
ELSEVIER 

22 August 1994 

Physics Letters A 191 (1994) 409-415 

PHYSICS LETTERS A 

Solitons in a nonlinear D N A  model  

J o r g e  A. G o n z A l e z  1, M i g u e l  M a r t i n - L a n d r o v e  

Departamento de Fisica, Facultad de Ciencias, Universidad Central de Venezuela, Apartado 47586, Caracas 104 I-A, Venezuela 

Received 27 January 1994; revised manuscript received 27 April 1994; accepted for publication 7 June 1994 
Communicated by A.R. Bishop 

Abstract 

A complete qualitative analysis of the nonlinear DNA torsional equations proposed by Yakushevich [ Phys. Lett. A 136 (1989) 
413 ] is performed. Analytical expressions for some solutions are obtained. Special attention is paid to the stability of the solu- 
tions and the range of soliton interaction in the general case. Some biological implications are suggested. 

There has been a very active theoretical work on 
the proposal of nonlinear dynamical models for the 
deoxyribonucleic acid (DNA) in order to explain the 
origin and dynamics of open states in the double he- 
lix of this molecule [ 1-3], which are somehow re- 
lated to the transcription or replication processes. 
Even though most of the models proposed are simple 
in the sense that not all the degrees of  freedom are 
included, in the majority of the cases, these models 
predict a very rich variety of  possible open states in 
contrast to the scarcely few experimental data related 
to the conformation of  the open form [4-6 ]. Addi- 
tionally, the interactions between the solitons (or 
open states) are variable for the different proposed 
models and in most cases have short range. In this 
paper, we study a particular model [ 1 ], which de- 
scribes the torsional dynamics of the double DNA 
helix and we obtain the general behavior of the solu- 
tions and the range of  the interaction between the so- 
litons, which turned out to be a long range one. 

Yakushevich [ 1 ] proposed the following equa- 
tions for the torsional dynamics of DNA, 
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AI 
I lqm=Kla2~ol=-k-  T [ (2R2 + Rlo) sin~l 

- R  2 sin(~l +q2) ] , ( l a )  

I2~2u = K 2 a 2 ~ 2 = - k / / [  (2R2+Rlo) sin ~2 

- R  2 sin(q1 +q2) ] , ( l b )  

where 

Al 
l 

-- 1 --/0[ (2R +/0 - R  cos ~1 - R  COS ~2) 2 

+ (R sin~l - R  sin ~2) 2 ] --1/2 

In these equations, (Pi is the torsional angle of the ith 
chain, I; its moment of inertia, K~ is the rigidity of the 
longitudinal springs of the ith chain and k the rigidity 
of the transversal springs connecting both chains, R 
is the radius of the chains, lo the minimum separation 
between the chains and a the characteristic length of 
a base pair in the double helix. In Ref. [1 ] these 
equations are simplified by assuming that lo = 0, which 
leads to 
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Ii ~Oltt- g l  a2~Olzz 

+kR212 sin ~ol - sin (~Ol +~02) ] = 0 ,  (2a) 

I2 ~02, - K2 a 2 ~O2zz 

+kR 2 [2 sin ~02 - sin(~ot +~02) ] = 0 .  (2b) 

For these equations different types of solutions are 
proposed in order to simplify even more the set of 
equations. The following cases are considered as so- 
lutions of Eqs. (2): case (a) ~01=0, ~02~0, for which 
Eqs. (2) are reduced to 

I c t t - K a 2 ~ o ~ + k R  2 sin ~0=0. (3) 

This result is not quite correct since by putting ~o~ = 0 
in Eq. (2a) then sin ~02 = 0, which leads necessarily to 
the solution ~02 = nn==. const and does not correspond 
to a solitonic solution of Eq. (3). 

On the other hand, cases (b) ~01=~02 and (c) 
~o~ = - ~ z  lead to the equations 

I~o t t -Ka2~o~+2kR 2 sin ~ -  kR 2 sin(2~o) = 0 ,  (4) 

l~ott -KaE~ozz q-2kR 2 sin ~o=0, (5) 

respectively. These equations are only valid for sym- 
metric chains, i.e. for It = 12 - I and K~ =/£2 - K. 

Let us analyse Eq. (2) in a more general way. As 
usual let us introduce the travelling wave variable 
~= z -  vt, to obtain the following system of equations, 

W~ ~0~' -kR212 sinqh -s in(qh +~2) ] = 0 ,  (6a) 

W2(o~ -kR212 sin (02 - sin(~ol +~02) ] = 0 ,  (6b) 

where w i = g i a 2 - I i l )  2 and the prime corresponds to 
the derivative with respect to #. 

