications are

promising in providing safer and more efficient use of vehicles [1].

In order to provide wireless access in vehicular environments, the IEEE has

developed a system architecture known as WAVE. Jointly, IEEE 802.11p (modified

version of the IEEE 802.11a) and IEEE 1609.x (specifications that cover additional

layers of the protocol suite) are called Wireless Access in Vehicular Environments

!

!5!

(WAVE) standards. This standards aim to facilitate the provision of wireless access

in vehicular environments. WAVE protocol stack is presented in Figure 2.2.

The 802.11p PHY layer uses an OFDM system that allows providing wireless

communications over distances up to 1000 m, while taking into account certain

aspects such as the high speed of vehicles, the extreme multipath environments, the

multiple overlapping ad hoc networks and different possible scenarios (rural,

highway, and urban). Operating in seven 10 MHz-wide channels in the 5.9 GHz

frequency band, it allows data payload communication rates of 3, 4, 5, 6, 9, 12, 18,

24, and 27 Mbps. The exchange of safety messages is made through the Control

Channel (CCH) whereas the non-safety data can be exchanged over one or two of the

remaining six channels, i.e., the Service Channels (SCHs). Figure 2.3 describes the

channel coordination in VANETS.

The MAC layer, which is based on IEEE 802.11p and 1609.4, can be divided

into a management plane called MAC Layer Management Entity (MLME) and a data

plane. Since all vehicles monitor the CCH at a given instant of time in order to

exchange safety messages and then switch to the SCH, an entity has to coordinate the

switching; it is the MLME that has the responsibility of accomplishing that task. On

the other hand, the data plane handles the IP data frames (IPv6) and the WAVE Short

Message Protocol (WSMP) frames. The Enhanced Distributed Channel Access

(EDCA) mechanism, which supports priority queuing (four access categories with

independent channel access), is employed to coordinate the medium access.

All nodes are equipped with a GPS and are synchronized through the

reception of the UTC time reference every second (1PPS). CCH and SCH intervals

are defined with respect to the universal time reference.

Organized WAVE units, which are called WBSSs (WAVE Basic Service

Sets) and consisting of merely OBUs or a combination of OBUs and one RSU,

exchange information through the SCHs. On the other hand, unorganized WAVE

units, that is, units operating independently, exchange information over the CCH. By

being part of a WBSS, WAVE units can connect to a wide area network (WAN).

!

!6!

Figure 2.1 Illustration of a VANET

Figure 2.2 WAVE protocol stack

!

!7!

Figure 2.3 Control and Service Channel Switching

2.2 Content Downloading in Vehicular Networks

Services based on content downloading in vehicular networks are expected to

become very popular among users of vehicular networks. Applications that run on top

of TCP/IP stack, such as downloading enhanced local maps including current traffic

conditions, touristic information or multimedia files, obtaining nearest points of

interest localization or current weather information, interactive communication,

online gaming, are some of the applications currently being developed. The principal

aim of these applications is to improve passengers’ comfort and traffic efficiency.

However, this type of applications cannot interfere with safety applications, that is

why the traffic is prioritized and separate physical channels are used as mentioned

previously.

!

!8!

Recent research works have focused on content distribution due to the

remarkable increase in the number of multimedia applications in the last few years.

Vehicle passengers interested in obtaining extremely large files such as videos,

require either intermittent or continuous Internet connectivity. As a consequence, a

pure V2V based solution is not feasible; a V2I communication is definitely required.

However, issues related to bandwidth sharing have to be taken into account since a

V2I solution based on 2G/3G networks would dramatically reduce the available

bandwidth per user. The adoption of smart phones and tablets, i.e., devices allowing

content downloading, is sharply increasing and the implementation of vehicular

communication will definitely saturate existing networks, that is why a parallel-

dedicated infrastructure has to be deployed in order to satisfy the constant increasing

bandwidth demand. Furthermore, as massive file transfers are neither scalable nor

possible through the existing 2G/3G infrastructures due to high costs, both at network

and hardware level, V2I communication, which is based on high-throughput

Dedicated Short-Range Communication (DSRC) technologies, is expected to permit

users to download very large files. Moreover, recent works demonstrate that the V2V

communication allows exploiting cooperation between vehicular users and thus

improves the downloading performance.

2.3 Related Work

Current works on content downloading in vehicular networks address the

most prominent aspects of the process including the road deployment of Access

Points [5]- [7], the performance evaluation of V2I communication [8] and the

exploitation of specific V2V transfer paradigms [9] [10].

In [4], the aforementioned factors affecting the performance of content

downloading are treated and studied jointly. Assuming ideal conditions, i.e.,

considering vehicular trajectories as known, perfectly scheduled data transmissions,

!

!9!

and treating the downloading process as a mixed integer linear programming (MILP)

max-flow problem, two crucial issues were resolved. Namely, obtaining the

maximum downloading throughput theoretically achievable through DSRC-based

V2I-V2V communication in different mobility scenarios, and the corresponding key

factors allowing such a performance (i.e., AP deployment, V2I-V2V transfer

paradigms, technology penetration rate).

A network composed of vehicular users interested in downloading best-effort

traffic from the Internet through fixed roadside APs was considered. All data transfer

paradigms were taken into account. That is, the direct transfer resulting from an

exclusive communication between a vehicle and an AP, the transfer resulting from

traffic relayed through a multi-hop path between an AP and a downloader created by

one or more nearby vehicles, and finally transfer resulting from vehicles storing,

carrying and eventually delivering the data to the downloader or to another relay

vehicle presumed to encounter the downloader in a shorter time.

The max-flow problem previously mentioned was solved using a graph

representation capturing the space and time network dynamics, which was derived

analyzing realistic vehicular traces and its solution enabled the identification of the

key factors sought. The obtained results indicated that the location of APs yielding

the best performance corresponds to the areas presenting the highest vehicular density

over time. The optimal transfer paradigm found was the carry and forward limited to

two hops, as a consequence, researchers should be motivated to develop protocols

that seek to exploit carry-and-forward, single-relay data delivery. Finally, the areas

that experienced more efficient content downloading were the ones presenting a

higher density (i.e. urban areas).

!

10

CHAPTER III

SIGNALING AND INFORMATION EXCHANGE PROTOCOL

Content downloading in vehicular networks is expected to be very popular

among vehicle users, hence a variety of protocols are being developed and tested in

order to achieve high performance. The IEEE standard for Wireless Access in

Vehicular Environments (WAVE) specifies that the frequency band allocated for

vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication is

centered at 5.9 GHz. Research works currently under development propose to

transmit signaling and information messages over a different frequency band to

improve downloading efficiency. As a consequence, a signaling and information

exchange protocol for content downloading in vehicular networks using disjoint

frequency bands is currently being evaluated. A detailed description of this protocol

is presented as follows.

3.1 Network Scenario

Vehicle passengers attempting to download very large files require either

intermittent or continuous Internet connectivity; employing the existing 2G/3G

networks would dramatically reduce the available bandwidth per user. Hence, to

support the mass of vehicular users, which are expected to download large amounts

of delay-tolerant data, Dedicated Short-Range Communication (DSRC) through V2I

communication is seen as the best solution. As a consequence, an urban scenario

where vehicular users are able to download large files from roadside Access Points

(APs) has been considered; vehicular users request a certain resource to a Central

! 11!

Controller (CC), which retrieves the requested file through one or several APs

deployed along the roads. Furthermore, the conversion from analog to digital

television has liberated the nowadays highly desired 700 MHz band. The latter

presents very favorable propagation characteristics that offer significantly higher

coverage for the same transmission power, allowing the use of fewer infrastructures.

For this reason, the aforementioned band was selected to transmit the signaling

messages.

Nodes are equipped with multiple radio interfaces. Vehicles comprise two

radios; a radio operating in the 700 MHz frequency band that allows the exchange of

signaling packets with the CC, and a radio interface operating in the 5 GHz frequency

band, through which vehicles receive data packets from the APs. The CC has a radio

interface operating in the 700 MHz frequency band to exchange signaling packets

with the vehicles, and dedicated wired links are set up to connect each AP to the CC.

APs are equipped with a radio interface operating in the 5 GHz frequency band

through which data packets are sent to the vehicles.

 The ideal scenario is shown in Figure 3.1. The radio coverage at 700 MHz is

supposed to be continuous over all the test-bed area. The presence of asymmetric

links due to different antennas and powers in the vehicles and APs does not allow

large radio coverage at 700 MHz. Thus, it is necessary to use a large number of APs

offering connectivity at 700 MHz to provide good radio coverage for the vehicles.

The real scenario for the radio coverage at 700 MHz is shown in Figure 3.2.

Even if the radio coverage at 700 MHz might not be continuous, the following

conditions always occur:

• Radio coverage at 5 GHz implies radio coverage at 700 MHz.

• Radio coverage at 700 MHz does not imply radio coverage at 5 GHz.

• Absence of radio coverage at 700 MHz implies absence of radio coverage at 5

GHz.

! 12!

Figure 3.1: Ideal Scenario for the radio coverage at 700 MHz and 5 GHz

Figure 3.2: Real Scenario for the radio coverage at 700 MHz and 5 GHz

3.2 Protocol Packet Sequence

When a vehicle is interested in downloading a given file, it sends a

VEHICLE REQUEST packet, which contains the URL of the requested resource, to

the CC through the 700 MHz interface. Subsequently, the CC processes the request,

selects the most appropriate AP to retrieve the resource to the vehicle and replies with

a VEHICLE CONFIGURATION packet, which in turn includes the coordinates of

Signalling and Information Exchange Protocols
using disjoint frequency bands at 700 MHz and 5 GHz

March 24, 2011

Figure 1: Ideal scenario

Figure 2: Real scenario for the radio coverage at 700 MHz

The ideal scenario is shown in Figure 1. Here, the radio coverage at 700 MHz is supposed to be
continuous over all the testbed area.

The presence of asymmetric links, due to different antennas and powers in the vehicles and
RSUs, does not allow large radio coverage at 700 MHz. Thus, it is necessary to use more
RSUs offering connectivity at 700 MHz in such a way to provide a good radio coverage for the
vehicles. The real scenario for the radio coverage at 700 MHz is shown in Figure 2.
Even if the radio coverage at 700MHzmight be not continuous, the following conditions always
occur:

• where there is radio coverage at 5 GHz, there is also radio coverage at 700 MHz

• radio coverage at 700 MHz does not imply radio coverage at 5 GHz

• area with nor 700 MHz, neither 5 GHz coverage might exist.

1

! 13!

the selected AP, the unique identifier for the resource and the channel identifier for

the radio interface at 5 GHz among others. After the CC has retrieved the resource, it

sends an INFORMATION STATUS packet to the vehicle specifying the total number

of chunks in which the resource will be fragmented. Additionally, it sends an AP

CACHING packet to the selected AP through the direct link established between

them in order to inform the latter about the request made by the vehicle. Next, the AP

retrieves a fragment of the resource from the CC; the fragment size is selected by the

CC and depends on parameters such as the vehicle speed, the location of the vehicle

among others. Once the vehicle receives a BEACON from the AP, it sends a GO

packet to the AP through the data channel, then, if no data packet is received, the GO

packet is sent again after a time out. When the AP has entirely retrieved the fragment

and receives a GO packet, it starts sending chunks to the vehicle and after having sent

a Group Of Chunks (GOC) that is, a predetermined number of chunks (e.g. ten

chunks), it waits for an acknowledgement from the vehicle, i.e., a VEHICLE DATA

ACK packet. When the vehicle gets out from the transmission range of the AP, or

once it has received all chunks, the AP sends an AP REPORT to the CC in which it

specifies the number of chunks acknowledged by the vehicle. In case the vehicle has

not received the entire resource, the CC identifies the next AP to which the vehicle

will connect and the previously described packet sequence is repeated until the

vehicle retrieves the entire resource. An illustration is presented as follows.

! 14!

Figure 3.3: Protocol Packet Sequence

Figure 3: Protocol packet sequence8

! 15!

