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1 Introduction

Some nonlinear dynamica.l‘ models have been proposed !~2 for DNA in order to explain
the origin and dynamics of open states in this molecule *~® which are somehow related to
the transcription or replication processes. The interaction between the solitons (or open
states) are variable for different proposed models and in most cases are short range. In this
paper we study a particular model ! which describes the torsional dynamics of the double
DNA helix and we obtain the general behaviour of the solutions and the range of the
interaction between the solitons, which turned out to be long-range. We also investigated
the influence of damping, external fields and torques in the dynamics of the solitons.

In the quoted article !, Yakushevich proposed the following equations for the torsional

dynamics of DNA:
2 Al : 2
Ly, = Kia®p,,, — kT[(2R’ + Rly)sinp1 — R*(p1 + 2))] (1.a)
2 AI 2 . 2
Ipa,, = Kaa®p,,, — k= [(2R* + Rlo) sin ¢, — R*(¢p1 + ¢2)] (1.b)



where:

. . -4
Bl — Jo[@R+]Io — Reos@y — Reosga)’ +(Rsin@y — Rsin )’ ]
In these equations. @, is the torsional angle, /, is the moment of inertia, K, is the rigidity of
the longitudinal springs of the i-th chain, & the rigidity of the transversal spring connecting both

chains, R the radius of the chains, /, is the minimum separation between the chains and a is the
characteristic length of the base pair in the double helix. In Reference 1 these are simplified by

assuming that /, 0, which leads to:

Lhew — Kia’@i,, + k R*2singy — sin(@y +92)|=0 (2.8)

L - Kz(lzlpz,, + kR’lZsin(pz — sin(@ +¢2)|=0 2b)

For these equations different types of solutions are proposed in order to simplify even
more the sct of equations. The following cases are considered as solutions of equations (2):

casea) @, = 0. @, # 0, for which the equations (2) are reduced to:
Ipy — Ka*@y +kR*singp=0 3)

This result is not quite correct since by putting @, ~ 0 in equation (2.a) then sin 0,0,

which leads necessarily to the solution @, — 1 - const., and does not correspond to a solitonic

solution of equation (3).
On the other hand, cases b) @, = ¢, and c) @, == - @, lead to the equations:

Ipy — Ka’p,, +2kR2sing — kR?sin2¢ =0 )

and

Ipy — Kaq,, +2kR?singp=0 5)



respectively. ‘These equations are only valid for symmetric chains, ie, / y=1,=1 and
=K,=K.

1L.- Qualitative Analysis.

Let us make the analysis of equation (2) in a more general way. As it is of common usage,
let us introduce the travelling wave variable {  z - v/, where v is a constant, to obtain the
following system of equations:

W.(p',’ - I(R’lZSimp. — Sin(Q -+ y)|=0 (6.2)

W97 — kR?|2sing, — sin(@y +¢;)] =0 (©b)

.2 2 . . e ) o
where I, K. a” - 1.+ and the prime corresponds to the detivative with respect to . The system
of equations (6) can be written as:

_ 91(pep2)
"’1([)| =- Tpl_— (7.2)

V4 ,, —_— ” ,'((Pls'Pz)
,’ 2(‘)2 - R 0 (7b)

where

L1, 2) = kR 2(cos g + cos@z) — cos(P +@32)] (R)

T(@; @) has local maxima at the point @, =2nm, @, = 2mx withn - 0, 11,12, |
andm - 0,41, 12,.. Thepoints @, (2n-1) &, ¢, (2m-1) m correspond 1o local minima, while
the points @,  (2n-D) m. @, 2mm; @, 2nn, @, (2m-1)  are saddle points. These
points are shown in Figure 1. In the figure are shown ﬂle phase plane trajectories joining critical
points which corte«pom! to solitons,

The local maxima llave the same height so for every two contiguos local maxima there are

solutions of the kink lype * For example, there are solutions with the following properties:



gI_|’n_1m(p. =()’c'_,"'}m¢' =+2K

9.1
gl_l)ll_lm(pz =0,an1:M(p2 =0
lim ¢; =0, lim =0
G~ P| C,—)%M(pl (9.2)
ghlllm(pz =O,CLu3|m(pz =4+2K
i = ) i =
gl_l)n_lmqn (,ql—l)l!'im(p| 0
9.3)
Q!!)lllm(pz =(),cl_’m4|m(p2 =-2n
g_I_|)n_|m(p. =().Cmgmm| =+2R
(0.1
g!_l)ll_lm(pz = O’ql-';"lm ¢2=+21
lim ¢, =0, lim =+2n
s ! G ! (10.2)

lim ¢; =0, lim =-2n
G- P2 g—;wmz

and their antikink solitons respectively. See Figures (2 - 8). Note that the points (0,0) and (2m,2n)
are linked by a single trajectory, while the points (0,0) and (2rx-2n) are connected by three
different trajectories. For further reference we will call those three trajectories as (10.2.1),
(10.2.2) and (10.2.3) after Figure 1.

Among these solutions those of the type (9) are strictly stable. ‘The solutions given by (10)
may decompose into two solitons of the type (9), together with small amplitude travelling waves.
We must also notice that the connection of the points (4,0) and (0,2n) can not be done through
the straight line ¢, = (), which is due to the fact that @, =0, @, # 0 is not a solitonic solution of
equation (3). ’



There are different critical velocities for K 1 # K ,, given by the general expression:

K 2
c,=—',“—'— 3 an

. s . . . 2 2 . -
and the velocity of this kind of soliton will be restricted to 0 < 1> < Cp » With ¢ the minimum
critical velocity.

