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Abstract Cutaneous carcinosarcoma (CCS) is an extraordi-
narily rare neoplasm with a biphasic morphological pattern
exhibiting both epithelial and sarcomatoid components. Al-
though its histogenesis and biological aspects remain poorly
understood, previous studies have postulated that this tumor
may arise from single cancer stem cells which subsequently
differentiate into distinct tumor lineages. In this study, we
explored a wide array of mutational hot spot regions, through
high-depth next-generation sequencing of 47 cancer-
associated genes in order to assess the mutational landscape
of these tumors and investigate whether the epithelial and
mesenchymal components shared the same genetic signatures.
Results from this study confirm that despite their striking
phenotypic differences, both elements of this infrequent tumor

indeed share a common clonal origin. Additionally, CCS
appears to embrace a heterogeneous spectrum with specific
underlying molecular signatures correlating with the defining
epithelial morphotype, with those carcinosarcomas exhibiting
a squamous cell carcinoma epithelial component exhibiting
diverse point mutations and deletions in the TP53 gene, and
those with a basal cell carcinoma morphotype revealing a
more complex mutational landscape involving several genes.
Also, the fact that our findings involve several targetable gene
pathways suggests that the underlying molecular events driv-
ing the pathogenesis of CCS may represent future potential
targets for personalized therapies.
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Introduction

Originally described by Dawson in 1972, primary cutaneous
carcinosarcomas are exceedingly rare skin tumors with around
70 cases reported to date in the English literature [1–3]. Cuta-
neous carcinosarcomas (CCSs) are biphenotypic tumors, which
embrace a heterogenous spectrum of morphotypes character-
ized by an intimate admixture of epithelial and mesenchymal
components with varying degrees of differentiation amongst
both elements [4, 5]. The epithelial component can include
squamous cell carcinoma, basal cell carcinoma, basal cell car-
cinoma with focal squamous differentiation, as well as malig-
nant adnexal morphological features [5–8]. On the other hand,
the sarcomatous component may be composed of spindle and
pleomorphic cells with marked atypia as well as by heterolo-
gous elements with chondroblastic and osteoblastic differentia-
tion [4, 5, 9–13]. Currently, literature concerning the molecular
events underlying CCS is unavailable. Previous molecular
analysis of these histological components in other organs has
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revealed common genetic aberrations, suggesting that tumors
may arise as a clonal population that de-differentiates to yield
the biphasic phenotypic lineages [14–17]. Herein, we present a
clinicopathological, immunohistochemical, and molecular
study of a series of six cases of CCS. We aim to identify a
morphological and molecular correlation amongst the different
morphotypes of CCS in an attempt to improve their classifica-
tion based on the harbored molecular derangements. Also, we
report novel mutations in this tumor group that provide further
insights into their histogenesis and help in identifying possible
targeted therapy candidate genes.

Material and methods

Immunohistochemistry (IHC)

Slides were cut at 4 μm, and IHC was performed using a
polyvalent horseradish peroxidase (HRP) polymer detection
system (Bond 111, Leica Microsystems, Wetzlar, Germany).
The primary antibodies against the following antigens were
used: keratin 19 (K19) (RCK108; 1:100 dilution; Dako; CA,
USA); cytokeratin AE1-3 cocktail (AE1/AE3; 1:200 dilution;
Covance; Princeton, NJ, USA); high molecular weight
cytokeratin (K903) (34BE12; 1:50 dilution; Dako; CA, USA);
c-kit (CD117) (polyclonal; 1:200 dilution; Dako Cytomation;
Carpinteria, CA, USA); CD34 (QBEnd/10; RTU; Leica
Biosystems); Bcl-2 (124; 1:80 dilution; Dako; CA, USA);
factor XIIIa antigen (polyclonal; 1:500; CalBiochem; San
Diego, CA, USA); vimentin (V9; '1:1.6 k dilution; Dako; CA,
USA); p53 (DO-1, RTU, 1:50; Immunotech; Westbrook, ME,
USA); p63 (monoclonal; 4A4; 1:100; Ventana Medical Sys-
tems, Inc.; Tucson, Arizona, USA); cytokeratin (1:20; Dako);
E-cadherin (HECD-1, RTU, 1:400; Cell Marque; Rocklin, CA,
USA); smooth muscle actin (SMA) (1A4; 1:250; Dako; CA,
USA); beta-catenin (17C2; RTU; Leica Biosystems); and epi-
thelial cell adhesionmolecule (EpCAM) (VU-1D9; RTU; Leica
Biosystems). Proper antigen retrieval was carried out for each
antibody according to each of the manufacturer’s instructions.