3.3 Signaling Packets Format

A detailed description of the signaling packets is presented as follows.

3.3.1 VEHICLE REQUEST

 This packet is sent by the vehicle to the CC in order to obtain a given resource.

It is sent in the 700 MHz frequency band as a unicast message. The packet fields are

described as follows:

• uint8_t type: is set to 0x01 for VEHICLE REQUEST messages.

• uint8_t version: contains the identifier of the current protocol version.

• struct ether_addr MACaddr: contains the MAC address of the vehicle. It is used as

a unique identifier.

• uint16_t queryLen: contains the size of the following query fields expressed in

byte. The possible values are between 0 and 65535.

• char* query: contains the URL of the resource requested by the vehicle.

3.3.2 VEHICLE CONFIGURATION

 This packet is sent to the vehicle by the CC to setup the incoming vehicle

communication. It can be seen as the reply to the VEHICLE REQUEST message and

is sent in the 700 MHz frequency band as a unicast message. The packet fields are

described as follows:

• uint8_t type: is set to 0x02 for VEHICLE CONFIGURATION messages.

• uint8_t version: contains the identifier of the current protocol version.

• struct in_addr IPvehicle: is the IP address of the radio interface at 5 GHz in the

vehicle. This field is used in both Ad-Hoc and AP modes to setup the IP address in

the vehicle.

• struct in_addr netmask: is the IP netmask of the radio interface at 5 GHz in the

! 16!

vehicle. This field is used in both Ad-Hoc and AP modes.

• struct in_addr IPdgw: is the IP address of the gateway for the radio interface at 5

GHz in the vehicle. This field is used only in Ad-Hoc configuration.

• struct sockaddr_in proxy: are the proxy parameters for the radio interface at 5 GHz

in the vehicle. This field is used only in Ad-Hoc configuration.

• double latitudeAP

• double longitudeAP

• uint16_t radius: is the AP coverage radius expressed in meters.

• uint8_t mode: is the operational IEEE 802.11 mode. “0” means STA, while “1”

means AD-HOC.

• uint8_t channel: is the channel identifier of the radio interface at 5 GHz. This field

is used in both Ad-Hoc and AP modes.

• char bssid[33]: is the BSSID of the network which the vehicle is willing to join.

• uint8_t encryption: the values are contained in the set (0 “none”, 1 “wep64”, 2

“wep128”, 3 “wpa”, 4 “wpa2”).

• char key[20]

• uint32_t IDinfo: is the unique identifier of the resource requested by the vehicle.

3.3.3 AP CACHING

 This packet is sent by the CC to the AP and travels on the direct link between

the AP and CC. This direct link uses neither the 700 MHz frequency band nor other

frequencies already exploited for data exchange. It is a unicast message. The packet

fields are described as follows:

• uint8_t type: is set to 0x03 for AP CACHING messages.

• uint8_t version: contains the identifier of the current protocol version.

• struct in_addr IPvehicle: is the IP address of the radio interface at 5 GHz in the

Vehicle. This field is used only in Ad-Hoc configuration to know the IP address of

the vehicle.

! 17!

• struct in_addr netmask: is the IP netmask of the radio interface at 5 GHz in the

Vehicle. This field is used only in Ad-Hoc configuration.

• struct in_addr IPdgw: is the IP address of the gateway of the radio interface at 5

GHz in the vehicle. This field is used only in Ad-Hoc configuration.

• uint8_t mode: is the operational IEEE 802.11 mode. “0” means STA, while “1”

means AD-HOC.

• uint8_t encryption: the values are contained in the set (0 “none”, 1 “wep64”, 2

“wep128”, 3 “wpa”, 4 “wpa2”).

• char key[20]

• uint32_t dataLen: is the length of the data that the AP is waiting to receive from the

CC. It is expressed in bytes.

• uint32_t IDinfo: is the unique identifier of the resource requested by the vehicle.

• uint16_t validity: is the validity timeout for the cached data expressed in minutes.

• uint16_t ExpectedChunks: is the number of chunks in which the data must be

divided before sending it to the vehicle.

• uint16_t ServerURLlength: contains the size of the server URL field expressed in

bytes.

• char* ServerURL: is the http server URL where the AP can retrieve the fragment

of the resource requested by the vehicle.

3.3.4 INFORMATION STATUS

 This packet is used by the CC to notify to the vehicle the number of chunks that

will build the required resource. It travels in the 700 MHz frequency channel and is a

unicast message. The packet fields are described as follows:

• uint8_t type: is set to 0x04 for INFORMATION STATUS messages.

• uint8_t version: contains the identifier of the current protocol version.

• uint32_t IDinfo: is the unique identifier of the resource requested by the vehicle.

• uint16_t TOTchunks: is the total number of chunks in which the data is split.

! 18!

• uint32_t TOTsize: is the total size of the resource requested by the vehicle. It is

expressed in bytes

3.3.5 VEHICLE BEAT

 This packet is inspired by the ETSI CAM message and is periodically emitted

by the vehicle (e.g., every second). It is a broadcast message sent in the 700 MHz

frequency channel. The CAM message, defined by ETSI and sent every 100 ms, has

the following fields:

• Trajectory

• Velocity

• Vehicle Type

• Vehicle status

The VEHICLE BEAT packet fields are described as follows:

• uint8_t type: is set to 0x05 for VEHICLE BEAT messages.

• uint8_t version: contains the identifier of the current protocol version.

• struct ether_addr MACaddr: contains the MAC address of the vehicle. It is used as

a unique identifier.

• double latitude

• double longitude

• uint16_t speed

• uint16_t direction

• uint16_t info: contains the identification code about the event to advertise (e.g., 0:

traffic jam, 1: accident, 2: road work, etc.).

• char bssid[33]: It contains the BSSID of the network reachable through the 5 GHz

radio interface.

! 19!

3.3.6 AP REPORT

 This packet is sent by the AP to the CC when the vehicle disconnects or ends

the downloading of the resource. It travels on the direct link between the AP and the

CC and it is a unicast message. The packet fields are described as follows:

• uint8_t type: is set to 0x06 for VEHICLE REPORT messages.

• uint8_t version: contains the identifier of the current protocol version.

• struct ether addr MACaddr: contains the MAC address of the vehicle. It is used as

a unique identifier.

• uint32_t IDinfo: is the unique identifier of the resource requested by the vehicle.

• uint16_t lastChunk: is the identifier of the last chunk correctly received by the

vehicle (i.e. in order). The CC will send chunks to the new AP starting from this

chunk ID.

3.3.7 VEHICLE DATA ACK

 This packet is sent from the vehicle to the AP currently serving it. It provides

ACK on the received chunks to allow retransmission of a single or a group of chunks

and it is sent in the 5 GHz data channel. It is a unicast message. The packet fields are

described as follows:

• uint8_t type: is set to 0x07 for VEHICLE DATA ACK messages.

• uint8_t version: contains the identifier of the current protocol version.

• uint32_t IDinfo: is the unique identifier of the resource requested by the vehicle.

• uint16_t IDchunk: is the unique identifier of the last correctly received chunk (or

GOC, i.e., Group Of Chunks).

! 20!

3.3.8 GO

 This packet is sent from the vehicle to the AP that will be serving it. It is sent in

the 5 GHz data channel and is required by the AP to start the data transmission

towards the vehicle. It is a unicast message. The packet fields are described as

follows:

• uint8_t type: is set to 0x08 for GO messages.

• uint8_t version: contains the identifier of the current protocol version.

• uint32_t IDinfo: is the unique identifier of the resource requested by the vehicle.

!

21

CHAPTER IV

PROTOCOL IMPLEMENTATION IN NS-2

In order to implement and test the signaling and information exchange

protocol described in the previous Chapter, new application and routing modules

were added to the simulator. Since the protocol requires having multi-interface nodes,

some changes to the source code of ns2 were made in order to support multiple

interfaces. The modifications made are presented after the description of the

simulator as follows.

4.1 The Network Simulator 2

The Network Simulator 2 is an open-source event-driven simulator that was

developed at the UC Berkeley University. It was conceived to predict the behavior of

large-scale and complex network systems as well as to implement and test

communication protocols. Several modules for simulating network components such

as transport layer protocols, routing protocols, applications and multiple forms of

multicast and propagation models are supported. It is the most widely used open-

source network simulator since its modular nature offers flexibility and allows

extending it. That is to say, the incorporation of new modules permits expanding its

scope in order to implement and test new protocols or propagation models.

Consequently, this simulation tool, which has gained interest from academia and

industry, is under permanent investigation and is being enhanced constantly.

NS2 is written in C++ and provides a simulation interface through OTcl

(Object-Oriented Tool Command Language). The main NS program simulates a

!

! 22!

given communication network according to the parameters specified in a script

created by the user in OTcl. All elements are developed as classes in an object-

oriented approach. An interface called TclCL has the task of linking together the class

hierarchies of both languages. Variables in the OTcl domain do not enclose any

functionality and are mapped to C++ objects, which do indeed contain given

functionalities. The following Figure describes the basic architecture of NS2.

Figure 4.1 Basic architecture of NS2

(Adapted from [11], p.20)

In order to add new application modules to the simulator, knowledge of the

node structure and an understanding of the packet forwarding mechanism are needed.

The structure of a mobile node in ns2 is presented in Figure 4.2. Different modules

represent different abstract layers such as the physical layer, the MAC layer, the link

layer, the network layer and the application layer.

The simulator has a class called NsObjet whose instantiations (i.e., objects

from derived classes) are able to forward packets. The aforementioned class has a

pure virtual function (called recv) that is overwritten by all its derived classes and

indicates the way packets are received. The packet forwarding mechanism is then

modeled by “receiving a packet” instead of sending it since each NsObject, which

stores a pointer target_ to its downstream object, forwards a packet by invoking

target_->recv(). Examples of NsObjects are the Agent objects, Queue objects

and Connector objects among others.

!

! 23!

Figure 4.2 Mobile node architecture

(Adapted from [12], p. 9)

4.2 Adding Multiple Interface Support

Several works proposing different ways of enabling multiple interface

support in the ns2 framework have been published in the last few years as the

presence of multi-interface devices is becoming more and more common nowadays.

In [12], R. Agüero and J. Pérez provide a solution that is more flexible than other

proposals. That is, nodes in a same scenario can have a different number of interfaces

and can be connected to a predefined set or subset of wireless channels; additionally,

the backward compatibility remains ensured. The aforementioned proposal has been

adopted and the major changes made to the simulator are described as follows.

 The architecture of the multi-interface mobile node is presented in Figure

4.3. Unlike the original mobile node, it is constituted by a number of replicas of the

Chapter 2. Multiple Interface Model

Interface
Queue

Link Layer

MAC

Network
Interface

ARP

Propagation
Model

Channel

Application

Routing
Agent

255

Figure 2.1: MobileNode Architecture

thus giving a complete flexibility to the user. We understand that this level of flexibility,

that needs to be accomplished from the scenario script, would be really important so as to

evaluate different types of situations.

In addition, our intention is that the modified model could be used with any of the existing

(or new) routing agents (but the ones based on the SRNode), but it would also be nice being

able to maintain the legacy behavior of the simulator, so that already existing scripts would

still be valid. One of the drawbacks that we observed on the previous works on this aspect

is that they usually force the simulations to use their particular characteristics or, otherwise,

the simulator will not probably work properly.

Taking all the above into consideration we can summarize the requirements we would like

to cope with as follows:

• [REQ.1] The number of channels in a particular scenario should be modifiable.

9

!

! 24!

lowest modules equal to the number of interfaces. However, the “Propagation Model”

module is not replicated since the authors made the assumption of working only with

IEEE 802.11 networks. When a packet is received, it travels through the different

modules of the corresponding receiving interface up to the “Address Multiplexer”,

which has the task of delivering it to the proper agent (routing or application agent).

Conversely, when packets are generated by the application agent, it is the routing

agent that directs them to the appropriate interface.

