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Green’s function calculation of effective nuclear 
relaxation times in metals 
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Apartado 20513, 1020A Caracas, Venezuela 

[Received 27 July 1987 and accepted 29 September 19871 

ABSTRACT 
A two-times Green’s function formalism is used together with linear response 

theory to derive general equations, valid at any temperature, for the effective nuclear 
relaxation times in metals. The results obtained by selecting the smallest-order pole 
in the Green’s function as the first approximation are in complete correspondence 
to experimental evidence at high temperatures and exhibit a maximum when the 
temperature is lowered below the nuclear spin temperature. The results are also 
compared with those given by Shibata et al. and good agreement is obtained in the 
supposition of a single-exponential spin-lattice relaxation process. 

$ 1. INTRODUCTION 
The theoretical derivation of expressions for the magnetic nuclear relaxation times 

at very low temperatures, and the description of the behaviour with temperature of 
such relaxation times, has been of major interest among researchers in the field, 
especially because of the recent experimental possibility of obtaining measurements of 
nuclear magnetic properties at such low temperatures. There has been a considerable 
amount of work in the area of nuclear magnetism (Abragam and Goldman 1982), but a 
comprehensive theoretical interpretation of nuclear magnetic resonance (NMR) 
relaxation times at arbitrary temperatures is still lacking. Recently, Shibata and 
Hamano (1982, 1983) have published a series of papers concerning the theoretical 
determination of the nuclear spin-lattice relaxation time for a system of nuclear spins 
interacting with conduction electrons in a metal. Using a theory of nonlinear spin 
relaxation (Shibata 1980, Shibata and Asou 1980, Asou and Shibata 1981), a multi- 
exponential spin-lattice relaxation behaviour is predicted. 

In the present work, we make use of the two-times Green’s function formalism in the 
regime of the linear response theory to derive the temperature behaviour of nuclear 
relaxation times (Martin Landrove and Moreno 1986) for nuclei in a metal. The results 
obtained are in complete agreement both with those derived under the assumption of 
an effective unique relaxation time (Shibata and Hamano 1983) and with experimental 
evidence (Brewer, Shirley and Templeton 1968, Bacon, Barclay, Brewer, Shirley and 
Templeton 1972). The organization of this paper is as follows. In $2, we show very 
briefly how the formalism is to be used in the calculation of the relaxation time and we 
work out the Hamiltonian of the system from which the equation for the Green 
function ({IolZo)}i-), which contains all the information relevant to the spin-lattice 
relaxation, is derived. This equation is then solved including terms up to second order 
in the electron-nucleus interaction. Finally, in 5 3, we obtain and discuss the relaxation 
time formulae. 
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104 M.  Martin Landrove and .I. A.  Moreno 

9: 2. HAMILTONIAN AND EQUATION FOR ( (~olZo)}~-)  
The Fourier transform of the evolution of magnetization subjected to a stepwise 

external perturbing magnetic field is (Martin Landrove and Moreno 1986, Zubarev 
1974) 

Its Laplace transform can be obtained through 

So we obtain the following expression: 

( 6 M ( ~ ) ) = f  (z). (6M(t=O)), (3) 
where 

, &-+O+. <<MI M >>I;’((< M I M >>b- 9 - + m  

f ( z ) = - L [  2n - -do  do (o -ic)(w - iz) (4) 

The relaxation behaviour of the system is usually observed at  very long times 
compared with the microscopic correlation times governing the interaction which 
causes the relaxation. For this reason we need to consider only the asymptotic 
representation of the inverse transform of eqn. (3) as t+m. 

