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ABSTRACT

A general method using two times Green's functions together
with Linear Response Theory is proposed to. calculate the
relaxation times in nuclear spin systems. The method 1s
applied to a nuclear spin coupled to a magnetic impurity, which
is described by Bloch type equations of motion. the results
obtained are in agreement with earlier theories and experimental

results.

CALCULO CON FUNCIONES |
DE GREEN DEL TIEMPO DE RELAJACION SPIN-RED
PARA NUCLEOS ACOPLADOS A IMPUREZAS
| MAGNETICAS

RESUMEN

Se propone un método general basado en las funciones de
Green de dos tiempos, junto con la Teoria de Respuesta Lineal,
para calcular los tiempos de relajacion en sistemas nucleares.
El método cs aplicado a un sistema de un spin nuclear acoplado
a una impurcza magnélica, la cual se encuenira descrita por

ecuaciones del tipo Bloch.
lcorias ya establecidas y resultados experimentales.
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INTRODUCTION

The determination of the theorical dependence with
temperature of the nuclear relaxation times T, and T2 at very

low temperatures, even comparable with the nuclear spin
temperature, has been of major 1n interest among the NMR
research groups over the last years (1) (2) (3). Many
successful attempts has been done in the range of low
temperatures, but its extension to the whole range implies, 1n
many cases, the addition of new assumptions and postulates.
The purpose of this work is to give an application of the two
times Green's function formalism (4) in the calculation of the
spin-lattice relaxation time T, for any temperature. The lines
of reasoning followed in this work for the derivation of the
general relations, within the linear response regime, are the
same as those of Deutch and Oppenheim (5), but we explicitly
substitute the response function by the more general two
times Green's function, to make use of its extremely powerful
and general properties. | |

First, we consider a system, with the Hamiltonian:

H=H2+HSL+I'IL (Il)

subject to a perturbation

t 4 | )
H =-M-H _ 12) .

with:

H =6 (—t) e Hy,e— 0 (13)

1

According to the linear response theory, the magnetization
at time t is given by (4):

+4-co

tl
<M()> = <M>( - j«M(t)  M()>>H. dt

- OO

4y -

which can be written:

<M. (1)> = - 21- J'do.} de«MM»m-H_le-im(t-l')e(-f) el (1.5)
M n . e

+
g — 0



Green's function calculation of T1 due to magnetic impurities

where <OM (1)> = <M(t)>- <M>, , and <<_M_|M>>(,) 1S the
Fourier Transform of the Green's function <<M (1) : M (t)>>.

The integral over t' can be explicity done and we get the
following result:

+o0
1 <<M_IM>>(D' H_]_ : |
<M (H)> = -=— |do — e 10l ¢ 5 0t (L&)
27 g 1(W-1€)

By making -the Laplace Tramsform, taking z = o + in,
n — 0%, we get: '

<5M(03)>=lim+<8__1\_/[_(z)>=lg[<<_M_lM>>m- <<MIM>>, ] H, (.7)

n-—)ﬂ

On the other hand, by using eqn. (1.6), the value of
<OM(t=0)> can be found:

<OM (t=0)> = -<<MIM>>; -H; d. 8)
SO We can write:
1
Hi = - <<MIM>> 0 <OM (t=0)> (1. 9)
and finally:
' 1

<OM(w)> = L ( <<MIM>>, <<MIM>> 0 -1 )~<6_M_(t=0)>

10 ~ .

(1.10)

An analogous procedure can be followed to derive an
equivalent equation to (1.10) starting from phenomenological
Bloch type equations of motion for the nuclear spin system.

We get:

(L.11)

where R ao = Rag +10®y , ®y 1S the nuclear Larmor

Frecuency and R'00 = 1/T,, R'11 = R' -1-1 = 1/T,. If we
equate egns. (I.10) and (I.11), which can be done under the

assumption of a single exponential relaxation process for the

nuclear spin system, we get the following result:

R (1_1 (co (m)o)

(1.12)

By taking the real part at both sides of egn. (1.12), we get:

| -]
Ra(x I [ (<<M 'M:’}co)aﬁ (<<_M_1M>> 0 )BU']
2, F
. B 0
Raa+ (0—amp)
(I.13)

Using the symmetry properties of the Green's functions (4)
and making the supposition that there is no correlation
between different components of nuclear spins, which is
consistent with the above assumptions and holds very well in
the practice, we get the simpler equations:

R' , Im(<<M_IM_>>m)a_a
2 " ® Ref <<MIM>> (-14)
R(;t(l+ (O—0mQ) e( g O)a—a

This equation i1s a consequence of Onsager assumption
about the equality between the evolution of a physical
macroscopical observable and the evolution of the fluctuations
associated with it. The purpose of this work is to calculate
the T, relaxation time for a nuclear spin system in the

presence of paramagnetic impurities, so if we take the limit

® — O for the a = 0 component in egn. (1.14), we get the
tollowing equation for the spin-lattice relaxation time:

<<M_|M>>
Ty = lim — e il R e} (1.15)
o Re<<M I M >0
w—0

This will be the basic equation to be usced in the rest of the

wOork.
II. Hamiltonian.

Let us suppose a general intcraction Hamiltonian between
the electrons and the nuclei of the form:

mnnm

1_| m,n 1] )

(1. 1)

where m, n, denote the components of spin (both nuclear and
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electronic) and i, j, denote the position of nuclear and
electronic spin respectively. It is worthwhile to note that
(I1.1), although it is directly applicable to a system with
localized electronic spins, it can be equally well be used to
describe the interaction in a system with nonlocalized spins,
i.e. a metal, using the well known Fermi contact type

interaction.

The total Hamiltonian for the system 1s then:

H —_ HS + Hse + He (II. 2)

and in order to simplify matters further we will suppose just
- one localized electronic spin, which means a very dilute

paramagnetic system:

Hee = 2 T30 815 (I 3)
i: m,n

and Hg , He and respectively

Hy = -y Hy 21 (L. 4)

H.= gug Hy S* + H. (1. 5)

with the following properties:

[H, ,HJ] = O (1. 6)
* m-

(™) = (3P (L 7)

In egn. (IL.5) we have introduced H, as the Hamiltonian that

will take into account the interactions, apart from Zeeman
energy, acting on the spin S. The explicit form of this
Hamiltonian will not be of interest in this work and we will
consider its action on the operator S, only through a

phenomenological point of view. We will return to this

assumption explicitly later in this work.

1. Equation of Motion for the Green's Function <<I?II§>>CD('+“).

As it is usual in this kind of formalism, we have to set the

equation of motion for the original Green's function

0 0 {£) . ‘ .
<<:Ii_ | If’”m , together with the equations for the generated

Green's functions and try to solve the whole system by
making certain decoupling assumptions. It is also convenient
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to calculate this equations for conmutator and anticonmutator

"Green's functions in order to search which kind of decoupling

scheme is more efficient. We will show in: the next section
the use of the anticonmutator Green's function to calculate the
relaxation time T, . The original equation is:

0,0 (&) _ [0+ in__otym 0 ()
Ko, | T>>g ﬂ_<[1i,1j]&)>ﬂ+ m?ﬂm‘ﬁ‘ <<S'I 11>

(1IL.1)
and the equations for the generated Green's functions are:

m 1

nm o (B n
ho-may) <<8"I7 11554 = <|s" 1] i I

+ 1R <<§n Ini1 | I(.]>>m(i) +
J

1 _ 0
D LTl B el [ eSO
m,n; ]

+ k_ﬂ)i . ™[5 s™ | 1B T '1;.’>>0,‘*’ (I11.2)
where we have used the relation:

. 1 ‘
= [s"H] (L 3)

In order to decouple this set of equations, we propose the
following decoupling scheme:

_ <<S™s™ 1i1 | I?»mti) ~ <8M>) <<S" lii | I§>>m(i) (1. 4)
if there is no correlation between S"'and ",
<<S"s™ Ioi | I?>:>m(i’ = <S" Sn1>0 <<Iui I13>>m(i) (L. 5)
<:<IE s" Iii | I§>>m(i) T <:Ilz>0 <<Snlii ! I§>>m(i) (11I. 6)
<:<:IliJr s lii | Ij}::-m(i) = <Sn::=»0 01 <:~=:Ii;aT Iil I I?‘:-::»mm _ (m. [)
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and -
. (II1.12)

for m, n, equal to +-1.