Figure 4.3 Modified mobile node architecture with multiple interface support

(Adapted from [12], p. 11)

The Tcl implementation and the C++ files of the simulator were modified in order to

obtain the previously described behavior.

Chapter 2. Multiple Interface Model

Iface 0

Application

Routing Agent
255

Channel 0
Channel 1

Channel 2

Propagation
Model Iface 1 Iface 2

Figure 2.2: Modified MobileNode architecture, with multiple interface support

11

!

! 25!

4.2.1 Changes on Tcl Code

Regarding the Tcl code, in the ns-lib.tcl file, two functions (called

procedures) were modified and four new procedures were created. Another file that

had to undergo some changes was the ns-mobilenode.tcl file, in which three

procedures were modified.

The new procedure change-numifs, which was added to the ns-

lib.tcl file, is called from the scenario script right before the creation of each

node and specifies the number of interfaces. Another procedure that has to be called

before the creation of nodes but after the creation of the channels is the add-

channel. The last one requires two arguments, that is, the channel and the index of

the interface that will be associated to it. The added procedure ifNum called within

the node-config command accepts as an argument the maximum number of

interfaces a node is expected to have. As a result, node-config had to be

modified in order to support the added parameter. The pseudo code for the new

network configuration script is provided below.

���������−�������

��������������������������“max_�������������������”

�����������������������������

�����������������������������������

��������������“������������”��
�����������	������������l��

������������������

���������������������������������

���������������!�������“�������������������”��

������������!�������“��������������”�������“������������”��

!

! 26!

������
������
�����“
����	
���”����
���
�����

Listing 4.1 Pseudo code for the network configuration in the TCL script

The last procedure created, get-numifs is not called from the scenario

script and allows accessing the number of interfaces (stored in a variable called

numifs_) from the different parts of the Tcl architecture. Lastly, create-

wireless-node also experienced changes so as to append to each node the chain

of modules forming an interface according to the value of numifs_. In order to

obtain so, a “for loop” was incorporated to the procedure.

 The add-target and add-target-rtagent procedures, included in

the ns-mobilenode.tcl file, were modified to attach the routing agent with the

corresponding link layer entities. Finally, the last modification was done to add-

interface in order to create one ARP table per interface.

It is worth mentioning that before the creation of a node, the variables

numifs_ and numIfsSimulator in ns-lib.tcl and in ns-

mobilenode.tcl respectively, are checked in order to guarantee the original

behavior of the simulator in case the multi-interface support is not used; If the

variables have a valid value the new code is executed, otherwise the original code is

executed.

4.2.2 Changes on C++ Code

As mentioned previously, few changes had to be done to the C++ files. The

modified C++ classes were mobilenode, channel and mac-802_11. In the

mobiblenode class, the information of the nodes communicating over a given

channel is included in a list, which is handled by two pointers, one points to the

previous node on the list the other to the next node on the list. When dealing with

!

! 27!

several channels, an array is required instead of a simple variable. Hence, two arrays

of pointers with a number of elements equal to the number of interfaces were created

in order to manage the nodes of a particular channel in an easier way. According to

the authors, this change provokes a strange response from the simulator when the

inline method getLoc is called; therefore, they encourage lectors to declare the

previously method inside the body instead.

 The aforementioned pointers are also used inside the channel class.

Hence, they were replaced by the arrays taking into account that their index have to

correspond to the channel itself, so this->index()was used as index.

 Finally, the last change performed to the C++ code (mac-802_11 class)

was needed to properly identify and to register the interface from which packets are

received so that the routing agents are able to manage packets correctly.

4.3 Adding New Modules

4.3.1 Application Modules

Due to the modular nature of the ns2, an application had to be created for

each type of node participating in the network scenario. In each application, the

simulator function process_data() was overwritten according to the type of

node since each one of them receives a particular type of message. Regarding the

different packets that have to be delivered, a function send_msgName() was

created for each type of message in each application. In each one of those functions,

an object packet is created, its pertinent fields are filled (e.g. packet ID, source-

destination address) and it is handled over to the downstream agent. The object

packet abovementioned is an instantiation of the class OBUmsg, which was created to

represent all packets used by the protocol. A subset of the fields described in the

previous Chapter is declared as members of the OBUmsg class, but the initialization

!

! 28!

of each depends on the type of packet being created. Since a single packet class was

created to represent all types of packets, which have different sizes, the “real” size of

each packet is passed as a variable to the sendto() function. The aforementioned

function, called by the send_msgName() function, is responsible of handling over

the packets to the transport agent and is provided by the class MessagePassing,

whose instantiation corresponds to the transport agent employed. This transport

agent, unlike the TCP and UDP agents, is able to send packets to any node in the

network without the need of creating a previous “connection” between each pair of

communicating nodes. The packets are sent to the address passed as a variable to the

sendto() function.

Besides performing the functions of sending and receiving packets, other

tasks are performed by the different applications. The tasks carried out by the created

applications are described in the subsequent sections.

4.3.1.1 Central Controller Application

The objective of the CC is to handle all requests made by the OBUs. Once a

VEHICLE REQUEST packet is received, an ID number is generated to uniquely

identify the request. When the CC receives the first request, it extracts a random

number from a given interval and that number is assigned as ID. To obtain the

subsequent IDs, the previous ID is incremented by one. For a given request, the ID

number is contained in all packets subsequent to the VEHICLE REQUEST packet.

 The selection of the Access Point (AP) responsible of providing the chunks

to the OBU is made taking into account the position of the vehicle at the moment that

the request is made, its speed (OBUspeed variable) and the direction in which it is

travelling (directionOBU variable). The variables OBUspeed and

directionOBU are updated each time a VEHICLE BEAT packet is received. The

CC stores the coordinates of each AP in a bi-dimensional array. Each entry of the

!

! 29!

array contains three elements, namely, the AP’s longitude, the AP’s latitude and the

number of OBUs that it is serving. Evidently, the number of entries is equal to the

number of APs deployed inside the topology. A pseudo code describing the employed

algorithm is presented as follows.

�

��)#��$�*
�

• �#)��+#'&���
��')+"����*+���',+"�')���*+�

• �#*+�&����������#&�%�
� �

• �#&��#*+�&����#&�%��-�)#��$��#&#+#�$$/�*�+�.#+"���-�)/�$�)!��-�$,���

• ��!#'&*
�������	��*����#!,)��	�	��

�

 ')����"����()�*�&+�#&�+"��+'('$'!/�

�����'%(,+���#*+�&���������

����# ��#*+�&���������#*�*%�$$�)�+"�&��#&��#*+�&���+"�&�

��������# ��#)��+#'&��������')+"��&�����#*�#&*#�����!#'&���+"�&�

���������������#&��#*+�&������#*+�&����������&��*�$��+��������+"#*����

���������$*�� # ��#)��+#'&���������*+��&�����#*�#&*#�����!#'&���+"�&�

���������������#&��#*+�&������#*+�&����������&��*�$��+��������+"#*����

���������$*�� # ��#)��+#'&��������',+"��&�����#*�#&*#�����!#'&���+"�&�

���������������#&��#*+�&������#*+�&����������&��*�$��+��������+"#*����

��������

��$*�� # ��#)��+#'&���������*+��&�����#*�#&*#�����!#'&�	�+"�&�

���������������#&��#*+�&������#*+�&����������&��*�$��+��������+"#*����

Listing 4.2 Pseudo code for the AP selection

!

XAP " XOBU()2 + YAP "YOBU()2

!

! 30!

The AP presenting the minimum distance and complying with the

requirements is selected. If the conditions are not satisfied, i.e., at the end of the loop

the Min distance value is equal to the initial value and the selected AP has an invalid

value, another algorithm, which is presented in the following Listing, is used.

�

��%��� �&��

•
�%��'�#"��	���#%'�����&'���#('��#%���&'�

•
�&'�"����	�������"�!��� ��

• ��"���&'�"�����"�!��)�%��� ���"�'�� +�&�'�*�'����)�%+� �%���)� (���

�

�#%���������$%�&�"'��"�'���'#$# #�+�

�����#!$('��
�&'�"����	�����

��� ���
�&'�"����	������&�&!� �%�'��"���"���&'�"���'��"�

������������
�%��'�#"��	�����#%'���"����	���������#%�

���������
�%��'�#"��	�������&'��"����	���������#%�

���������
�%��'�#"��	������#('���"����	���������#%�

���������
�%��'�#"��	�������&'��"����	���������

��������'��"���"���&'�"�����
�&'�"����	������"��&� ��'��������'��&����

�

Listing 4.3 Pseudo code for the AP selection (second version)

The last algorithm does not always lead to selecting the correct AP. If the

position of the vehicle with respect to the AP is not checked, i.e., only the distance is

taken into account, an AP situated “behind” the vehicle might be chosen. That is why

it is important to verify the position of the vehicle as well, in order to reduce the

probability of selecting the wrong AP. This algorithm is useful when there are no APs

!

XAP " XOBU()2 + YAP "YOBU()2

!

! 31!

in the exact direction in which the vehicle is heading towards; an example of such

situation is illustrated in Figure 4.5. In that case, the AP number one is selected; the

minimum distance OBU-AP given by the AP number two but the condition about the

position of the vehicle with respect to the AP is not satisfied. The AP presenting the

minimum distance and satisfying the aforesaid is the AP number one. Then, the

probability of having elected the correct AP is then one half, since the vehicle has two

choices once it arrives to the end of the road. When a vehicle is getting outside the

topology, none of the conditions are satisfied, no AP is selected and the request is

ignored by the CC.

Region 1

Region 2

Region 3

Region 4

Figure 4.4 Different regions for AP selection

!

! 32!

Figure 4.5 Case in which algorithm number two is employed

Once the AP is selected, its coordinates are sent to the OBU through the VEHICLE

CONFIGURATION packet, subsequently, the CC computes the number of chunks

that the AP has to send to the vehicle taking into account the direction in which the

vehicle is travelling, the distance between the OBU and the boundary of the AP

coverage, as well as the vehicle speed. Four cases are considered:

1. The vehicle makes the request at a distance from the selected AP larger than four

times the radio range. The AP starts sending chunks to the OBU when the latter

enters in the BSS.

2. The vehicle makes the request outside the coverage area of the selected AP but its

distance from the boundaries is smaller than four times the radio range. The AP starts

!

! 33!

sending the chunks once it has received the entire resource from the CC; when this

occurs the OBU is already inside the BSS.

3. The vehicle is inside the coverage area of the selected AP when the request is

made, but its distance from the boundaries is larger than a radio range.

4. The vehicle is inside the coverage area of the selected AP when the request is

made, but its distance from the boundaries is smaller than a radio range.

Figure 4.4 illustrates the different cases and the description of the employed

algorithm is presented below.

��-%��'!.
�

• �%-!�/%*)���
��*-/$����./���*0/$�*-��!./�

• �%./�)�!��������%)�(�
� ��

• �%./�)�!�������*0) �-4���*(+0/! � !+!) %)#�*)�/$!�1!$%�'!�+*.%/%*)��) � %-!�/%*)��

• ���.+!! ��%)�(�.��

• �1�%'��'!���) 2% /$��%)���+.�� !+!) .�*)�/$!�)0(�!-�*"���.��!%)#�.!-1! ��

• �$0)&�.%5!��%)��%/.��

• ���-� %*�-�)#!��%)�(��

• �!(�%)%)#��$0)&.��)0(�!-�*"��$0)&.�-!,0%-! �/*��*(+'!/!�/$!� *2)'*� %)#��

• �3+!�/! �)0(�!-�*"��$0)&.�

�

%"���.!���*-�	�/$!)��

��� %"��%-!�/%*)��������*-/$�/$!)��

��������%./�)�!�������*0) �-4�������6���-� %*�-�)#!���������	����-� %*�-�)#!�

����!'.!� %"��%-!�/%*)���������./�/$!)��

��������%./�)�!�������*0) �-4�������6���-� %*�-�)#!���������	����-� %*�-�)#!�

����!'.!� %"��%-!�/%*)��������*0/$�/$!)��

��������%./�)�!�������*0) �-4�������6���������-� %*�-�)#!���	����-� %*�-�)#!�

!