Laser capture microdissection (LCM) and DNA extraction

LCM was performed using a Zeiss, LLC laser capture micro-
dissection system. Both carcinomatous and sarcomatous com-
ponents were microdissected separately from formalin-fixed
paraffin embedded (FFPE) tumor sample slides (0.4 μM)
using a hematoxylin and eosin (H&E) slide as a guide. DNA
was extracted from the cells using the Pico Pure DNA extrac-
tion kit (Arcturus, Mountain View, CA) and later purified with
the AMPureXP kit (Agentcourt Biosciences, Beverly, MA)
magnetic bead purification method. DNA quantity and quality
were assessed using the Qubit DNA HS assay kit (Life Tech-
nologies, Carlsbad, CA).

Library preparation

In brief, 10 ng of purified genomic DNAwas used to build the
library using the Ion Torrent Ampliseq Kit 2.0 (Life Technolo-
gies, Carlsbad, CA) and the Ion Torrent Ampliseq cancer panel
primers, with the amplicon library targeting mutational hot spot
regions on the following 47 cancer-associated genes: AKT1,
BRAF, FGFR1,GNAS, IDH1, FGFR2,KRAS,NRAS, PIK3CA,
MET, RET, EGFR, JAK2, MPL, PDGFRA, PTEN, TP53,
FGFR3, FLT3, KIT, ERBB2, ABL1, HNF1A, HRAS, ATM,
RB1, CDH1, SMAD4, STK11, ALK, SRC, SMARCB1, VHL,
MLH1, CTNNB1, KDR, FBXW7, APC, CSF1R, NPM1, SMO,
ERBB4, CDKN2A, NOTCH1, JAK3, PTPN1, and AKT1.

Next, target genomic regions to be sequenced were PCR
amplified using the 191 primer pair pool. Bar-coded sequence
adaptors were ligated to the amplicons using the Ion Xpress
Barcode Adaptors Kit (Life Technologies). The obtained li-
brary was quantified by the Bioanalyzer high-sensitivity DNA
chip (Agilent Technologies Inc., Santa Clara, CA).

Emulsion PCR

Emulsion PCR (em-PCR), the process by which DNA is
clonally amplified onto beads, was performed manually with
the Ion Xpress™ Template kit (Life Technologies) in accor-
dance to the manufacturer’s guidelines. Samples were pooled
and diluted in nuclease free water from the library stock to
further generate a working library concentration of 20 pM.
From this stock, IonSpheres™ (ISPs) were subsequently iso-
lated by manual breaking of the emulsion, followed by en-
richment to select DNA-binded ISPs through the automated
Ion OneTouch ES System™, in order to maximize the number
of sequencing reads generated by the Ion Torrent Personal
Genome Machine (PGM) system. The quantity and quality of
the obtained spheres was evaluated using the Qubit Iono-
Sphere Quality control kit (Life Technologies). Sequencing
was performed on the PGM system using the Ion Sequencing
2.0 kit (Life Technologies) as per manufacturer’s protocol. For
a sequencing sample to be considered successful, a cutoff of
300,000 reads with a quality score of AQ20 (1 misaligned
base per 100 bases) was required. In addition for a sequence
variant to be considered valid, a sequencing coverage of 250x
and a variant frequency of at least 10 % (to wild-type back-
ground) were necessary. Amplicons failing to achieve a min-
imum coverage of 250x were recorded as “indeterminate.”

Data analysis

PGM reads were aligned onto the reference human genome
hg19 using the Ion Torrent Suite software V2.0.1 (Life Tech-
nologies). The IT Variant Caller Plugin, software V1.0 (Life
Technologies) was used for calling variants from the PGM
mapped reads, which were subsequently confirmed by
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visualization via Integrative Genomics Viewer (IGV) [18] in
order to check for probable strand biases and sequencing
errors. An additional layer of filtering was applied using a
customized software (OncoSeek) developed in-house to inter-
face the data generated by Ion Torrent Variant Caller with the
IGV [19]. This allowed visualizing the alignment and muta-
tions detected, as well as to correctly annotate sequencing
information, compare sequencing replicates, and filter out
repeat errors due to nucleotide homopolymer regions.