1,l'l<-<Srl liII .:>> --111<<S fﬂ >>co ~ nglig H <<S$ fII >> 0 ® ~

1)
. _ | _ Wlthm the same approximations the equation of motion for
e <7 115>, with m = +-1 can be written:
== <8 GI>>4 " — e, <<8" I>> (L. 8) . - ,
- {h(m—m )+mJ <S’ >4 }<<Im11 >> 0 2m] <S >0<<Iﬂ1 :>>(0(+)
where we have defined:
- (111.13)
— n ! _
- [S 'H“] (- 9) and by means of the identity:
and we have made the assumption that the evolution of the L =I0+1)-0)Y-ml, (TI1.14)
electronic system is given by Bloch type equations of motion, e
1.6.:
5qn _ for m = +-1,we can write the Green's function <<I; I?II;’»mm
$ = in®_ st — ' (I11.10) as: '

_ n n o | <<:<I‘;LIl 'In;l I;»m(i) = - «:<(I§)2 | I§>>m(i) - m<<1? | I{!>>m(i) (II1.15)
with 88" = §" - <§">  and t_ corresponds to the nth J

component relaxation time.
' Substituting egns. (II1.13) and (II1.15) in (II1.11) and
| (I11.12) and discarding terms of order J and superior, we find:

By means of this decoupling scheme the resulting equations
for the generated Green's functions are:

0
<<S™ IT I I.>>(D(i) =
]

)
{H(wmmo)+MQe+—+ mJ. <8 >g+n¥. Jﬁ“dﬁ>o}<<s“r‘i"ll‘?>>m‘i>= om0 oo
Tnn ' k | ‘] 2mJ {<S S >0 'H‘<S >0}<<I |I :3':} -2ﬂji <S >0 <<Ii2II ‘>>m(—)
) i1 00 0 00 _0O
K(@-mo)+nf @ +=—+mJ. <8 >p+n2 J} <I >,
-m-n _1.-11 0.0 (B - -m (+) © T 1 k k
=2mJ; <SS T <<l >>g 2nJ"7 <8 > << ImIIJ>> o+
0 | (I11.16)
{ 22]1( <S8’ >0 <Ik>° J <SS >o }<<I?Ilj>>m(i) (II1.11)
-<<:Sﬂfi11 | I§>>ﬁ;ﬂ =
and
14
i 03 """‘<SDL>?}
. -m T
H(@-m® )+~ <<S’ I'iml I?»(D(i) = 2mJ" <S§° 2>~0 <<If LI?>>(0(J"} + oM™ _ <5 >0 . eo
' T J 1 J 1 iH e
R(@-mo = | K(o-mo M ( H(o-mo, )+mJ <S >U)

T

i1-I<S°>0 - - "
t o ——-mJ; <8’ %, <<1‘“|1>>w-’ ¥
<<I l I >>m(+)

) ]

L0+ O-T_ _ot®  ° 5 () 0- 40 -y 40 (+
+ E. I <L >0 <<S'L; | L>>g " - %‘]k <1, > <<S I; 1>>g,

(IM.17)
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If we make the definitions:

i 60 0
Ko =Ho -J. <8 >

"> _ (IIL.18)

00
Ko =Ko + 2 Jp <1
E"): e+k k k

which corresponds to the nuclear (electronic) effective energies
corrected by the mean local interaction with the electron

(nucleus) respectively, we finally get, after subtitution 1n egn.

(ITL.1):

{ Ko-W. (@) } <<l |1 S>> = <[I?,I?] (+)>m+Fi(co)<<(£3211§}>m(i)

(1I1.19)
where
| . ' ' yINT 2 072 | 1
w_(w)zzﬁ{):l]i {S(S+1)-<S" "> } +
1 m n 16
H(o)—m(ﬂ +NO )+~
~ 0 Fot gu T

CI)

1h 2

-—-<S >
mo 2 <S(}2>0 | Tcu °
+ 15 e | }
K(o—meo )+=— 1
(o-mo)+ = | K{o-ma)+— H(co—mgaﬂ

(111.20)

where the prime indicate that the sums are done over the
values +-1 and use of the property (I1.7) has been done.
Also:

F (0) = 2): ):mn |1 (111.21)

[V. Detcrmination of the Nuclear Relaxation Time T;.

As discused in Section I in order to calculate T; , we must
first cvaluate the real and imaginary parts of the conmutator.

| , . 0, ;0 . ..