The system of Eqs. (6) can be written as 

Wt~o'( = O V ( ~ ,  ~02) (7a) 
O~o~ 

W:to'~ = OV(~o,, ~o~) 
0~o2 ' (7b) 

where 

V(~Ol, ~o2)=kR2[2(cos ~Ol +cos ~o2) 

- cos(q,~ +~02) ] .  (8) 

V(~ot, ~2) has local maxima at the points ~ot=2nn, 
~o2=2mn, w i t h n = O ,  + 1, +2 ..... and m=0 ,  + 1, +2, 
.... The points ~o]= ( 2 n -  1 )n, ~02= ( 2 n -  1 )n corre- 

spond to local minima while the points ~t = (2 n -  1 )n, 
~2 = 2mn; ~01 = 2mr, ~o2 = ( 2 m -  1 )n are saddle points. 
These points are shown in Fig. 1. 

The local maxima have the same height so for every 
two contiguous local maxima there are solutions of 
the kink type [ 7,8 ]. For example, there are solutions 
with the following properties, 

lim ~l =0,  lim (01 = + 2 n ,  

lim ~02=0, lim ~02=0, (9) 

and their symmetrical and 

lim ~ol =0,  lim ~o~ =_+2n, 

lira q2=0, l i m ~ 2 = + 2 n ,  (10) 

and their antikink solitons, respectively. 
Among these solutions only those of type (9) are 

stable (see the Appendix). The solutions given by 
(10) are unstable and decompose in two solitons of 
type (9),  together with small amplitude travelling 
waves. We must also notice that the connection of the 
points (0, 0) and (0, 2n) cannot be done through the 
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Fig. 1. Distribution of critical points for V(ql, q2), where ( X ) 
are maxima, ( • ) saddle and ( [ ] )  minima points. 
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straight line at Cm =0, which is due to the fact that 
~0 m ------0, ~[~2~ 0 is not a solution of Eq. (3). 

There are, in principle, solutions that connect sad- 
dle points, for example, 

lim ~Ol =n, lim ~ol = n ,  

lim ~02=0, lim ~02=2n, (11) 
~ -oo ¢400 

but as can be readily seen, these solutions are clearly 
unstable. 

There are different critical velocities for K~ ~/(2, 
given by the general expression c 2 =K,a2/Ii .  We will 
consider first the case when the velocity of the soliton 
is restricted to 0 < v 2 < C2m, with c., the maximum erR- 

2g 

0 

(b) 

© 

[] , 

ical velocity. Without any loss of generality, we can 
assume that 0 < c~ ~< c~. In the particular case of v= c2, 
Eq. (6b) yields a relationship between ~Ol and ~o2, 
given by 

sin (or 
~02 = a r c t a n ( 2 _ - - ~ , )  , (12) 

and symmetrically when v=c~. An interesting char- 
acteristic of Eq. (12) is that it displays a relationship 
between the two components of the solution which is 
qualitatively similar to the solutions of the type de- 
picted by Eqs. (9) corresponding to any other value 
of the velocity. The exact solution can be obtained 
from Eq. (12) and the first integral of Eqs. (6) in 
terms of elliptical integrals. In Fig. 2, the trajectories 
in the plane (~m, ~2) are shown for different cases. 

The cases (b) and (c), represented by Eqs. (4) and 
( 5 ) correspond to solutions of the type given by (10). 
For the last case (case (c)),  we have the following 
exact solutions, 

Fig. 2. Trajectories in the (¢1, ~2) plane for (a) v2=c 2 and (b) 
/;2_~-C2. 

{21/2 z--Vt 
~ot = ~o2 = 2 arctan~-~o ( l _ v ~ ) m / 2 ) + ~ .  (15) 

For this case, the rest energy is given by 

Ho(~0m =~o2) = 4 n ( 2 K k ) l / 2 a R .  (16) 

=4  a r c t a n [ e x P ( A o ( ~ ~ 2  t) m/i) 1 , 

(13) 

where A 2 =Ka2/kR 2, c2=Ka2/I, z o is the initial po- 
sition of the soliton and v its translational velocity. 
The rest energy, i.e., the energy necessary to produce 
a static open state, for this solution is 

Ho(~m ---- - -~2 )  ---- 16(2Kk)  l/ZaR • (14) 

For case (b), i.e. for (0~ = ¢2, we have 

Note that in Eq. (15), there is no exponential in the 
argument of the function arctan. The type of solution 
described by Eq. ( 13 ) will be called asymmetric, while 
solution (15) will be called symmetric. Both types of 
solutions are shown in Fig. 3 and the distances be- 
tween base pairs are shown in Fig. 4. For the type of 
solution described in Eq. (9), the rest energy can be 
written approximately as 

H o = 8 ( K k  )l/2aR . (17) 

By comparing the energies for the unstable states 
(asymmetric and symmetric), given by Eqs. (14) and 
(16), respectively, with the energy of the stable soli- 
ton, Eq. (17), it is possible in principle to calculate 
the energy radiated through the generation of small 
amplitude travelling waves. 