XAP " XOBU()2 + YAP "YOBU()2

!

! 34!

�����"(�� ��� '��) %$��
�������()�)��$��

�������� ()�$����
��	��%*$��',�����
��-�	����	��'�� %�'�$�������	��'�� %�'�$���

�"(�� ����(����)��$�

��� ��� '��) %$��
������%')��)��$��

�������� ()�$����
��	��%*$��',����	��-���
����	��'�� %�'�$���

�����"(�� ��� '��) %$��
������()�)��$��

�������� ()�$����
��	��%*$��',����	��-���
����	��'�� %�'�$���

�����"(�� ��� '��) %$��
������%*)��)��$��

�������� ()�$����
��	��%*$��',�����
��-�	����	��'�� %�'�$���

�����"(�� ��� '��) %$��
�������()�)��$��

�������� ()�$����
��	��%*$��',�����
��-�	����	��'�� %�'�$���

�"(�� ����(����)��$�

�������� ()�$����
��	��%*$��',���	��'�� %�'�$���-�� ()�$����
��	�������

�

�

 ����(����)��$�

������*#��'�%����*$!(��� �

�"(�� ����(����%'���%'���)��$�

������*#��'�%����*$!(��� �

�

 ���*#��'�%����*$!(�����#� $ $����*$!(�)��$��

������+&��)����*#��'�%����*$!(����*#��'�%����*$!(�

�"(��+&��)����*#��'�%����*$!(�����#� $ $����*$!(�

Listing 4.4 Pseudo code to derive the expected number of chunks

!

2 " radioRange
OBUspeed

" AvBandwidth

chunkSize

!

DistOBUAPbound
OBUspeed

" AvBandwidth

2 " chunkSize

!

! 35!

Given that the OBU has to send a VEHICLE DATA ACK after receiving a

given number of chunks, i.e., a group of chunks (GOC), if an AP sends a number of

chunks that is not a multiple of the GOC, the last set of chunks will not be

acknowledged and will be re-send by the next AP selected even if the OBU received

them. The aforesaid occurs since the OBU has no knowledge about the number of

chunks it has to receive from an AP; it only knows the total number of chunks in

which the requested resource is split. In order to avoid this issue, the CC forces the

expected number of chunks to be a multiple of the GOC. The formula to compute the

variable “Number of chunks” showed previously is incomplete; the actual formula

used by the CC to compute the number of chunks is the following:

Number of Chunks��� �

Each AP uses a different channel to communicate with the CC. The latter

stores different counters in the bi-dimensional array previously described, and those

counters are incremented every time the CC receives a fragment request from a given

AP and is decremented when the entire fragment has been delivered. The counter is

then used by the CC to compute the interFrgTime_, which is the time imposed

on the simulator to wait between the scheduling of two consecutive packets sent

through the same channel. Thus, the bit rate is determined by that variable. The

maximum available bandwidth in each channel is therefore divided among the

number of OBUs being served. In the same way, the previous counter is used to

obtain the value of the variable representing the available bandwidth, which is

employed to compute the expected number of chunks. The available bandwidth is

obtained dividing the maximum available bandwidth, which is set in the

configuration script, by the number of OBUs being served plus one since the

computation of the expected number of chunks is done before incrementing the

counter.

!

floor(NumberOfChunks
GOC

) "GOC

!

! 36!

Given that the directions of the OBU can only take four values and in real

scenarios the roads can have an infinite number of directions, the real distance

travelled by the vehicle can only be estimated. A vehicle heading towards the north

but with a direction of 45º (with respect to the horizontal axis) does not cover the

same distance as a vehicle travelling with a direction of 90º; this is the reason why

different cases were considered to do the computation. In each, the worst-case

scenario is selected to compute the expected number of chunks. The worst-case

scenario occurs when the distance is minimum given that the AP is forced to send

fewer chunks. An illustrative explanation is presented in Figure 4.6.

As explained in the previous Chapter, the AP can start sending chunks to an

OBU only after the reception of a GO message. In view of the fact that the AP

selection is not one hundred percent exact, the AP has to inform the CC whenever the

GO message is not received after a certain time, in that way a new election process

can be made in case the CC has selected the wrong AP. However, the time the AP has

to wait before sending an AP REPORT should depend on the position of the vehicle.

If the time selected is too short and the OBU is still trying to reach the AP, the latter

and the CC, will repeatedly transmit the same packets (VEHICLE

CONFIGURATION, INFORMATION STATUS, AP CACHING, AP REPORT) until

the OBU reaches the BSS. So, to avoid unnecessary packet transmissions, the CC

computes the time the AP needs to wait before receiving a GO packet and includes the

obtained value in the AP CACHING message. That value depends on the OBU speed

and on the distance needed to reach the BSS, which in turn depends on the direction

of the OBU as illustrated in Figure 4.6. Due to the fact that the direction of the OBU

is approximated, the exact distance needed to reach the BSS cannot be computed.

However, an upper bound on the time can be obtained assuming that the

approximation error made on the direction is maximal and considering a constant

vehicle speed. The computation made is described in Listing 4.5 and an illustrative

explanation is presented in Figure 4.7.

!

! 37!

Cases 1 – 2

Case 3

Case 4

Figure 4.6 Direction approximation

!

! 38!

�

��$�����%
�

• ���%#������!� �%��

• ���$���"�$�!�����!� ��

• ��%&�!���������"'!��$*��%� ��(�$������'%���#$�(�"'%�*�

• ���"!�#�$�"��&� ����!�%�

• �!�&����#"%�&�"!���%�
����������	���)#���!���#$�(�"'%�*�

�

�����%�������"$�	�&��!�

������%&� �&���&� ���������"!�#�$�"�%�

�

��%�� �����%����&��!

���%&�&� ���� �

��

Listing 4.5 Pseudo code to compute the AP waiting time

 Figure 4.7 Case 1 - upper bound distance

!

DistOBUAPbound " radioRange() # 2 " radioRange
OBUspeed

+ 2beaconP

!

! 39!

4.3.1.2 Access Point Application

Following the directives given by the CC, the AP is in charge of delivering

the desired resources to the OBUs. After receiving the AP CACHING packet, which

contains the ID of the first chunk and the number of chunks that have to be sent to the

OBU, the AP requests those specific chunks to the CC. After receiving the resource

fragment, the AP has the task of storing it until the OBU enters the BSS and is able to

receive the packets. Since the AP is capable of storing the packets received from the

CC, a given resource or a portion of it could already be present in the AP’s system

when the latter receives an AP CACHING message. As a result, before requesting the

fragment to the CC, the AP compares the ID of the chunks in its system with the ID

of the chunks it has to send. Thus, one of the three cases may occur:

1. The AP is storing the entire resource fragment and no request is made to the CC.

2. The AP is storing a portion of the resource fragment and requests the missing

packets to the CC.

3. The AP has to request the entire fragment to the CC.

The verification done by the AP is described in the following Listing.

�

��(!��#�)��

• ��)*�� +%"�)*&(�������,�(!��#��)*&(���!%�
�0)�)/)*�$��

• �!()*�� +%"�*&�)�%������,�(!��#��(���!,���!%�
���
������$)���

• .'��*���%+$��(�&��� +%")��,�(!��#��(���!,���!%�
���
������$)���

���)*�� +%"�*&�)�%��������!()*�� +%"�*&�)�%�������.'��*���%+$��(�&��� +%")�����

�

!����)*�� +%"�)*&(������	����)*�� +%"�*&�)�%�����* �%�

������-�!*��&(����$�))����

�#)�� !���!()*�� +%"�*&�)�%����������)*�� +%"�)*&(������* �%�

!

! 40!

���	����
�����������������	��������

�����������������������������������
������������������	��!�
�����������������	��

��	������������������������	���

����������������������������������� �����������������������

�

Listing 4.6 Pseudo code for the AP cache verification

As explained in the previous section, after the reception of an AP CACHING

packet, the AP schedules a timer that might expire after the time indicated in the

packet. The expiration of the timer triggers the sending of an AP REPORT. The

reception of a GO packet leads to cancellation of the timer and starts the sending of

chunks if the AP has received the entire fragment of the resource. On the other hand,

if an AP is still receiving chunks from the CC, the GO messages are ignored until the

downloading is completed.

Once the AP is serving the OBU, it has to waits for an acknowledgement

from the OBU before sending another group of chunks. When a vehicle gets out of

the transmission range of an AP during a service, the latter stops receiving

acknowledgements and sends an AP REPORT to the CC. This behavior is simulated

creating a timer that expires if the AP does not receive a VEHICLE ACK after a

certain time out. After the expiration of this timer, the AP sends an AP REPORT.

 As for the available bandwidth, the AP stores a variable called serving_,

which indicates the number of OBUs being served simultaneously. That counter is

incremented each time a “valid” GO message is received (i.e., when it triggers the

sending of chunks) and decremented when the OBU receives all expected chunks or

gets out from the transmission range. Then, the variable interCkTime_, whose

value corresponds to the time imposed on the simulator to wait between the

scheduling of two consecutive chunks, is computed taking into account the variable

serving_ and the maximum available bandwidth. In this way, the maximum

available bandwidth is divided among the number of downloaders.

!

! 41!

4.3.1.3 On Board Unit Application

Vehicle passengers can during a trip request a certain file stored in a given

server. The size of the file will depend on the nature of the request (a video and a web

page have indeed different sizes). In [13], Aidouni et al. present the results obtained

from capturing the traffic of an eDonkey server during ten weeks. Those results,

which include the cumulative distribution function of the requests size, are used in

order to simulate a realistic behavior. When an OBU decides to make a request, it

extracts a random number from an interval between zero and one. Then, the file size

is set according to the extracted number and the cumulative probability of requesting

a file of a given size. The algorithm used to obtain the file size is presented below.

�

��!�����"��

• ����� "�)����"#!��$#�������'#� ����� ���#������� #&�� ���$��"�� "�)�������������� �$�$��#�%��

 !�������#(�

• 	$�$��#�%�� !�������#(�

• ��������$���!�

• ��)����$������������%�!����������#����(�������"���

• ��"�$!���"�)��

• 	�$���"�)���$"��$�������"��#���!�������$���!��'#!��#����"����

�

'#!��#�!������%��$����#&������������

 ��������"�)����"#!��$#����

�!$���#�������"�)����"#!��$#������#������"�

�����&����� ������'�"#"�������)����$���������"��

��������������������

!

! 42!

������������#����!�� ������������������������

����������	 � ����!������������"���!�� �������������������������

��������������������� ��������	 � ����!������������"�������

�����������������#���� ������� ��

���������������� ������#������#��

���������������������� ������#���������������� ������#����	� �����#�������

Listing 4.7 Pseudo code for resource size obtainment

Moreover, once the OBU makes the request, it sends a GO packet to the

selected AP only after receiving a BEACON. If the vehicle is outside the BSS, a

certain time has to elapse before receiving a BEACON from the selected AP, i.e.,

before entering the coverage area. Given that the AP selection is not always accurate,

the OBU has to inform the CC whenever a BEACON from a different AP is received

or if no BEACON message is received after a certain time, so that a new election

process can be made in case the CC has selected the wrong AP. The time the OBU

has to wait should depend on its position and on its speed. If the time selected is too

short and the OBU is still trying to reach the AP, it will repeatedly exchange the same

control packets with the CC until it reaches the BSS. So, to avoid unnecessary packet

transmissions, the OBU, knowing its coordinates and the coordinates of the AP can

estimate the time it needs to wait before receiving a BEACON. The estimated time

depends on the OBU speed and on the distance needed to reach the BSS, which in

turn depends on the direction of the OBU as illustrated in Figure 4.6. The

computation made is presented in the following Listing.

�

�����������

•
�����������������

!

! 43!