The asymptotic behaviour of the f(t) function can be derived by using Tauber’s 
theorem (Paley and Wiener 1934, Berg 1967) which expresses the fact that, as [+a, 

+ O D  

U k - 0  
f ( t )  = 1 exp (zut) 1 cp[r( - - 1 t  - ( I +  nr) ) ,  (5 )  

where z,. denotes the singular points of f (z), Cf“ are the coefficients of a Laurent 
expansion near z, and np) is related to the order of the singularity; for a first-order pole, 

As is often the case, the solution of the Green’s function equation for the a 
n F =  -1. 

components of the magnetization (a=O, & 1 )  assumes the following form: 

Since our goal is to determine the nuclear spin relaxation times, defined only in the case 
of exponential relaxation, we shall be concerned with finding the first-order poles of 
eqn. (6) in the neighbourhood of aw,. 

When the complex functions on and Wa are slowly varying around owo, we obtain 

(7) 

resulting in the characteristic exponential relaxation form usually assumed in nuclear 
magnetic resonance work. In these circumstances, it can be stated that the relaxation 
times are given by 

fa(t)=exp { -i{ao,+Re [W,(ao,)tl] exp {Im CWa(a~,)t l)) ,  
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Nuclear relaxation times in metals 105 

The procedure for calculating the nuclear relaxation times can then be stated as 
follows. First the relevant Green function equation is derived and solved, usually by 
making some appropriate decoupling approximations. From this solution, which is 
typically of the form of eqn. (6), an analysis of the singularities of the function f(z) is 
performed and the relaxation parameters are obtained. When we are solely interested 
in exponential relaxation, only the first-order poles need to be considered. This 
procedure can, in some circumstances, result in a superposition of relaxation times for 
the relaxation form. 

The total Hamiltonian for the system can be written in the following way: 

H = H ,  + Hn-e + H e ,  

where 
(9) 

where v represents the band index for the conduction electrons, s the spin component 
and k the wave-vector. The interaction between the nuclear spins and the conduction 
electrons will correspond to the Fermi contact interaction, and can be written as 

where C = (871/3) y e y h 2 .  
Since we are interested in the calculation of the spin-lattice relaxation time TI, it is 

necessary to derive the equation for the commutator Green’s function ( ( Z O I I O ) ) ~ ) ,  
which assumes the form -. 

The equations for the newly generated Green functions are the following: 
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106 M. Martin Landrove and J. A. Moreno 

At this point, it is necessary to introduce some decoupling scheme of 
approximations in order to solve this increasingly complicated system of algebraic 
equations. Usually this can be done by approximating some of the operators present in 
the Green’s function by their mean values, assuming that there is no correlation 
between these operators and those remaining in the Green’s function, which is the so- 
called random-phase approximation. In our case, we approximate 

The first three equations assume that there is no correlation between the electronic 
occupation number and the z component of the nuclear spin, or equivalently the 
nuclear Zeeman energy, because the interaction energy between both systems is very 
weak. The last equation involves the equilibrium transition probability between both 
systems and depends on the coupling constant C in a higher order; so it can be 
discarded if an expansion of the solutions with respect to that constant is performed. 
Finally, if we discard in eqns. (13) and (14) all the Green’s functions related to two- 
electron processes and keep only terms linear in the coupling constant C, we find that 

where r corresponds to the Knight shift and 
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Nuclear relaxation times in metals 107 

By substituting these equations in eqn. (12) we obtain an approximate equation for 
((lollo))';), which can be written as 

[ho - W(w)] (( I01 P))1;;' = do), (21) 

where 

and 

where ho, , ,=hoo-r+E(kf)-E(k-) .  

straightforward to show that 
The functions ~ ( w )  and W(o) are in general complex functions but in this case it is 

1 Re [a(O)] = 0, 

Re [ W(O)] = 0, 

and that 

As was mentioned earlier in this section, by studying the pole composition of 
eqn. (21), it is possible to derive an expression for the spin-lattice relaxation time. In this 
case, it results in a unique effective relaxation time, which can be expressed as 