The system described by Eqs. (7) can be written as 
an autonomous dynamical system, 

kR 2 
~ =01, 0~ = ~ [2 sin~m -sin(~m +~2) ] ,  

kR 2 
(0~= 02, 0~ = -~2  [ 2 sin ~2- sin(~l+ ~2) ] • (18) 
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Fig. 3. Comparison of the shape of the asymmetric and symmet- 
ric solitons in the case of lo = O. 
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Fig. 4. O p e n i n g  d i s t ances  for  the  a s y m m e t r i c  a n d  s y m m e t r i c  so- 

litons in the case of 1o= 0. 

The eigenvalues of  the Jacobi matrix at the critical 
points ~01 = 2nrr, ~2 = 2tort, are 

22,2=0,  (19) 

kR 2 kR 2 
22'4 = ~ + --W22" (20) 

The eigenvalues equal to zero, Eq. (19), reflect that 
there is some degeneracy at the critical points and also 
there is some anisotropy at these points reflected by 
the fact that the behavior of  the solitons produced 
along the line ~ =~2 is different from that along 
~] = - ~2. This difference in behavior can be seen for 
the solutions given by Eqs. (13) and ( 15 ). For the 
former one there is a fast exponential behavior at the 
tails of  the soliton when ~--, + oo, while for the second 
type, the behavior is somewhat slower. Recalling that 

2B 
ta'= [2 arctan(B~) + n ] ' =  1 + (B~) ----------~ ' 

i.e. ~ ' ~  1/~2 and (p,-, 1/~ when ~--, + ~ .  This result is 
important for the type of interaction between soli- 
tons and will be discussed later in this work. 

I f  we consider the case v2> c 2 >/c 2, then we obtain 

solutions that correspond to supersonic or takhionic 
solitons. In the case Wi = WE = W and since W< 0, 
we have 

(0'{ = - OU(  ~ I ,  (02), (21a) 

O U ( ~ l ,  ~2) (21b) ~ = -  
0~2 

where U(¢~, ~2) = - V(¢~, ~2) and in the plane ( ~ ,  
(02) the maxima and minima are interchanged so the 
solutions can only join the points ( + nn, + mzQ. 

Let us suppose that ¢1 = - ¢2 and identical critical 
velocities. Eqs. (21 ) reduce to a system of uncoupled 
sine-Gordon equations with the exact solution 

. r (Z-Zo-Vt) -I 
= 4 arctan Lexp~To ( v ~  i ~7~] J - zc, 

(22) 

which corresponds to a totally open state with a 
streamly narrow closed region. The solution for ~ = ~2 
is more complex analytically and can be obtained by 
the elliptic integral, 
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f de '  
(3+2  cos ¢ ' - c o s  2 ¢') 1/2 

0 

_ x/2 ( Z - Z o - V t )  
- Ao(v2/c 2 -1  )1/2, (23) 

which again corresponds to a totally open state as the 
asymmetrical case. 

Let us now study the general system given by Eqs. 
( 1 ) with los 0. In this case the solitons of the system 

OV(¢l, ¢2) 
W~¢I' = 

W2¢'~ = 0V(¢, ,  ¢2) 
0¢2 ' (24) 

where 

V(¢~, ¢2) = - ½kR2{ [ (2 + / o / R - c o s  ¢1 - cos ¢2) 2 

+ (sin ¢1 - s i n  ¢2) 2 ] 1/2-lo/R } 2 (25) 

and the first integral is 

½Wl¢'12 +½W2¢'22 + V(¢l,  ¢2)mconst .  (26) 

From a qualitative point of view, the potential energy 
V(¢1, ¢2) for the exact system is not different from 
the one described in Fig. 1, i.e., the solitonic solu- 
tions connect the same critical points. However, there 
is a quantitative difference between both situations. 

The eigenvalues of the Jacobi matrix at the points 
¢~=2mr, ¢2=2mTr for system (24) are all equal to 
zero. This result means that there is no optical branch 
in the vibrational spectrum for the general system 
(24), in opposition to what is claimed in Ref. [ 1 ]. 