Mutation confirmation by Sanger sequencing

To validate the presence of mutations detected by Ion Torrent
next-generation sequencing, samples were analyzed by con-
ventional Sanger sequencing. Mutation screening for exon 6
of the TP53 gene was carried out using PCR conditions and ×
2 bidirectional direct sequencing. Tumor DNA for exon 6 was
amplified using the following M13-tagged primers: forward
primer 5′-TGTAAAACGACGGCCAGTCAGGCCTCTGAT
TCCTCACT-3′ and reverse 5′-CAGGAAACAGCTATGA
CCGGTCAAATAAGCAGCAGGAGA-3′. Sequencing reac-
tions were performed in both direct and reverse directions, and
electropherograms were reviewed manually to detect any
genetic alteration. All variants were confirmed by
resequencing independent PCR products.

Results

Based on the epithelial morphotype, two subgroups of carci-
nosarcomas were recognized: a first group with a squamous
cell epithelial component (SCC-derived CCS) and a second
group with a basal cell epithelial component with the presence
of heterologous elements (BCC-derived CCS).

Clinical-pathological findings

Our series included five males and one female patient. CCS
was distributed between the scalp, back, axilla, and head and
neck areas. Patients’ age ranged from 54 to 92 years old.

Patients presenting with SCC-derived CCS had a higher age
range compared to those who presented with a BCC-derived
CCS (Table 1). The BCC epithelial component showed areas
arranged in an insular and organoid pattern. Within these
areas, cells showed scant cytoplasm, focal palisading, and
clefting (Fig. 1a). The SCC epithelial component showed cells
with dense abundant eosinophilic cytoplasm and intracellular
bridges focally and increased mitotic activity (Fig. 1b). The
mesenchymal component consisted of fascicles of large atyp-
ical spindle cells as well as numerous osteoclast-like giant
cells (Fig. 1c). Pleomorphic spindle cells with dark bizarre-
shaped nuclei were identified at the epithelial–stromal inter-
face (Fig. 1a). Focal heterologous differentiation within the
mesenchymal component was present in four cases (Table 1)
including focal osteosarcomatous, leiomyosarcomatous, and
rhabdomyosarcomatous features (Fig. 1d).

Immunohistochemical studies

On immunohistochemical studies (Table 2), the malignant
epithelial cells (BCC- and SCC-derived CCS) were labeled
with cytokeratin AE1/AE3, K903, and EpCAM, while the
malignant mesenchymal cells were labeled with vimentin,
factor XIIIa, and focally with SMA (Fig. 1e, f). p53 was
expressed on both epithelial and mesenchymal components
in all cases except cases 2 and 4, in which epithelial expression
was weak, and absent in the mesenchymal component. In
addition, the epithelial component of all tumors was positive
for p63, whereas the sarcomatous component was negative,
confirming the diagnosis of primary cutaneous carcinosarco-
ma (Fig. 1a inset). The pleomorphic intermediate cells located
at the epithelial–stromal interface labeled with the stem cell
markers CD34, CD117, k19, bcl-2 (Fig. 2), and p63. Both
carcinomatous and sarcomatous components as well as tran-
sitional tumor cells located at the interface labeled with the
pan-epithelial differentiation antigen EpCAM. β-catenin and
E-cadherin were expressed in the cytoplasmic membrane of
the benign epithelium in all cases (Fig. 3a, d). Within the
tumor cells,β-catenin showed a cytoplasmic and focal nuclear
expression, while E-cadherin membranous expression was
decreased in the same cell population (Fig. 3b, c, e, and f).