• ������$��&�"!���"$&����%&���"'&�����%&�

•
��$���"�$�!�����!� ���

• ��%&�!�������
��� �

• ��%&�!�������
��"'!��$(���!� ���" #'&���"!�(���������%�"'&%���������

• ����"!�#�$�"��&� ����!�%��

• �� ��"'&���!�%��

�

�����%&�!�������
���	�
��$���"�$�!���&��!�

��������%&�!�������
��"'!��$(�	���

��%�����������$��&�"!�		��"$&��&��!�

�������%&�!�������
��"'!��$(�	� �

��%�����������$��&�"!�		��%&�&��!�

�������%&�!�������
��"'!��$(�	� �

��%�����������$��&�"!�		��"'&��&��!�

�������%&�!�������
��"'!��$(�	� �

�

�

��%�����������$��&�"!�		���%&�&��!�

�������%&�!�������
��"'!��$(�	� �

�

�� ��"'&�	���%&�!�������
��"'!��$(���������"!�#�$�"�%�

�

Listing 4.8 Pseudo code for obtaining the BEACON waiting time

 Once inside the BSS, the OBU starts sending GO messages to the AP until it

receives the first chunk. Whenever a chunk is received by the OBU, the counter is

!

XOBU " XAP()2 + YOBU "YAP()2

!

YAP "YOBU() # 2 " radioRange

!

XAP " XOBU() # 2 " radioRange

!

YOBU "YAP() # 2 " radioRange

!

XOBU " XAP() # 2 " radioRange

!

! 44!

incremented by one and if the value of the counter is a multiple of the GOC variable,

a VEHICLE ACK packet is sent to the AP. The only case in which the OBU might

send an acknowledgement after receiving a set of chunks different from the GOC

value is when the counter reaches the value of the last chunk expected by the vehicle.

 As explained previously, the number of chunks that a given AP is compelled

to send to a given OBU, is an estimate obtained by the CC. As a result, the OBU

might leave the coverage area before receiving all chunks the AP is supposed to send,

and in turn, the AP might not receive the last acknowledgement from the OBU. The

latter poses a problem since the CC assumes the OBU has received a certain number

of chunks that is actually smaller than the real value. If the OBU has only one counter

that is incremented each time a chunk is received, once that counter reaches the total

number of chunks, the vehicle will consider that the request has been entirely

downloaded, i.e., will ignore all incoming packets, while the CC will repeatedly

select APs, which will continuously send a GOC followed by an AP report. In order

to avoid the creation of a “loop”, another counter called receivedByAP_, is

incremented every time a chunk is received and reset when a VEHICLE

CONFIGURATION packet is received. That is to say, it counts the number of chunks

received by the AP currently serving the vehicle. Right before resetting the counter,

the OBU performs a modulo operation in order to obtain the number of

unacknowledged chunks. Then, a number of chunks equal to the previous value are

dropped by the OBU once it starts being served by the new AP. An illustrative

pseudo code is presented below.

�

����������

• �����������������������

• ��������������������	�

• ���������

• �������������

!

! 45!

�

���$����'�'+$��%����)�����������������	�
��������

������*'%����("�&�����("�&�%����)����%#!����!#��
���&�,��

�������("�&�%����)����%#!��������

���$����'�'+$��%����)�����������

�������("�&�%����)����%#!�������

����������("�&�%����)����%#!�������*'%����("�&�

�������������("�&�%����)����+��������

�����������$%#��&&������

������ &�� ��"#%��������

 Listing 4.9 Pseudo code for chunk reception

4.3.2 Routing Module

The routing module (RA) used is a modified version of the No Ad-Hoc

Routing Agent (NOAH), which is a routing agent that only supports direct

communication between wireless nodes and does not send any routing related

packets. The modifications were made in order to enable the multi-interface support.

The RA must know the number of interfaces supported by a node, since it

has to send the packets through the proper interface. Therefore, a member called

nIfaces is added to the routing agent class. In ns2, all RAs use two variables

ifqueue and target that store the queue and the LL module of the node

respectively. Given that a multi-interface node has multiple LL modules and multiple

queues, those variables are declared as arrays (ifqueuelist and targetlist)

in order to store the LL module and the queue of each interface. The initialization of

the ifqueuelist array and the targetlist array is done by the command

method of the class, i.e., using parameters from the Tcl script.

!

! 46!

When a unicast packet has to be transmitted, the interface is selected from

the array targetlist according to the index (variable Iface) used. Since the

interfaces are added gradually, their index number corresponds to the order in which

they are declared in the Tcl script. Similarly, the address of a node also corresponds

to the order in which it is declared in the script. So, taking advantage from the

previous, the selection of the interface is done depending on the source and on the

destination addresses included in the packet. For example, if the packet that is about

to be transmitted has as source the CC (address = 0 since it is the first node created)

and as destination an OBU (address > Total number of APs, given that the APs are

created after the CC and the OBUs are created after the APs), the interface selected is

the 700 MHz interface, which is the interface with index equal to zero since it is the

first interface of the CC declared in the script. An illustrative pseudo code is

presented in the following Listing.

�

��)#��$�*�'�+�#&���)'%�+"��*�)#(+��

• �'+�$�&,%��)�' ���*�

• �'+�$�&,%��)�' ���*�

• ���)�**�*��&��#&+�) ���*�' �+"���# �)�&+�&'��*���*�,�'��',+#&!����$�����

�

�'��� ���)�**� �*+��&+�) ���� �&���&+�) ���� .� ��*+��&+�) ����

��� ��
�����-� �"�&&�$������ .� �"�&&�$���*+����

����� �� �"�&&�$���� 	���-� �� ��

/� /� �"�&&�$���� 	���-� �� ��

��*+���� �'+���' ���*� �"�&&�$���� 	���-� �� ��

����� �'+���' ���*���
�����-� 	���-� �� ��

/� /�
�����-� 	���-� �� ��

!

! 47!

��$%�����
�!%���!���$��

��!%���!�����$��
	�����'� ����'� �� ��

�

��� "����%� ��$%� �%�! � ���#�$$� ��� �� !#� �"����%� $!&#��� ���#�$$� ��� �� � �� "����%�

��$%� �%�! ����#�$$����!%���!���$��%�� �

����������������

��$�� ���"����%�$!&#������#�$$������%�� �

��������������"����%���$%� �%�! ����#�$$�

��$�������������

 Listing 4.10 Pseudo code for interface selection (unicast packets)

Finally, when a broadcast packet has to be transmitted (BEACON or

VEHICLE BEAT packets), the function sendOutBCastPkt() is called and the

approach to select the interface is different from the previous case. The VEHICLE

BEAT packets, sent by the OBUs, have to be received by the CC so they are sent

through the 700 MHz interface (interface 0). The BEACON packets, sent by the APs,

have to be received by the OBUs inside the BSS so they are sent through the 5 GHz

interface (interface 1). An illustrative pseudo code is shown as follows.

�

���"����%�$!&#��� !������!%���!���$�%�� �

���������������

���"����%�$!&#��� !���
���!%���!���$�� ��"����%�$!&#��� !���(���%�� �

���������������

�

Listing 4.11 Pseudo code for interface selection (broadcast packets)

!

48

CHAPTER V

SIMULATION RESULTS

Network simulations allow testing new communication protocols and

predicting the behavior of network systems. As opposed to the high costs and long

time required to set up an entire test bed, experimental results from network

simulations can be obtained relatively faster and are definitely less expensive. In

order to the test the signaling and information exchange protocol described in the

previous Chapters, several scenarios in an urban environment were simulated. The

description of the scenarios and the obtained results are presented in the following.

5.1 Simulation Scenario

5.1.1 Mobility Parameters

Vehicular Networks are characterized by a high and predictable mobility.

The behavior of the nodes through this kind of network can be modeled using a freely

available generator of realistic vehicular movement traces for networks simulators

called VanetMobiSim. The latter supports micro-mobility and macro-mobility

features, so it was employed in order to obtain realistic vehicular mobility traces that

were used in the simulations. The selected micro-mobility model, which is related to

the behavior of vehicles (e.g. speed and acceleration) and their interaction with the

road infrastructure (e.g. road intersections and traffic signs), was the Intelligent

Driver Model with Lane Changes (IDM-LC) car-following model. In that type of

model, the behavior of each vehicle depends on the vehicle ahead, that is, parameters

! 49!

such as speed and acceleration are computed as a function of the distance to the front

car and the current speed of both vehicles. In addition, vehicles switch form one lane

to another according to predefined lane changing rules that take into account

parameters such as the vehicular density. When a vehicle enters the topology, it

randomly selects a destination among a subset of entry/exit points placed at the

border of the topology and the itinerary is computed using the randomized Dijkstra’s

algorithm. Then, after reaching the destination, i.e., exiting the topology, it remains

immobile during a certain time (extracted randomly and uniformly from a given

interval) and then re-enters the topology by selecting a new destination. Furthermore,

vehicles try to attain and maintain a velocity randomly and uniformly chosen in the

interval [36,45] km/h. Due to the presence of traffic lights, stop signs or slower

nearby vehicles, the average speed results lower than the target speed.

Besides the information about node movement, another parameter required

by the application modules and related to the latter is the vehicle cardinal direction.

This information is obtained extracting a vehicle’s past and current position from the

mobility trace; the angle formed between the horizontal axis and the line joining the

aforementioned positions is used to select its cardinal direction (see Figure 5.1). The

direction of each vehicle through the entire simulation was obtained writing a routine

using the Perl programming language to parse the movement trace file.

Figure 5.1 Vehicle cardinal direction

! 50!

5.1.2 Network parameters

All channels in the simulation were defined as wireless, the physical layer

model implemented was also of type wireless and the two-ray ground reflection

model was used to represent radio propagation. The simulation duration was set to

900s.

As mentioned in previous Chapters, vehicles are equipped with two

interfaces, one set at 700 MHz and the other at 5 GHz. Both interfaces use the IEEE

802.11p technology, but they employ different bit rates. The 700 MHz interface is set

to work at 3 Mbps while the 5 GHz interface is set to work at 27 Mbps. The

transmission range of the data interface is set to 200 m while the transmission range

of the 700 MHz interface depends on the road topology and on the position of the

CC; it is set in such a way as to ensure continuous communication between OBUs

and the CC. The vehicles’ GPS system is assumed to have a refresh frequency of 1

Hz, so the VEHICLE BEAT messages are broadcasted every second.

On the other hand, APs are equipped with one interface at 5 GHz using the

IEEE 802.11p and a transmission range equal to 200 m. The BEACON messages are

broadcasted from this interface every second. Moreover, the dedicated link between

an AP and the CC is simulated as a wireless link; each link works in a different

channel and the technology used is the IEEE 802.11a at 54 Mbps. The transmission

range of this interface, which is set differently for each AP, depends on the distance

AP-CC since the latter has to be inside the AP’s coverage area.

Lastly, the number of interfaces of the CC depends on the number of APs

deployed in the network in order to simulate each dedicated link. The CC’s 700 MHz

interface uses the IEEE 802.11p technology and is set to work at 3 Mbps while the

interfaces dedicated to each AP use the IEEE 802.11a technology at 54 Mbps.

Moreover, ns2 has two commands called start and stop, which are

invoked from the script and are responsible of turning on and off a node’s radio.

Given that the CC and the APs are fixed nodes, their radios are turned on at the

beginning of the simulation and are turned off at the end. In the case of vehicular

! 51!

nodes, those commands have to be called from the script repeatedly during the entire

simulation given that nodes are re-used, i.e., they exit the topology and then reenter as

new nodes. The commands have to be executed at a specific time, that is, start has

to be called when the node enters the topology and stop has to be executed when the

node exits the topology. The exact turn-on/off time of each node was obtained writing

a routine using the Perl language to parse the movement trace file. Once a vehicle

enters the topology it extracts a uniform random number in the interval [0,10] and

after waiting a time equal to the selected number, it sends a VEHICLE REQUEST

packet to the CC.