In the neighborhood of the points ¢~ = 2mr and 
¢2=2m~r, the function V(¢1, ¢2) has the following 
behavior, 

V(¢1, ¢2) ~ - - -  - -  ½kR2[~ ( 1 + 1/6)2(¢ 4 + ¢24) 

1 
- - ( 1 + 1 /6 )  (¢~¢2 +¢1¢23) 

6 

+ 3  , (~_/d+_/+ 1 2 
(27) 

where 6 = lo/R. 
These points are completely degenerate and in their 

neighborhood, Eqs. (24) do not show linear terms. 

According to (24), the terms different from zero in 
the expansion of V(¢I, ¢2) are of fourth order. This 
dependence is of particular importance for the prop- 
crtics of solitons, its dynamics and interactions [ 9 ]. 
Firstly, as it was shown by Eqs. (15), the asymptoti- 
cal behavior of the solitons at the critical points is as 
¢~ 1/~, which means that the interaction between the 
solitons is of long range type. 

Exact solutions in the general case can be obtained 
by choosing appropriate trajectories in the (¢~, ¢2) 
plane, in particular, for ¢i = - ¢2, the exact solution 
can bc obtained from 

f de '  
[6 2 + 4 ( 2 +  6) ( i ~  cos ¢') ]1/2_ 6 

0 

Z -  Zo - vt 
(28) 

= v/~Ao(1 _v21c 2) 1/2" 

When ¢~ =¢2, it can be readily seen that V(¢I, ¢2) is 
independent of 6, and so the solution is identical to 
the one given by Eq. (15) for the case lo = 0. 

It can be demonstrated that all solutions in the gen- 
eral case have an asymptotical behavior which is 
smoother than the classical kink type soliton of the 
sine-Gordon equation. We can express the sine-Gor- 
don equation solution as 

9 

f de '  (29) ~~ ( 1 -  cos¢') t/2" 
0 

The function given by Eq. (29) is the inverse of the 
¢ solution. An exponential behavior of ¢ near the 
critical points (¢ = 0, ¢ = 27t) corresponds to a loga- 
rithmic behavior of~(¢) near the points 0 or 27t, more 
explicitly, 

d~ 1 1 
de ( 1 -  cos¢) 1/2 ¢" (30) 

For the solution given by Eq. (15), valid for the case 
¢1 =¢2 and any value of/o, we obtain 

d~ 1 1 
d--~ ~ 1 ~ cos¢ ~ ¢--5, (31) 

which corresponds to a nonexponential behavior for 
the ¢ solution. For Eq. (28), we have 
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d~ 1 
dq) [(~2+4(2+~) ( 1 -  cos~) ]1/2-~ 

E 

( 2 + e ) ~  2 . (32) 

As it can be seen in Eqs. (31) and (32), in the case 
e#  0, the solutions have an asymptotical behavior 
different to those for e = 0. 

The qualitative shapes of  the solitons are shown in 
Figs. 5 and 6 for the asymmetric and symmetric types, 
respectively, with the asymmetrical mode more 
opened than the symmetrical one. In Ref. [ 9 ], it was 
demonstrated that if  the local behavior for the poten- 
tial at the critical points is as ~2,, n>  1, then the in- 
teraction force between the solitons decreases with the 
distance r as 

F ~ r  2 " ~ ( x - n )  . (33) 

The interaction force for the solitons of  system ( 1 ) 
with 1o # 0 decreases with the distance as 

F ~ r  - 4  . (34) 

This could be of particular importance in the regula- 
tion of  biological processes, such as DNA transcrip- 
tion, since the existence of an open state somewhere 
in the chain could affect the dynamics and formation 
of distant open states, modulating the opening and 
transcription processes. Also, the region of the chain 

n+5 n+4 n+3 

n+2 

.,,, ..1 

. i 

n*3 n*4 ~*5 
Fig. 5. Asymmetric soliton. 

I1 

n+5 n+4 n+3 

n+ 

rt+z 

n+3 n+4 n*5 

Fig. 6. Symmetric soliton. 

where there is a maximum opening is larger for the 
general case, since the asymptotical behavior for the 
kink type solitons is smoother than the one corre- 
sponding to the solutions in the particular case 
(lo = 0) giving the possibility of  an enzyme to take 
charge for the opening of the chain. Of  particular im- 
portance are the supersonic solutions, since they rep- 
resent states which are totally open and could con- 
tribute significantly to the fusion of the DNA strand 
to the enzymatic activity. Also, in general, the pres- 
ence of a propagating soliton along the chain could 
contribute to  its opening through the interaction 
among different types of  open states, thus playing an 
important role in the transcription process. In a fur- 
ther work, the effect of damping and external forces 
will be included. 