Table 1 Summary of clinical and histological features of CCS

Case Age Gender Localization Clinical diagnosis Epithelial component Mesenchymal component Heterologous elements

1 92 F Left axilla BCC SCC Spindle cell, sarcomatous Focal rhabdomyosarcomatous

2 90 M Scalp SCC SCC Spindle cell, sarcomatous None

3 83 M Forehead SCC SCC Spindle cell, sarcomatous None

4 54 M Back BCC BCC Spindle cell, sarcomatous Osteosarcomatous

5 73 M Back BCC BCC Spindle cell, sarcomatous Osteosarcomatous

6 59 M Scalp BCC BCC Spindle cell, sarcomatous High grade leiomyosarcoma
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Molecular findings

Mutational analysis revealed a point mutation affecting
the TP53 gene with a resulting encoded amino acid
change from cysteine to tyrosine (p.Cys135Tyr) in both
epithelial and stromal tumor components of one of the
cases of SCC-derived CCS (case 1). The two other SCC-
derived CCSs exhibited an identical 11-bp deletion in
exon 6 of the TP53 gene amongst both components of
these tumors (cases 2 and 3). However, these 11-bp
deletions in exon 6 were not recognized by the IT variant
caller software, thus requiring subsequent Sanger confir-
mation (Fig. 4). The fact that this deletion was detected
in the sequence information on both of the aforemen-
tioned cases but was not by the IT variant caller software

is not surprising. In fact, the mutation-calling algorithm
for the IT-PGM platform is intended to detect single
nucleotide mutations within gene hot spots rather than
large insertions/deletions [18].

Interestingly, BCC-derived CCS (cases 4, 5, and 6)
showed more complex mutations affecting numerous genes
including PIK3CA (E545K GAA > AAA/D350N GAC >
AAC), PDGFRα (E556K GAA > AAA), CDKN2A
(p.r58* GCC > ACC or CGG > TGG), APC (p.P1361L
CCC > CTC), KDR (p.R961W GCC > ACC or CGG >
TGG), and SMARCB1 (c.489_490delinsTA p.F164I)
(Fig. 5). Furthermore, these cases harbored mutations af-
fecting the TP53 gene but different from those identified
in case 1 (p.R196* GCT > ACT or CGA > TGA and
P278L CCT > CTT) (Table 3). When tissue laser

Fig. 1 a–f Hematoxylin-eosin stained sections. a, b 10X showing ma-
lignant epithelial islands consisting of basal cell carcinoma and squamous
cell carcinoma, respectively, with intermediate cells showing dark bi-
zarre-shaped nuclei at the epithelial–stromal interface (circles); inset
demonstrates p63 expression within the epithelial component and transi-
tional cells but not in the mesenchymal component. c 10X showing
malignant stromal component with atypical spindle cells and osteoclast-

like cells (inset). d 10X, highlighting the heterologous osteosarcomatous
areas identified in both cases 4 and 5. e epithelial markers, 10X showing
strong diffuse membranous and cytoplasmic reactivity with pankeratin in
the malignant epithelial component. f mesenchymal/stromal markers, 10
X showing diffuse membranous and cytoplasmic immunoreactivity with
vimentin in the mesenchymal component
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microdissection was possible (cases 1, 2, 3, and 6), all
identified mutations were consistently identical in between
the epithelial, stromal, and whole tumor samples subjected
to next-generation sequencing. Cases 4 and 5 were small
punch biopsies with very intimately admixed epithelial and
mesenchymal components rendering microdissection of the
different components impossible.

Discussion

Carcinosarcomas are a group of biphenotypic tumors which
simultaneously express both epithelial and mesenchymal ele-
ments and which have been described to occur in a variety of
anatomical sites, such as the urogenital and gastrointestinal
tracts, breast, lung, thymus, and thyroid [14–16, 20–24].

Table 2 Summary of immunohistochemical features of CCS

Case Epithelial component Mesenchymal component Intermediate/interface cell

1 k903+, panK+, EpCAM+, p53+, p63+ Vimentin+, factor XIIIa+, SMA + weak, EpCAM+,
p53+ weak, p63−

CD34+, CD117+, bcl2+, k19+, p53−, p63+

2 k903+, panK+, EpCAM+, p53+ weak,
p63+

Vimentin+, factor XIIIa+, SMA + weak, EpCAM+,
p53−, p63−

CD34+, CD117+, bcl2+, k19+, p53−, p63+

3 k903+, panK+, EpCAM+, p53+ weak,
p63+

Vimentin+, factor XIIIa+, SMA + weak, EpCAM+,
p53−, p63−

CD34+, CD117+, bcl2+, k19+, p53−, p63+

4 k903+, panK+, EpCAM+, p53+, p63+ Vimentin+, factor XIIIa+, SMA + weak, EpCAM+,
p53+ weak, p63−