5.2 Small Topology

5.2.1 Network Scenario

Three scenarios with different number of requests per minute have been

simulated, namely two, five and ten requests/min. Hereinafter each request frequency

is referred to as low, medium, and high frequency respectively. The same mobility

trace was used for each case, that is, the number of vehicles and the different

trajectories followed by each vehicle is the same in the three cases. The first road

topology considered is a generic road topology that was inspired by a real city map.

Roads are composed of two lanes of traffic moving in opposite directions and all

intersections are regulated by traffic lights. Seven APs were deployed along the

roads; the selection of the AP location was made following the criteria proposed in

[4], that is, in areas presenting the highest vehicular density over time and by

avoiding having overlapping coverage areas, so by positioning APs at a distance

between each other higher than 400 m (diameter of the coverage area). The areas with

higher density are the road intersections due to the presence of traffic lights. In case

of having two intersections at a distance smaller than 400 m, only one AP is

! 52!

positioned so as to ensure the radio coverage in both intersections. The CC was

placed in the center of the topology in order to guarantee a 700 MHz radio coverage

in the entire area. The road map showing the location of the APs is presented as

follows.

Figure 5.2 Small Road Topology

5.2.2 Small Topology Results

Every OBU travelling inside the topology requests a file of a given size. The

number of files requested according to the size is presented in the following.

! 53!

 (a) high frequency (b) medium frequency

 (c) low frequency

Figure 5.3 File size vs number of requests (Small topology)

It can be seen that more than fifty percent of the requested files have a size

larger than 125 MB. Also, certain files of a given size are never requested; for

instance, the 9 MB files. This behavior is mainly due to the fact that, the file size is

assigned according to the values of a Cumulative Distribution Function (CDF) and to

the extraction of a random number from a uniform distribution as explained in the

"!

#!

$"!

$#!

%"!

%#!

&"!

&#!

'"!

"("
"$
! $! %! &! '! #!)! *! +! ,! &"
!

$%
#!

&#
"!

*"
"!

$"
""
!

!
"
#
$
%&
'(
)'*
+,
%-
'

*+,%'.+/%'0123'

"!
%!
'!
)!
+!
$"!
$%!
$'!
$)!
$+!
%"!

"("
"$
! $! %! &! '! #!)! *! +! ,! &"
!

$%
#!

&#
"!

*"
"!

$"
""
!

!
"
#
$
%&
'(
)'*
+,
%-
'

*+,%'.+/%'0123'

"!
$!
%!
&!
'!
#!
)!

"("
"$
! $! %! &! '! #!)! *! +! ,! &"
!

$%
#!

&#
"!

*"
"!

$"
""
!

!
"
#
$
%&
'(
)'*
+,
%-
'

*+,%'.+/%'0123'

! 54!

previous Chapter. The CDF used to select a file size was derived from the CDF of file

sizes retrieved from a web server proposed by Aidouni et al. in [13]. The

aforementioned CDF was obtained considering files from 0 to 4 GB with a step of 1

MB. Moreover, the total number of requests made to the server being studied was

approximately 90 millions. In this case, since the number of requests is much smaller,

not all file sizes were considered and therefore the step used was not uniform. The

assigned size according to the random number uniformly extracted is presented as

follows.

!"#$%

&"'$%%

()*+%

,-.-#/0"1$%

2345/5"#"06%

"! "#"$!
%! "#"&!
'! "#"(!
)! "#%$!
$! "#%(!
*! "#''!
&! "#'$!
+! "#'*!
,! "#'&!
(! "#'+!
)"! "#)+!
%'*! "#*,!
)*"! "#+&!
+""! "#($!
%"""! %!

Figure 5.4 Cumulative distribution function

Since the random number is uniformly extracted from the interval [0,1], the

probability of assigning a given size to a particular request depends on the size of the

"!

"#%!

"#'!

"#)!

"#$!

"#*!

"#&!

"#+!

"#,!

"#(!

%!

"! '""! $""! &""! ,""! %"""!

,-
.
-
#/
0"
1$
%2
34
5
/5
"#
"0
6%

&"'$%()*+%

! 55!

interval between the respective value of cumulative probability and the one

corresponding to the previous size. So, as the total number of requests made is not

large enough, the files having a size selected according to a very small interval (e.g. 9

MB and 1 MB) are requested rarely. However, the behavior obtained by using the

algorithm presented in the previous Chapter is optimal given that the assumption

made initially was to simulate vehicular networks in which passengers are interested

in downloading large files (e.g. videos). Hereinafter, the file sizes smaller than 30

MB will be referred to as small files while the ones larger than 125 MB will be

referred to as large files.

Additionally, the average download completion percentage was computed

for each file size requested. The obtained results are presented below.

 (a) high frequency

 (b) medium frequency

"!

#"!

$"!

%"!

&"!

'"!

("!

)"!

*"!

+"!

#""!

","
"#
! $! %! &! '! (!)! %"
!

#$
'!

%'
"!

)"
"!

#"
""
!

!
"#
$%

&
'(
)*
$+
"

,*'("-*.("/012"

"!

#"!

$"!

%"!

&"!

'"!

("!

)"!

*"!

+"!

#""!

","
"#
! #! $! &! '! (!)! *! %"
!

#$
'!

%'
"!

)"
"!

#"
""
!

!
"#
$%

&
'(
)*
$+
"

,*'("-*.("/012"

! 56!

 (c) low frequency

Figure 5.5 File size vs completion percentage (Small topology)

For all request frequencies, all small files requested were entirely

downloaded. On the other hand, for a given request frequency, the percentage of

completion of large files decreases as the file size increases. Moreover, as the

frequency request is lower, the percentage of completion for a given size is higher. A

low request frequency implies that few OBUs are being served simultaneously. As

the vehicles are scattered across the topology and each follow a different trajectory,

each AP serves a small number of OBUs. As a consequence, the available bandwidth,

which is divided among vehicles being served inside the same BSS, is higher for low

request frequencies. Clearly, a high bandwidth allows retrieving files with a higher

speed. Furthermore, the trajectory followed by each vehicle is the same in the three

scenarios, so for higher download speeds OBUs are able to retrieve more information

in the same amount of time, which is why the download completion percentage

increases with the decrease of the request frequency.

Other relevant statistics were also derived in order to make a deeper

evaluation of the performance of the protocol implementation. The download time of

each successfully downloaded file was obtained, and the average download time of

"!

#"!

$"!

%"!

&"!

'"!

("!

)"!

*"!

+"!

#""!

$! %! &! '! %"! #$'! %'"!)""! #"""!

!
"#
$%

&
'(
)*
$+
"

,*'("-*.("/012"

! 57!

each file size was derived for each request frequency. The obtained results are

presented in the following Figure.

File Size

[MB]

Average

Download Time

[s]

0.001 16.95

2 29.58

3 46.17

4 17.62

5 23.47

6 24.57

7 24.57

30 73.41

125 262.24

 (a) high frequency

"!

#"!

$""!

$#"!

%""!

%#"!

&""!

&#"!

!
"#
$%
&'
$(
)*
+
',
%

-".$%/"0$%&12,%

'()!*+,)-+./!0(12!
3425.62!*+,)-+./!0(12!
'.7!*+,)-+./!0(12!

! 58!

 (b) medium frequency

 (c) low frequency

Figure 5.6 File size vs download time (Small topology)

As expected, the download time is longer for large files. For a given file size,

as the request frequency decreases, the average download time also decreases. The

aforementioned is due to the higher available bandwidth as explained previously. The

download performance improves considerably especially for large files given that a

higher download speed allows retrieving the resource in a more continuous way, that

is, involving fewer APs. Along with the average download time, the minimum and

maximum download time for each file size are presented in Figure 5.6 in order to

have an idea about the best and worst download performance for each case. The

difference between those two values is meaningful only when more than three

requests are made, and in all cases in which the previous condition is satisfied, the

value obtained is significant. From the latter, it can be inferred that the variance of the

download time in all cases is high. The factors influencing this behavior are presented

subsequently.

"!

#"!

$""!

$#"!

%""!

%#"!

&""!

&#"!
!
"#
$%
&'
$(
)*
+
',
%

-".$%/"0$%&12,%

'()!*+,)-+./!0(12!
3425.62!*+,)-+./!0(12!
'.7!*+,)-+./!0(12!

"!

#"!

$""!

$#"!

%""!

%#"!

%! &! 8! #! &"! $%#!

!
"#
$%
&'
$(
)*
+
',
%

-".$%/"0$%&12,%

'()!*+,)-+./!0(12!
3425.62!*+,)-+./!0(12!
'.7!*+,)-+./!0(12!

! 59!

An element that affects the download time and that renders difficult to

compare it between different file sizes is the fact that 5 GHz radio coverage areas do

not overlap. Small files are retrieved by OBUs from only one AP while large files

need to be fragmented and are retrieved from several APs. As a result, the time OBUs

spend reaching the different APs is also considered in the download time.

Furthermore, APs are not placed equidistantly, so the download time also depends on

the trajectory followed by the vehicles. In this sense, if the contact time between the

vehicles and the APs is short, the requested resource is likely to be downloaded with

a long delay or only partially downloaded. The aforementioned issue affects

especially large files, which might not be downloaded entirely if the total time during

which the vehicle is under 5 GHz radio coverage is not long enough so as to receive

the entire file. Another factor that affects the download time and has a higher impact

in the case of small files is the time elapsed between the request instant and the time

instant in which the download actually begins, i.e., the first chunk reception instant.

As explained in the previous section, vehicles make a request when they enter the

topology and due to the location of the APs, the 5 GHz radio coverage is not

guaranteed in all the entry points. Consequently, in some cases such as the 1 KB file

sizes, the actual time needed to retrieve the file is shorter than the time required to

reach a BSS.

In order to have a better estimate of the time required to obtain a resource,

the average download time considering only the instants during which OBUs are

under 5 GHz radio coverage and are actually receiving data information, that is, the

time referred to as “the coverage time”, was derived for each file size. The obtained

results are presented below.

! 60!

File Size

[MB]

Average

Coverage Time

[s]

0.001 0.86

2 3.62

3 21.98

4 10.68

5 11.03

6 15.49

7 23.02

30 54.13

125 191.96

 (a) high frequency

 (b) medium frequency

 (c) low frequency

Figure 5.7 File size vs coverage time (Small topology)

"!

#"!

$""!

$#"!

%""!

%#"!

&""!

!
"#
$%
&'
$(
)*
+
',
%

-".$%/"0$%&12,%

'()!*+,-./0-! 1,-./0-!*+,-./0-!
'/2!*+,-./0-!

"!

#"!

$""!

$#"!

%""!

%#"!

!
"#
$%
&'
$(
)*
+
',
%

-".$%/"0$%&12,%

'()!*+,-./0-! 1,-./0-!*+,-./0-!
'/2!*+,-./0-!

"!

%"!

3"!

4"!

5"!

$""!

$%"!

$3"!

%! &! 3! #! &"! $%#!

!
"#
$%
&'
$(
)*
+
',
%

-".$%/"0$%&12,%

'()!*+,-./0-! 1,-./0-!*+,-./0-!
'/2!*+,-./0-!

! 61!

As expected, the average coverage time is shorter for small files. Moreover,

as the request frequency decreases, the download performance improves significantly

especially for large files. It is important to mention that the download time can also

be affected by an erroneous AP selection. The latter causes very large and unexpected

download delays especially for small file sizes. A vehicle can be inside a certain BSS

without receiving any data packet if the information about the position and direction

of the vehicle, in the instant in which the request is made, or when it exits a BSS,

does not lead to obtaining a unique solution. As a result, the CC has to choose among

a subset of APs, and the accuracy of the selection depends on the future trajectory

followed by the vehicle. Once the wrong AP retrieves the fragment resource and a

time out expires, the CC does another AP selection, and if the correct AP is selected,

the vehicle starts receiving data packets once it is inside the correspondent BSS.

Consequently, the AP selection made by the CC has a high impact in the download

time since a wrong selection leads to higher delays and implies a waste of bandwidth

proportional to the size of the fragment retrieved by the wrong AP from the CC.