Appendix 

For Eqs. (2) with 11 =/2 = I and Kx = K2 = K we will 
consider perturbed solutions of  the form 

~l =~1k+~1 , (A. la)  

~2 = ~2k  "~ ~//2 , (A. lb)  

where ~lk and ~2k are solitonic solutions of Eqs. (2) 
and I~xl << ItPlk[, {~2[ << l~2k[- The linear equa- 
tions obtained for the functions ~(/1 and ~u2 are 



J.A. Gonzaffez, M. Martin-Landrove / Physics Letters A 191 (1994) 409-415 415 

1 
c ~ W.t-~hz~+ 1 [2 COS(~lk)~,/l 

Ao 

-- COS(~01k dr" ~02k) (~//1 "~ ~//2) ] ~---~ O , 

1 12 {l/2tt -- ~2zz "~- -~0 [2 COS(~92k)~//2 

(A.2a) 

-- COS(~Ik "{" {~2k) ({//1 Jr" ~/'f2 ) ] = 0 .  (A.2b) 

The solutions can be written as f~(z) exp(2t), so we 
get the following eigenvalue problem, 

12 
- f l ,~+  ~2o2 [2 COS(~,k)fl 

--coS(~lk Jr" ~92k) (fl "~f2) ] ~ -Ff l ,  (A.3a)  

12 -A.z+ ~ [2 cos(~2kIA 

--COS(~91k']- ~92k) (fl "I-f2) ] = r f 2 ,  (A .3b)  

where F-- --22/C 2. 
If we obtain solutions to Eqs. (A.3) such that their 

eigenvalues 2 are negative, then these solutions are 
stable, otherwise they are unstable. For the particular 
solution ~tk= - ~2k, then 

12 -A.z+ ~ [2 cos(~k)A -A -AI 

2 2 
= -  ~ f l ,  (A.4a) 

1 
-A..+ ~ [2 cos(ek)A-A -AI 

2 2 
= -  ~'-~ f2 • (A.4b) 

There are two eigenvalues corresponding to the dis- 
crete spectrum. The solution for the eigenvalue 2 = 0 
(translational mode) is 

d~k 4q/~  
fi - dz - Ao cosh(v/2 z/Ao)' (A.Sa) 

dqk 4V/2 (A.5b) 
f2 = - -~z = - Ao cosh(x/~ z/Ao)" 

Nevertheless, we have a positive eigenvalue, 2= 
x/~ c/Ao with the solution 

4V/-2 (A.6) 
A =A = .40 cosh(q'~ Z/ao)" 
The remaining eigenvalues are imaginary and corre- 
spond to the continuous spectrum. For the solution 
of the type given by Eq. (9), the system ( A. 2 ) is top- 
ologically equivalent to 

~l/ltt__~l/lzz.~ - 1 [COS(~lk)l//l ] ~. 0 (A.7a) 
.4 0 

1 2 
-~ V2tt--{l/2zz + ~ 0  V2 = 0 ,  (A.7b) 

which contains the classical kink type solution of the 
sine-Gordon equation and just one eigenvalue corre- 
sponding to the discrete spectrum (2 = 0). These so- 
lutions are stable. 

This work was partially supported by the Consejo 
de Desarrollo Cientifico y Humanistico of the Univ- 
ersidad Central de Venezuela and by FUNDALAS, 
Foundation for the Development of Interdiscipli- 
nary Research in Caracas, Venezuela. Also, we would 
like to thank Dr. Luis Santana-Blank, for fruitful dis- 
cussions of our results. 

R e f e r e n c e s  

[ 1 ] L.V. Yakushevich, Phys. Lett. A 136 (1989) 413. 
[2] S. Yomosa, Phys. Rev. A 27 (1983) 2120. 
[3] IC Forinash, A.R. Bishop and P.S. Lomdahl, Phys. Rex,. B 43 

( 1991 ) 10743. 
[4 ] C. Mandal, N.R. Kallenbach and S.W. Fn~l~nder, J. Mol. Biol. 

135 (1979) 391. 
[5] M. Nakanishi and M. Tsuboi, Y. Saijo and T. Nasamura, 

FEBS Lett. 81 (1977) 61. 
[ 6 ] M. Nakanishi and M, Tsuboi, J. Mol. Biol. 124 (1978) 61. 
[ 7 ] J.A. GonzaUez and J.A. Holyst, Phys. Rev. B 35 (1987) 3643. 
[8] J.A. Gonz~ez, in preparation. 
[ 9 ] J.A. GonTAlez and J. Estrada-Sarlabous, Phys. Lett. A 140 

(1989) 189. 