Grecn's function <<Ii j I,:>:>m() in the Iimitof @ — 0. It
| 1 |

results easier to evaluate the imaginary part of the

corresponding anticonmutator Green's function (6) (7) and Lhcn
to use the following general relation (4)
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0, .0 (-) Pif o () v
[ <<LIL>>q " = tanh—?:—I <, II:>>0) - (IV.1)

The real part can be evaluated through the Kramers-Kromg
relations (4) and in the limit kT>>ho) ‘it 1s simply: -

o .0 (-) 0, 0
Re <:<IiIIi>>m = -[3<:IiIIi>D (IV.2)

The solution of the equation (II1.19) for the anticonmutator
Green's function can be written as:

0 0
2<0. 1'1.> . |
1055 ) = i o ava)
bt Ko - W, (©)

where W, (0) = A; () _ iB. (®), with

= RBWi (®) =

A, (@)
{ mn o " h(m—m9;+n9=)
=2§1 %IJi 2{ S(S+1)-<S"">; | EEEE—
hz(m—mggmg_ac) 2y ry
hz
| h<802>0(m—mo)0) _ T >y .
+17. + = ' }
1 hz h2
K(o-mo)i+ = | Ki(o-me) H(co—m
(IV.4)
and:
Bl((.l)) = - IITI‘W1 ((D) —
1A
| T
mi 2 02 cn
= 2?11{%‘: I J 1 i [S(S+1)'<S }U} Hz +
¢ ((D—m(00+niﬂﬁ) + - 2

cn

U“;’ 2 K K (e-mo)
+-——'———? —_<S >0 - T _""'-'.'_i_(S :" } 1V.5)

KAo-m® )+— - (m‘m‘-’) )
B

co
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with the property that A; (0) = 0, B; (0) # 0. By using (IV.1),
the imaginary part of <<I? I I?>>m(') 1S:

0, 0 () 0 _0 PH @ Bi((!))
I <<l 11.>>4""=-2<<I. | I.>> tanh = —
m i i i 2 (l'iO)—Ai (co))2+Bi ()

(IV.6)
and
. 1 Im<<I{; | Iﬂilz»:» €) K
= ~ 3 . 0.0 = RION IV.7
T, @0 g R<<L | I.>>, B. (O) AV-7)
or more explicitly, the spin-lattice relaxation rate is:
417 12 T
1 .1 1 . 02 2e
— S(S+1)-<§ > 1 +
a4 K2 LS(S+1) 0}1+T22(co-co)2
C "me ~ (3}
+0 2
" 4”i | 02, Do 0 2 T
<S >e- =I<S> H=—T +
K* O °| 14T,
413, P2 T
+ — {S(S+1)<§%%,} > e - (IV.8)
K> 14T, (@ +0)

where we have made use of the fact thatt_, = 1_ =T, and
Tep = Tle .

V. Discussion.

The results in the last section in egn. (IV.8) include all the
contributions to the spin-lattice relaxation rate, each one
related to a different term of the interaction Hamiltonian

327

(IL.3). The temperature and ficld dependence for this relaxation

rate 1s given essentially through the mean values

accompanying each one of the terms of (IV.8), besides the
temperature dependence already present in T,.and T,.. At

sufficiently high temperatures and low field, conditions under
a small electronic spin polarization is present, and due to the

i, .
smallness of ® o 10 comparison to @ , only the second term

of (IV.8) has to be considered (unless the coupling constant

J""is zero ). The simplified expression for the spin-lattice

1

relaxation rate can be written as:

417°° 12 T
1 G 0 0 1+T12 ® '
c 0

i
where we have made the approximation W, = 0.

At low temperatures, we get a reduction of the spin-lattice
relaxation rate due to the development of a strong electronic
spin polarization, and for the case of spin 1/2, we obtain that
(V.1) vanishes in high field. In such a case the first and third
terms of (IV.8) represents the only contribution to the
relaxation rate, which is indeed very small. Finally, we note
that the discussed behaviour of (IV.8) has been confirmed
experimentally (8).

V1. Conclusions.

We have developed a general method to calculate the spin-

lattice and spin-spin rrelaxation times for nuclear spins based
in the general formalism of Linear Response Theory and two
times Green's functions. The results obtained in the case of a
nuclear spin system coupled to a paramagnetic localized
impurity corresponds completely to previous results (1) and
experiments (8). The versatility of this method suggests its
application to a wide range of systems at temperaturcs even
comparable with the nuclear spin temperature.
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