CD34+, CD117+, bcl2+, k19+, p53−, p63+

5 k903+, panK+, EpCAM+, p53+, p63+ Vimentin+, factor XIIIa+, SMA + weak, EpCAM+,
p53−, p63−

CD34+, CD117+, bcl2+, k19+, p53−, p63+

6 k903+, panK+, EpCAM+, p53+, p63+ Vimentin+, factor XIIIa+, SMA + weak, EpCAM+,
p53+ weak, p63−

CD34+, CD117+, bcl2+, k19+, p53−, p63+

Fig. 2 a–d Putative stem cell markers. a 40X showing strong diffuse
membranous reactivity with CD34 immunostain in the atypical interme-
diate cells at the epithelial/stromal interface. b 40X showing strong
membranous and cytoplasmic reactivity in the same cell population as

in (a) with K19 immunostain. c 40X showing strong membranous im-
munoreactivity with CD 117/C-kit in the same cell population as in (a). d
40X highlighting strong nuclear reactivity with BCL2 immunostain in the
same cell population as in (a)
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Primary CCSs are extremely rare, and their nomenclature has
varied through time under a variety of descriptive terms relat-
ing the heterogeneous morphology of these tumors. Metaplas-
tic carcinoma, sarcomatous carcinoma, and pseudosarcoma or
biphasic sarcomatoid carcinomas are among the many names
used to describe CCS [6, 25]. The general morphological
features show an admixture of carcinomatous and sarcoma-
tous components [6, 26], which may be accompanied by a
diversity of heterologous features such as osteoblastic,
chondroblastic, myofibroblastic, angiosarcomatous, and
fibrosarcomatous elements amongst others [2, 6, 14]. Cutane-
ous carcinosarcomas are broadly classified as adnexal-derived
or epithelial-derived carcinosarcomas [5, 7, 27, 28], with
adnexal-derived tumors depicting features of porocarcinomas
[4], matrical carcinomas [29], spiradenocarcinoma [30–32], and
proliferating tricholemmal cystic carcinoma [33–35], and with
epithelial-derived tumors showing features of squamous or
basal cell carcinoma [6]. While adnexal-derived tumors exhibit

a poor 5-year disease-free survival rate, epidermal-derived tu-
mors appear to have a disease-free survival rate near 70 % [5].
Nevertheless, overall recurrence and metastasis rate for these
tumors are around 22 % with a mortality rate of 11 % [5].

To date, very little is known about the biology of these
tumors, and the mechanisms involved in the progression of
this complex malignancy remain yet to be elucidated. Many
theories have emerged in an attempt to explain the histogen-
esis of CCS [2, 4]. The collision theory in which two syn-
chronously occurring distinct tumors collide has been pro-
posed by some authors, and while possible for some cases, it
does not explain those cases rich in a variety of heterologous
elements [2, 4, 6]. A second theory sustains that such tumors
may arise from de-differentiation of an established malignan-
cy [2, 4]. A third theory raises the possibility that the mesen-
chymal component observed in these tumors is nothing else
but a reactive “pseudosarcomatous” stromal change to the
malignant epithelial transformation; however, the reported

Fig. 3 a–fEpithelial–mesenchymal transitionmarkers. a 20X expression
of membranous β-catenin was noted in normal epithelium. b, c 20X
increased expression of cytoplasmic β-catenin was seen in the malignant
cells in SCC- and BCC-derived cases, respectively. d 20X expression of