Additionally, Figure 5.8 exhibits the difference between the average

download time and the average coverage time. Evidently, the total time under 5 GHz

radio coverage is smaller than the total download time; the difference between those

values clearly depends on the distance between the APs and the vehicle speed.

! 62!

 (a) high frequency

(b) medium frequency

 (c) low frequency

Figure 5.8 File size vs download/coverage time (Small topology)

Moreover, the average throughput for the high request frequency and the

medium request frequency were derived. Different intervals of time were considered

in order to do the computation, namely, the download time, the coverage time during

"!

#"!

$""!

$#"!

%""!

%#"!

&""!
!
"#
$%
&'
$(
)*
+
',
%

-".$%/"0$%&12,%

'()*+,)!-./01.+2!345)!
'()*+,)!6.()*+,)!345)!

"!

#"!

$""!

$#"!

%""!

%#"!

&""!

!
"#
$%
&'
$(
)*
+
',
%

-".$%/"0$%&12,%

'()*+,)!-./01.+2!345)!
'()*+,)!6.()*+,)!345)!

"!

%"!

7"!

8"!

9"!

$""!

$%"!

$7"!

$8"!

%! &! 7! #! &"! $%#!

!
"#
$%
&'
$(
)*
+
',
%

-".$%/"0$%&12,%

'()*+,)!-./01.+2!345)! '()*+,)!6.()*+,)!345)!

! 63!

the downloading, the total coverage time and the trip time. The obtained results are

depicted in the Figure 5.9. As expected, the average throughput is higher for the

medium request frequency since the available bandwidth is higher. The values of

throughput obtained and their respective standard deviation confirm the fact that the

downloading efficiency is highly influenced by the route followed by each vehicle; a

vehicle following a route in which the time under 5 GHz radio coverage is

comparable to the trip time will evidently achieve a higher throughput than a vehicle

following a route in which few APs are deployed. So, the aforementioned observation

corroborates the importance of the location and number of the APs deployed along

the roads.

Throughput

Coverage Time

[Mbps]

Throughput

Download Time

[Mbps]

Throughput

Total Coverage

Time [Mbps]

Throughput

Trip Time

[Mbps]

! 7 5 4 3
fmed

" 3.3 3 3.3 2

fhigh ! 4 3 2.4 2

 " 3 1.8 1.9 1.3

Figure 5.9 Average throughput and standard deviation (Small topology)

Figures 5.10-5.12 describe the throughput over time of different vehicles that

requested large files in the high frequency request case. The first case (Figure 5.10)

shows a good performance in terms of throughput; the instantaneous throughput

reaches the maximum value (approximately 16 Mbps) in numerous instants of time.

The large intervals in which the instantaneous throughput is equal to zero represent

the instants in which the vehicle is not under radio coverage and is reaching another

AP, while the smaller intervals represent the time during which the CC is retrieving

another fragment of the resource to the same AP. It is important to remember that

! 64!

APs are placed in the road intersections, and depending on the traffic lights state,

vehicles can remain for a longer time than expected inside a BSS and receive several

fragments from the same AP. The second case (Figure 5.11) presents an average

performance; the values of instantaneous throughput oscillate between 10 Mbps and 3

Mbps, and only one peak of 16 Mps, short in time, is observed. Finally, the third case

(Figure 5.12) shows a poor performance given that the maximum instantaneous

throughput reached is four times lower than the previous case showing that the

available bandwidth is shared among exactly four vehicles present in the BSS.

Figure 5.10 Throughput over time, best case (Small topology)

! 65!

Figure 5.11 Throughput over time, average case (Small topology)

Figure 5.12 Throughput over time, worst case (Small topology)

! 66!

As can be seen in Figure 5.10, the maximum available bandwidth is

approximately 16 Mbps. Knowing that the average trip time for this topology is

equal to 246 s and that the average coverage time is 159.1 s (see Figure 5.13), an

estimation of the time required to download a very large file, can be made.

Considering an OBU that wants to download a 1GB file, and assuming it remains

inside a BSS during the entire downloading and that it is the unique vehicle being

served by the AP, the approximated time needed to download a 1 GB file in the best

conditions is 530 s. Consequently, given that the average coverage time is equal to

159.1 s, large files cannot be downloaded entirely in this scenario since much more

time under 5 GHz radio coverage is required and the available bandwidth is shared

among users wanting to retrieve a given resource. The latter confirms the initially

reported observation that was derived from the results depicted in Figure 5.5 and that

states that only small files are entirely downloaded.

!"#$%&#'($)*'()+#' !"#$%&#',-"#$%&#'()+#'

"#$!%! &'()&!%!
Figure 5.13 Trip time, Coverage time (Small topology)

5.3 Large Topology

5.3.1 Network Scenario

In this case, three scenarios with different number of requests per minute

have been simulated, namely, one, three and six requests/min referred to as low,

medium, and high frequency respectively. The number of vehicles travelling inside

this topology is the same as in the previous case. The road topology is similar to the

previous one and is two times larger. Given that in this case the number of

! 67!

intersections is higher, an additional AP had to be employed. The road map showing

the location of the APs is presented in the following Figure.

Figure 5.14 Large Road Topology

5.3.2 Large Topology Results

The same statistics were evaluated for the large road topology. This topology

is similar to the previous one, but since the area is two times larger, the node density

! 68!

is smaller, so a slightly better performance is expected. The number of files requested

according to the size is presented in the following.

 (a) high frequency

 (b) medium frequency

 (c) low frequency

Figure 5.15 File size vs number of requests (Large topology)

"!
#!
$!
%!
&!
'"!
'#!
'$!
'%!
'&!
#"!

"("
"'
! '! #!)! $! *! %! +! &! ,!)"
!

'#
*!

)*
"!

+"
"!

'"
""
!

!
"
#
$
%&
'(
)'*
+,
%-
'

*+,%'.+/%'0123'

"!

#!

$!

%!

&!

'"!

'#!

"("
"'
! '! #!)! $! *! %! +! &! ,!)"
!

'#
*!

)*
"!

+"
"!

'"
""
!

!
"
#
$
%&
'(
)'*
+,
%-
'

*+,%'.+/%'0123'

"!

'!

#!

)!

$!

*!

"("
"'
! '! #!)! $! *! %! +! &! ,!)"
!

'#
*!

)*
"!

+"
"!

'"
""
!

!
"
#
$
%&
'(
)'*
+,
%-
'

*+,%'.+/%'0123'

! 69!

The average download completion percentage was derived for each file size

requested and the obtained results are presented below.

 (a) high frequency (b) medium frequency

"!

#"!

$"!

%"!

&"!

'"!

("!

)"!

*"!

+"!

#""!
","
"#
! %! &! (!)! *! +! %"
!

#$
'!

%'
"!

)"
"!

#"
""
!

!
"#
$%

&
'(
)*
$+
"

,*'("-*.("/012"

"!

#"!

$"!

%"!

&"!

'"!

("!

)"!

*"!

+"!

#""!

!
"#
$%

&
'(
)*
$+
"

,*'("-*.("/012"

! 70!

 (c) low frequency

Figure 5.16 File size vs completion percentage (Large topology)

As in the previous scenarios, the percentage of completion of large files

decreases as the file size increases. Additionally, the percentage of completion is

higher as the frequency request is lower. However, in this case not all small files were

entirely downloaded. It can be seen that in two cases, namely the 1 KB file size (high

frequency) and the 3 MB file size (medium frequency), the percentage of completion

is not equal to one hundred percent as it is expected to be. The latter is due to the fact

that one OBU requesting a file of 1 KB and other two requesting a 3 MB file did not

receive any fragment of the resource, that is, the vehicles sent the VEHICLE

REQUEST packet to the CC, but the simulation ended before they were able to reach

any BSS. Comparing the obtained results with the previous cases, it can be seen that

in this scenario, large files achieve a higher percentage of completion. For instance,

considering the 1 GB files for high and medium frequencies, only less than ten

percent of each requested file was downloaded by the vehicles in the previous case

whereas more than twelve percent of each requested file was downloaded in this case.

"!

#"!

$"!

%"!

&"!

'"!

("!

)"!

*"!

+"!

#""!

$! &!)! #$'! %'"!)""!

!
"#
$%

&
'(
)*
$+
"

,*'("-*.("/012"

! 71!

In the same way, in the previous cases less than thirty two percent of each 350 MB

requested file was retrieved by the OBUs while in this scenario more than thirty five

percent of each 350 MB file was downloaded.

The average download time of successfully downloaded file size was

derived for each request frequency. The obtained results are presented as follows.

File Size

[MB]

Average

Download Time

[s]

0.01 36.79

3 39.74

4 44.36

6 31.24

7 156.12

8 65.04

9 48.23

30 93.08

125 299.63

350 553.64

 (a) high frequency

"!

#""!

$""!

%""!

&""!

'""!

(""!

")"
"#
! %! &! (! *! +! ,! %"
!

#$
'!

%'
"!

!
"#
$%
&'
$(
)*
+
',
%

-".$%/"0$%&12,%

-./!012/3145!6.78!
9:8;4<8!012/3145!6.78!
-4=!012/3145!6.78!

! 72!

 (b) medium frequency

 (c) low frequency

Figure 5.17 File size vs download time (Large topology)

As expected, the download time is longer for large files. Furthermore,

comparing with the results obtained in the previous scenarios, in this case the average

downloading time is longer in view of the fact that the topology is larger, and the

time a vehicle spends reaching the first AP is much longer than in the small topology

case given that the APs are placed towards the center of the topology. On average, a

vehicle has to travel approximately one kilometer before reaching the first AP while

in the previous topology the average distance is approximately 160 m. However,

comparing the average coverage time with the previous scenarios, it can be seen from

Figure 5.18 and 5.7 that the aforementioned time is shorter for this topology as the

average available bandwidth is higher. Figure 5.19 depicts the difference between the

average download time and the average coverage time for each file size. Clearly, the

difference between those two values is higher in this scenario as one value is higher

(i.e., the download time) and the other one is smaller (i.e., the coverage time).

"!

#""!

$""!

%""!

&""!

'""!

$! %! &! '! (! %"! #$'!

!
"#
$%
&'
$(
)*
+
',
%

-".$%/"0$%&12,%

)*+!,-.+/-01!2*34!
5647084!,-.+/-01!2*34!
)09!,-.+/-01!2*34!

"!

'"!

#""!

#'"!

$""!

$'"!

%""!

%'"!

&""!

&'"!

$! &! :! %"! #$'!

!
"#
$%
&'
$(
)*
+
',
%

-".$%/"0$%&12,%

)*+!,-.+/-01!2*34!
5647084!,-.+/-01!2*34!
)09!,-.+/-01!2*34!

! 73!

File Size

[MB]

Average

Coverage Time

[s]

0.01 0.05

3 1.52

4 4.30

6 12.33

7 29.30

8 4.07

9 19.50

30 37.76

125 185.70

350 399.17

 (a) high frequency

 (b) medium frequency

 (c) low frequency

Figure 5.18 File size vs coverage time (Large topology)

"!

#"!

$""!

$#"!

%""!

%#"!

&""!

&#"!

'""!

"("
"$
! &! '!)! *! +! ,! &"
!

$%
#!

&#
"!

!
"#
$%
&'
$(
)*
+
',
%

-".$%/"0$%&12,%

-./!01234563! 7234563!01234563!
-58!01234563!

"!
%"!
'"!
)"!
+"!
$""!
$%"!
$'"!
$)"!
$+"!
%""!
%%"!

%! &! '! #!)! &"! $%#!

!
"#
$%
&'
$(
)*
+
',
%

-".$%/"0$%&12,%

-./!01234563! 7234563!01234563!
-58!01234563!

"!
%"!
'"!
)"!
+"!
$""!
$%"!
$'"!
$)"!
$+"!
%""!
%%"!
%'"!

%! '! *! $%#! &#"!