5 3. CALCULATION OF THE SPIN-LATTICE RELAXATION TIME IN A SIMPLIFIED MODEL 
We shall apply eqn. (27) to the case of a very simple model for the conduction 

electrons. We shall suppose a nearly-free-electron gas system, characterized by some 
density of states g(E) and with single-particle wavefunctions very close to a plane-wave 
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108 M. Martin Landrove and J. A. Moreno 

form, such that it is possible to replace the sums in eqn. (27) by integrals over the energy 
spectrum; thus, 

where use has been made of the small dependence of I+(E)I’ on energy under the 
assumptions already given. In the high-temperature limit, where the thermal energy is 
larger than the nuclear spin energy, eqn. (28) becomes 

I/ TI = ( 4 4 h ) ( ~ / 2 ) ~ 1  + ( ~ ~ ) 1 4 m = ) k ,  7: (29) 

I- = -(C/2)l~(E,)12S(E,)hw,; (30) 

TI Tk,(T/ho,)’ = h/4n, (31) 

In contrast, the Knight shift in the same limit can be written 

so we obtain 

which corresponds to the well known Korringa temperature behaviour. At extremely 
low temperatures, eqn. (28) can be approximated differently and 

1 / TI = (24h)(C/2)’ I + ( ~ F ) 1 4 ~ 2 ( ~ F ) h ~  1 > (32) 

where ho, is the nuclear energy corrected by the Knight shift. We thus obtain a 
temperature-independent value for the spin-lattice relaxation rate, which can be 
rewritten as 

I/T, = ( 2 4 h ) ( r j h ~ 0 , ) ~ h ~ 0 ~ .  (33) 

In the whole temperature range, eqn. (28) can be calculated numerically, and the 
result is shown in the figure. Tl shows a maximum at a temperature that is 
approximately one-half the nuclear spin temperature; this is consistent with the result 

+ i ~ o  / KsT 

Numerical calculations of effective longitudinal relaxation time TI for the nearly-free-electron 
model. The curve exhibits a maximum at  nearly one-half the nuclear spin energy. 
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Nuclear relaxation times in metals 109 

obtained by Shibata and co-workers under the supposition that the relaxation process 
can be described by a unique effective relaxation time TI, as observed experimentally. 
Also there is a correspondence between both results in the low-temperature limit, 
leading us to think that our calculation, even in its simpler approximation, is 
quantitatively correct. From the experimental point of view, there are insufficient data 
to decide whether a single-exponential or a multi-exponential relaxation takes place, 
but the general tendency is to believe that, even though the process seems actually to be 
multiexponential, it could be described by an effective relaxation time T;, which is the 
time that characterizes the evolution of observable parameters and, in particular, the 
longitudinal magnetization (Brewer et al. 1968, Bacon et al. 1972). The temperature 
dependence shown experimentally by this time T;, agrees completely with the 
behaviour shown in the figure. We recall that the expressions presented here are the 
zero-order approximation of the pole structure of the Green function, eqn. (21), which 
was performed by taking o = 0 in the functions a(@) and W(o). This approximation was 
justified by assuming that both a(w) and W(w) were slowly varying functions of 
frequency. In a rigorous way, this assignment is somewhat risky, because there is the 
possibility that part of the pole structure could be missed, even branch points; so a 
detailed study of the Green function pole structure should be made. In particular, our 
results show no spin dependence, i.e. a(0) and W(0) do not depend on I ,  which is 
contrary to what is to be expected, since the transition probabilities between Zeeman 
levels, induced by the lattice, should be spin dependent. The difference comes from the 
zero-order expansion of the function a(w), since this function contains information 
related to the population dependence of nuclear-electronic transition probabilities and 
strongly depends on nuclear spin. It is possible that a higher-order expansion of a(w) 
and W(o) could take account of the spin dependence of the spin-lattice relaxation time. 
We have already performed a second-order expansion of the function W(o) and 
obtained again a single pole for the Green function, corresponding to a small correction 
to eqn. (27). Nevertheless the approximation assumed in this work, besides its 
simplicity, takes into account the main features present in the temperature behaviour of 
relaxation times, within the limits of linear response theory, and can be extended to 
consider more realistic models or systems. 
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