membranous E-cadherin was seen in normal epithelium. e, f 20X show-
ing decreased membranous expression of E-cadherin in the malignant
cells in both SCC- and BCC-derived cases, respectively (case 2 and case
4 are shown here)
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capacity to metastasize for the mesenchymal component ar-
gues against this theory [2, 4]. The fourth theory sustains that
both the epithelial and mesenchymal components arise from a
common progenitor cells which then undergoes a
biphenotypic differentiation [2, 4, 6]. This aforementioned
stem cell theory is further divided into two plausible pathways
based on whether differentiation occurs from two or more
stem cells (the “convergence” or multiclonal hypothesis) or
from a single totipotential cell undergoing divergent differen-
tiation to different cell lineages (the “divergence” or mono-
clonal hypothesis) [2, 4]. There is increasing histological and
molecular evidence that extracutaneous carcinosarcomas else-
where than the skin are monoclonal in origin [16, 36]. Such is
the case for example, of metaplastic carcinoma of the breast in
which the epithelial- andmesenchymal-derived elements were
noticed to share the same TP53 mutation, suggesting its
possible origin from a single totipotent cell [37, 38]. Similar
results were revealed in a study performed by Armstrong et al.
in which the authors were able to demonstrate identical TP53
mutations on both the epithelial and sarcomatoid components
of a series of cases of urothelial carcinosarcomas [16]. More-
over, in a recent study performed by our group, an analysis of
the distinct laser capture-microdissected tumor components
from a case of primary cutaneous carcinosarcoma also re-
vealed point mutations of TP53 which were identical in both
the epithelial and sarcomatous components, with concordantly
aberrant p53 protein overexpression on immunohistochemical
studies [39]. This finding along with the shared immunoreac-
tivity with putative stem cell markers in a population of
intermediate cells at the epithelial–mesenchymal interface, as
well as the presence of chimeric cells (cells with evidence of

both epithelial and mesenchymal differentiation by ultrastruc-
tural studies) strongly suggested a monoclonal origin of the
tumor [39].

In our study, we performed next-generation sequencing of
47 target genes which revealed differing mutational land-
scapes for the two main epithelial-derived carcinosarcoma
morphotypes (squamous cell and basal cell). While all carci-
nosarcomas exhibiting an SCC epithelial component exhibit-
ed diverse point mutations and deletions in the TP53 gene,
those with a BCC morphotype revealed a more complex
mutational landscape involving several genes (Table 3). In
our series, finding TP53 variants in all squamous cell-
derived carcinosarcomas (cases 1, 2, and 3) is not a surprising
fact. Indeed, p53 is mutated in most keratinocyte-derived
carcinomas especially in SCC (90 % of SCC identified in
the USA contain at least one p53 mutation throughout the
tumor) [40, 41]. The underlying ultraviolet (UV) mutational
signature of TP53 along with the clinical profile (elderly
individuals, sun-exposed areas of head and neck) correlate
with the pathogenesis of SCC [40, 41], in which a subset of
cells that could later have undergone clonal expansion and
differentiation to the sarcomatous component. On the other
hand, the heterogeneous mutational pattern seen in BCC-
derived CCS (cases 4, 5, and 6) correlates with the presence
of heterologous elements within these tumors [12]. Interest-
ingly, both BCC-derived CCS cases with osteosarcomatous
differentiation showed missense mutations involving
PDGFR-α gene [42]. Previously, PDGFR-α has been
shown to participate in matrix metalloproteinase-13 (MMP-
13) expression when induced by mechanical strain in the cells
[43, 44]. These findings suggest that these activating

Fig. 4 Summary of the Sanger sequencing in case 2 (a) and 3 (b)
showing the 11 base pair deletion in exon 6 of the TP53 gene. The same
deletion is noted in the whole tumor, microdissected sarcoma and

carcinoma, respectively. Upper arrows point to the sequence position in
the tumoral tissue in comparison with the position of the sequence in
control normal tissue (lower arrows)
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PDGFR-α mutations may have a role in the bone matrix
deposition leading to osteosarcomatous heterologous differ-
entiation. When microdissection was possible (cases 1, 2, 3,
and 6), identical mutations were constantly identified in all
tumor components (Table 3). These findings strongly suggest
a monoclonal origin for these tumors. This is further supported
by the positive immunoreactivity with putative stem cell
markers (CD34+, CD117+, bcl2+, k19+) within the group of
intermediate cells located in the epithelial mesenchymal
interface.

The presence or absence of overlapping mutations amongst
the different components (as seen in case 6 with SMARCB1)
could be interpreted as a sign of further progression and
divergence, in which one component of the tumor can

independently acquire subsequent alterations during the
course of tumorigenesis. However, because the majority of
the mutations in all studied cases were evenly distributed
across both histological elements, our results are most consis-
tent with the divergent theory, in which carcinosarcomas arise
from a monoclonal stem cell population to undergo subse-
quent differentiation into different cell lineages.