!
"#
$%
&'
$(
)*
+
',
%

-".$%/"0$%&12,%

-./!01234563! 7234563!01234563!
-58!01234563!

! 74!

 (a) high frequency

 (b) medium frequency

 (c) low frequency

Figure 5.19 File size vs download/coverage time (Large topology)

"!

#""!

$""!

%""!

&""!

'""!

(""!
!
"#
$%
&'
$(
)*
+
',
%

-".$%/"0$%&12,%

)*+,-.+!/01230-4!567+!
)*+,-.+!80*+,-.+!567+!

"!

'"!

#""!

#'"!

$""!

$'"!

$! %! &! '! (! %"! #$'!

!
"#
$%
&'
$(
)*
+
',
%

-".$%/"0$%&12,%

)*+,-.+!/01230-4!567+!
)*+,-.+!80*+,-.+!567+!

"!

'"!

#""!

#'"!

$""!

$'"!

%""!

%'"!

&""!

&'"!

$! &! 9! #$'! %'"!

!
"#
$%
&'
$(
)*
+
',
%

-".$%/"0$%&12,%

)*+,-.+!/01230-4!567+!)*+,-.+!80*+,-.+!567+!

! 75!

The average throughput for the high request frequency and the low request

frequency were computed, and the obtained results are depicted in the Figure 5.20. As

expected, the average throughput is higher for the low request frequency since fewer

requests are made and the available bandwidth is higher. In order to compare with the

previous scenario, it is important to remember that the high and low frequency

requests in this case are equal to six and one requests per minute respectively. On the

other hand, in the previous case, the frequencies for which the throughput was

evaluated are equal to ten and five requests per minute respectively. Comparing the

throughputs obtained with the similar frequency requests (namely, five and six

requests per minute) it can be seen that the average throughput, evaluated over the

coverage time, is the same in both cases even if the request frequency in this case is

slightly higher and thus, the performance is better in this case. However, the other

values of average throughput are almost two times higher than the previous case since

the different instants of time over which the values of throughput are evaluated take

into account the initial distance that vehicles need to travel before reaching an AP. As

mentioned previously, in this scenario, the aforementioned time is much higher than

the previous case and as a consequence the throughput is lower.

!

"#$%&'#(&)!

*%+,$-',!"./,!

012(34!

"#$%&'#(&)!

5%678%-9!"./,!

012(34!

"#$%&'#(&)!

"%)-8!*%+,$-',!

"./,!012(34!

"#$%&'#(&)!

"$.(!"./,!

012(34!

:!! "#! $! $! #%"!
;8%6!

<!! &%#! &%'! (%)! "%*!

:!! '! &! &! "%&!
;#.'#!

<!! (%$! #! &! "%&!
Figure 5.20 Average throughput and standard deviation (Large topology)

! 76!

Moreover, looking at Figures 5.21 and 5.13 it can be seen that the average

trip time is almost two times larger than the average trip time of the small topology,

yet the average coverage time is only thirty percent longer. As the average coverage

time is longer, OBUs are able to retrieve larger files, which leads to the obtainment of

a higher average percentage of completion. The latter confirms the observation made

previously and derived from comparing the results depicted in Figures 5.5 and 5.16,

which indicates that in this topology vehicles are able to retrieve larger amounts of

data.

!"#$%&#'($)*'()+#' !"#$%&#',-"#$%&#'()+#'

"#$%$!&! '((%#!&!
Figure 5.21 Trip time, Coverage time (Large topology)

Finally, Figures 5.22-5.24 describe the throughput over time of different

vehicles that requested large files (high frequency request case). Figure 5.22 shows

the case in which a good performance in terms of throughput was obtained. Figure

5.23 instead illustrates the case of an average performance, and finally, Figure 5.24

presents the case of a poor performance. As can be observed in the three cases, the

first packet arrival time occurs later in time with respect to the previous scenarios; as

explained previously, the APs are placed towards the center of the topology and the

vehicles have to travel a long distance before being able to receive the data

information. Comparing the obtained results with the previous scenario, that is, with

Figures 5.10, 5.11 and 5.12, it can be seen that the performance of this topology is

slightly better than the previous scenario in terms of instantaneous throughput. The

latter is clearly due to the fact that the value of the high request frequency in this case

is smaller than the value of the high request frequency of the previous case.

! 77!

Figure 5.22 Throughput over time, best case (Large topology)

Figure 5.23 Throughput over time, average case (Large topology)

! 78!

Figure 5.24 Throughput over time, worst case (Large topology)

!

79

CHAPTER VI

CONCLUSIONS

Services based on content downloading in vehicular networks are expected

to become very popular among vehicular users; any vehicle equipped with a GPS and

one or several network interfaces that implement the IEEE standard 802.11p will be

able to download resources from the Internet. As the principal aim of those services is

to improve passengers’ comfort and traffic efficiency, the development of protocols

ensuring high performance is expected, even if it represents a challenging task due to

the nature of the network. Given that the technology is still under development, those

protocols have to be tested using networks simulators to evaluate their performance

before proceeding to the practical implementation so as to save time and reduce costs.

In this thesis, the implementation in the Network Simulator 2 (NS2) of a

signaling and information exchange protocol for content downloading in vehicular

networks using disjoint frequency bands was presented. The frequency band liberated

by the conversion from analog to digital TV, i.e., the 700 MHz band, is envisioned to

be used in order to exchange the signaling packets. On the other hand, the band

specified in the IEEE 802.11p standard, that is, the 5 GHz band, is expected to be

used to exchange the data. Employing a dedicated channel for the exchange of

signaling messages allows alleviating the data channel traffic, increasing the

throughput and potentially reducing the download delay.

After modifying certain modules of NS2 and adding new ones, two different

topologies derived from real urban scenarios were employed and different request

frequencies were evaluated in order to test the behavior of the protocol. Simulation

results show that the downloading time is highly influenced by the route followed by

each vehicle, by the AP deployment and by the traffic conditions. If the contact time

! 80!

between the vehicles and the APs is short, thing that happens to vehicles preferring to

travel through low-density roads that generally do not offer radio coverage at 5 GHz,

the requested resource is likely to be downloaded with a long delay or not even

downloaded entirely. Clearly, the latter will depend on the file size and the total

contact time between the vehicles and the APs. In this sense, the total download time

is long especially for large files, which have to be fragmented and retrieved by

several APs. So, it is likely that the larger files are not downloaded entirely,

particularly when the total time in which the vehicle is under 5 GHz radio coverage is

not long enough so as to receive the entire file. Moreover, the AP selection made by

the CC has also a high impact in the download time. A wrong selection not only

implies a waste of bandwidth proportional to the size of the fragment, but also leads

to higher and undesired delays in the downloading of the file. Additionally, as the

vehicular density increases, or in other words, as the number of simultaneous vehicles

requests increases, the downloading efficiency decreases depending on the number of

vehicles being served inside a given BSS, since the available bandwidth has to be

shared among the vehicles.

In view of the fact that the radio coverage area of the 700 MHz encompasses

the entire topology, vehicles are allowed to request a given resource at any moment.

The use of a dedicated channel to exchange signaling packets allows increasing the

throughput and is more advantageous in cases in which vehicles are far away from a 5

GHz radio coverage area since the time spent by vehicles in reaching a nearby BSS is

actually being exploited; the AP retrieves a fragment of the resource during the

aforementioned time and once the vehicle enters the BSS and the AP has entirely

downloaded the fragment it starts receiving the resource.

Users expect a short delay between the instant in which the request is made

and the instant in which they start enjoying the resource. However, in order to offer

users the best performance, further modifications can be made to the protocol. For

instance, the AP could start sending chunks to the vehicle once the latter enters the

topology without having to receive a large fragment of the resource from the CC.

This behavior could be beneficial in cases in which requests are made inside a BSS; a

! 81!

vehicle making a request inside a BSS would have to wait a minimum time before

starting to receive the resource instead of waiting for the AP to retrieve the entire

fragment and in that way reducing the download delay. Additionally, the V2V

cooperation (as proposed in [4]) could be included in order to increase the

downloading throughput. Moreover, in order to have more accurate simulations,

further modifications to the NS2 modules have to be made. Namely, the SCH-CCH

switching still has to be implemented and the physical layer of the 700 MHz interface

has to be adapted. Finally, employing realistic vehicular traces modeling real

topology roads in different environments (rural, urban and highway) could allow

analyzing the performance of the protocol in real scenarios and in that way permitting

to select the optimal network configuration for each type of environment (considering

the tradeoff between costs and performance) before proceeding to configure and to

set up a real test-bed.

!

82

BIBLIOGRAPHY

[1] H.T. Cheng, et al., “Infotainment and road safety service support in vehicular

networking: From a communication perspective, Mechanical Systems and
Signal Processing (2010)”, doi: 10.1016/j.ymssp.2010.11.009.

[2] R.A. Uzcátegui, G. Acosta-Marum, “WAVE: A Tutorial”, IEEE

Communications Magazine, vol. 47, no. 5, pp. 126–133, May 2009.

[3] G. Chandrasekaran “VANETs: The Networking Platform for Future

Vehicular Applications”.

[4] F. Malandrino, C. Casetti, C. Chiasserini, M. Fiore, “Key Factors to Content

Downloading in Vehicular Networks”.

[5] Z. Zheng, P. Sinha, S. Kumar, “Alpha coverage: bounding the interconnection

gap for vehicular Internet access,” IEEE INFOCOM, Rio de
Janeiro, Brazil, Apr.2009.

[6] Z. Zheng, Z. Lu, P. Sinha, S. Kumar, “Maximizing the contact opportunity for
vehicular Internet access”, IEEE INFOCOM, San Diego, CA,
Mar. 2010.

[7] M. Fiore, J. M. Barcelo-Ordinas, “Cooperative download in urban vehicular
networks”, IEEE MASS, Macau, China, Oct. 2009.

[8] D. Hadaller, S. Keshav, T. Brecht, S. Agarwal, “Vehicular opportunistic

communication under the microscope”, ACM MobySys, San Juan, Puerto
Rico, June 2007.

[9] B. B. Chen, M. C. Chan, “MobTorrent: A framework for mobile Internet

access from vehicles”, IEEE INFOCOM, Rio de Janeiro, Brasil, Apr. 2009.

[10] J. Zhao, T. Arnold, Y. Zhang, G. Cao, “Extending drive-thru data access by

vehicle-to-vehicle relay”, ACM VANET, San Francisco, CA, Sept. 2008.

[11] T. Issariyakul, E. Hossain “Introduction to Network Simulator NS2”, 2009

Springer Science+Business Media, LLC.

[12] R. Agüero Calvo, J. Pérez Campo, “Adding Multiple Interface Support in NS-

2”, http://telecom.inescporto.pt/~rcampos/ucMultiIfacesSupport.pdf, Tutorial
Handout, January 2007.

! ! 83!

[13] F. Aidouni, M. Latapy, C. Magnien, “Ten weeks in the life of an eDonkey
server”, Hot-P2P 09, Rome, Italy, May 2009.

[14] Marco Fiore, J. Härri, F. Filali, C. Bonnet, “Vehicular Mobility Simulation for

VANETs”. SCS/IEEE Annual Simulation Symposium, Norfolk, VA, USA,
March 2007.

[15] J. Mo, H. Wilson So, J. Walrand, “Comparison of Multi-Channel MAC

protocols”, in IEEE Transactions on Mobile Computing 2007.

[16] S. M. Kamruzzaman, “An Energy Efficient Multichannel MAC Protocol for

Cognitive Radio Ad Hoc Networks” in International Journal of
Communication Networks and Information Security (IJCNIS) Vol. 2, No. 2,
August 2010.

[17] U. Shevade, Y. Chen, L. Qiu, Y. Zhang, V. Chandar, M. Han, H. Song, Y.

Seung, “Enabling high-bandwidth vehicular content distribution”, CoNEXT
2010: 23.

[18] T. Nadeem, P. Shankar, L. Iftode, “A Comparative Study of Data

Dissemination Models for VANETs”.
!