Amongst those mutations observed in the more complex
landscape of BCC-derived CCS, two (PDGFR-α and
PIK3CA) are of particular interest due to their pivotal role
within cellular pathways and their susceptibility for novel
target therapies. Platelet-derived growth factor receptors
(PDGFRs) are catalytic receptors with intracellular tyrosine
kinase activity [45] and are known to play an important role in

Fig. 5 a–e Capture of the IGV screen highlighting selected point muta-
tions detected in different cases. Each column represents a separate
microdissected component (cases 4 and 5 have one column only as no
microdissection was performed). The frequency of the detected particular
mutation in the background of the reference genome is listed below the
column. The depth of coverage is given in brackets next to it. a Point
mutation in the KDR gene leading to a substitution of arginine to trypto-
phan residue at position 961 (p.R961W) (case 6). b Another missense
mutation in the CDKN2A gene leading to a stop codon at position 58

(p.R58*) and unstable mRNA with protein decay (case 6). c A point
mutation in the PIK3CA gene leading to a substitution of aspartic acid to
asaparagin residue at position 350 (p.D350N) (case 6). Another missense
mutation in the TP53 gene leading to a stop codon at position 196
(p.R196*) and unstable mRNA with protein decay (case 6). d A point
mutation in the PDGFRA gene leading to a substitution of glutamic acid
to lysine residue at position 556 (p.E556K) (case 4). fA point mutation in
the APC gene leading to a substitution of proline to leucine residue at
position 1361 (p.P1361L) (case 5)
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cell proliferation and differentiation of mesenchymal elements
[46]. Moreover, PDGF production by all morphotypes across
the BCC spectrum as well as its presence in associated stromal
receptors suggests that the PDGF/PDGF receptor interplay
may play a role in BCC progression [42]. To date, upregula-
tion of the sonic hedgehog (SHH) signaling pathway has been
the hallmark of BCC pathogenesis [47, 48], but its close
relation with other pathways is also gaining relevance in the
complex tumorigenic mechanisms behind BCC formation
[42]. In a study by Xie et al., the authors showed the role of
Gli1, a downstream player controlled by the smoothened
(SMO) in activating PDGFR-α which, in turn, activates the
Ras-ERK pathway leading to cell proliferation [42, 49]. This
sequence of events correlates with the high levels of

expression of PDGFR-α in BCCs, seen both in animals and
humans [42, 49]. The identified mutations in PDGFR-α gene
in two of our cases (4 and 5) provide further evidence on
hedgehog signaling-mediated tumor development as well as
to the expression of a BCC-permissive stroma [42, 50]. Most
importantly, the data suggest that targeted inhibitors against
PDGFR-αmay have a role in inhibiting the progression of the
BCC epithelial component in CCS. On the other hand, it is
known that mutations in the PIK3CA and AKT1 genes can
cause activation of the PI3K/AKT pathway which has been
linked to malignant transformation and behavior of affected
cells in both SCC and BCC [51, 52], as well as in Merkel cell
carcinoma [53]. In the skin, PIK3CAmutations have also been
reported in a variety of benign entities such as epidermal nevi,

Table 3 Summary of mutational
analysis of CSS using NGS Case Component Variant Frequency % Coverage

Case 1 Epithelial/carcinoma TP53C135Y TGC → TAC

KDR Q472H* CAA → CAT

30.67

56

600x

1,449x

Mesenchymal/sarcoma TP53C135Y TGC → TAC

KDR Q472H* CAA → CAT

27.0

51.9

916x

1,776x

Whole tumor TP53 C135Y TGC→ TAC

KDR Q472H* CAA → CAT

20.92

50.16

736x

2,175x

Case 2 Epithelial/carcinoma TP53exon 6, 11-bp deletion NA NA

Mesenchymal/sarcoma TP53exon 6, 11-bp deletion NA NA

Whole tumor TP53exon 6, 11-bp deletion NA NA

Case 3 Epithelial/carcinoma TP53exon 6, 11-bp deletion NA NA

Mesenchymal/sarcoma TP53exon 6, 11-bp deletion NA NA

Whole tumor TP53exon 6, 11-bp deletion NA NA

Case 4 Whole tumor TP53P278L CCT → CTT

PIK3CAE545K GAA → AAA

PDGFRAE556K GAA → AAA

METN375S* AAC → AGC

36.95

14.13

6.24

65.32

203x

2,640x

1,215x

3,019x

Case 5 Whole tumor PDGFRAE556K GAA → AAA

APCP1361L CCC → CTC

MET N375S AAC→AGG

8.07

12.18

56.84

1,698x

1,215x

6,721x

Case 6 Epithelial/carcinoma SMARCB1 c.489_490delinsTA p.F164I

PIK3CAD350N GAC → AAC

KDR R961W CGG → TGG

CDKN2A c.171_172delinsTT p.R58*

TP53 c.585_586delinsTT p.R196*

17.65

9.49

24.61

72.55

37.03

1,728x

643x

2,903x

1,224x

1,407x

Mesenchymal/sarcoma PIK3CA D350N GAC → AAC

KDR R961W CGG → TGG

CDKN2A c.171_172delinsTT p.R58*

TP53 c.585_586delinsTT p.R196*

14.21

21.99

76.26

35.16

1,119x

3,147x

1,592x

1,587x

Whole tumor SMARCB1 c.489_490delinsTA p.F164I

PIK3CA D350N GAC → AAC

KDR R961W CGG → TGG

CDKN2A c.171_172delinsTT p.R58*

TP53 c.585_586delinsTT p.R196

7.47

12.78

22.37

71.75

38.78

2,154x

900x

9,093x

1,596x

1,566x
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seborrheic keratoses [54], benign lichenoid keratosis [55], and
other lesions such as verrucous keratosis [53, 56]. The presence
of specific PIK3CAmutations in two of our cases (4 and 6) is of
utmost importance since the PI3K/AKT signaling pathway
represents a target for specific inhibitors [57]. Interestingly, in
case 4 of our series, two targetable mutations in two different
pathways (PDGFR-α and PIK3CA) were identified simulta-
neously. This finding can be explained by tumor heterogeneity
[58, 59]. This phenomenon is well known in breast and gastric
cancers as well as glioblastomas essentially when dealing with
small biopsy samples [58–61]. Within the same tumor frag-
ment, different subclones of cells harbor heterogeneous com-
plex mutations affecting genes from different pathways or
variable DNA copy number [62]. This tumor heterogeneity
represents a specific signature that can be thought of as an
evolutionary process fostering tumor adaptation and
compromising the efficacy of targeted therapies [58–62]. Yet,
this conclusion should be drawn very cautiously and should be
further consolidated given our limited number of cases (only
one case) and the important clinical impact.

Epithelial to mesenchymal transition (EMT) is a process by
which malignant transformation in many carcinomas is asso-
ciated with the loss of epithelial differentiation and gain of a
mesenchymal phenotype [63, 64]. It has been described in
many tumors including oral squamous cell carcinomas [65,
66]. EMT involves different trends and patterns of expression
of many markers such E-cadherin, β-catenin, and vimentin,
all of which are related to alterations affecting the WNT1
signaling pathway [66–68]. The loss of E-cadherin expression
together with the upregulation of vimentin expression is
known to be a hallmark of EMT changes in epithelial cells
[66, 67]. Interestingly, all our cases showed a decreased mem-
branous immunoreactivity with β-catenin in the malignant
cells with an increased cytoplasmic β-catenin expression
when compared to the normal epithelium. On the other hand,
there was a significant decreased expression of E-cadherin in
between the malignant components in comparison to the
benign epithelium. Vimentin was strongly expressed in the
mesenchymal component but not in the epithelial compo-
nents. Our findings are in line with previously published
literature examining the pattern of expression of different
markers involved in EMT [66]. As such, one can conclude
that CCSs are an additional group of carcinomas whose tu-
morigenesis may involve an EMT process.

In summary, CCS is a rare and heterogeneous group of
tumors with specific underlying molecular signature correlat-
ing with the epithelial morphotype (BCC or SCC). These
molecular events represent promising targets for personalized
therapies. Although novel and promising, our findings need to
be validated through further large studies.

Conflict of interest The authors declare no conflict of interest.
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