11.- Some Analytical Solutions.

The cases b) and c). represented by equations (4) and (5) correspond to solutions of the
type given by (10). For the last case (case c)), we have the following exact solutions:

Pr=—¢=4 mclan[exl’['z%;"]] "

K] ‘a? ‘at
| - = ,/\0=k" 2 _ Ka

where Y = 3 €= is the initial position of the soliton and

v its traslational velocity. The rest ener gy, i.e., the energy necessary to produce a static open state,
is the following;

Hop- o = 162Kk aR 13)

and the total energy for a travelling soliton is related to the rest energy through the Lorentz

i1
factor, /1= _Yo_ .

For case b). ie, ¢, = ¢,, we have:

M =«p2=2arclan[ﬁl"f\:y' N]J~!~1( (14)
For this case. the rest encipy is given by:

,I(Nlp.-q“) =ArY2Kk aRk (15)

Note that in equations (14) there are no exponentials in the argument of the arctan
function. The solution of the type described by equations (12) will be called asymmetric, while the
solutions (14) will be called symmetric. Both types of solutions are shown in Figures (5-6). We



have constructed an approximated analytical solution function for type (9.1) solutions (see
Figures 2 through 4).

N
¢ =2arctan [’R%] +n ) (16)
sin [2 arctan [ N;C] Ht]
(2 =N, arctan — °N T a7
2- (_()1[2 arctan[ Iy ]m]

where N - 1.2586.N, - 0.75945and N, 1.1222.
We also constiucted approximated analytical solutions for type (10.2.2) and type (10.2.3)
solutions:

sin [2arctan (§4812) +n)
2 — cos|2arctan ({+812)#m|

¢ =2arctan [N [ — Q)+ m - N,arclan[

(18)

sin |§arctan (§ - §22)4m)
2 — cos|2arctan(§ — {22) +n|

¢y =—2arctan [Ny | + 8 }] —n+ Nzarctan[

(19)

where N,, N, 1.2250,&,, - &,y - 24836, N, - N, -0.86111,8,, ~ 5y = 12228 for
solution (10.2.3). 'These solutions are shown in Figures 7 - 8.

For the type of solution described in equation (9), the rest energy can be written
approximately as:

1o =8J2Kk ak (20)

By comparing the energies for the unstable states (asymmetric and symmetric), given by
equations (13) and (15) respectively, with the energy of the stable soliton, equation (20), it is
possible in principle to calculate the energy radiated through the generation of small amplitude
travelling waves.

‘The system deecnbed by equations (7) can be written as an autonomous dynamical system:



91=9,

9{ =%§|25imp. — sin(@ +@)|

2n
9;=0;

o =‘:T’f:-|zsimpz — sin(Q1 +¢2)]

The eigenvalues of the Jacobi matrix at the critical points of system (21) ¢ =2nnm,
¢, ~ 2m n, are the following;

Mi2)2=0 22)

2 _ KR | RR?
(Aa4)" =TG-+ @

The eigenvalues equal 1o zero, (equation (22)). reflect that there are some degeneracy at
the critical points and also there is some anysotropy at these points reflected by the fact that the
behavior of the solitons produced along the line ¢; = @, is different from that along @, =- ¢,.
This difference in behavior can be seen for the solutions given by the equations (12) and (14). For
the former there is a fast exponential behavior at the tails of the soliton when € — teo | while
for the second type, the behavior is somewhat slower. Recalling that:

@ = [2arctan (BE)+n|’ = ;(L:C? . 2

2
where /3= J—";'A— , i.e., it means that (p’ ~ # and ¢~ % when § ~> too . This result is
important for the type of interaction between solitons and will be discussed later in this work.



V.- Stability Analysis.

Now we will study the stability of the solutions. Let us assume that /, =/, =1,
K, =K, =K to simplify calculations. Then:

Lo - «p.,,+-;'§[2$imp| — sin(@i +¢2)] =0 @5.0)

:_';(pz,, — P2+ Al',’[Z sing; — sin(p; +¢7)}=0 (25.b)

Let @,,(z) and ¢,,(z) be solitonic solutions of system (25). We will perturbate slightly
these solitonic solutions and will determine if these perturbations remain small with time. Making
@1 =@+ Wy and ) = Py + Y2 , we obtain for y,; and v, the following equations:

SV~ Wit ;'3:[2 COS(PI)W1 — COS(Pue+ Q) (W1 +W2)] =0
(26.9)

:%Wltr — Y+ X%[Z COS(P2)¥2 — COS(Pu+Pu)(Y1 + \]Iz)] =0

(26.b)

1Y)

By putting Wy =/f1(2) e*" and W3 =/2(2) e | we state an eigenfunction and

eigenvalue problem:

=Jizz + ;'3|20t’5((p|k)/| — cos(Pu+ )1 /)] =1

(27.a)

—J 222 4-7\";’|2C(’S((Pz&)fz — cos(Pue-+pu)N1 +2)]1 =112

@27b)



where I"'=— i,l .

If we can demonstrate that the spectral problem (27) does not posses solutions
corresponding to values of A with positive real part then the soliton under study is stable.

We have found that the type (9) solitons are stable while the type (10) are compmne
structures of the former. In some cases these unions are totally unstable and in others it is
necessary some perturbation to decompose it in a pair of solitons. B

For example, the case Py =— Qu =@y = 4arclan[exp[%]] (solitons of type

{]

(10.2.1)). In this case

=12z + ,IZL(N(‘Pk)fl -Nh - Nl= —’;l (28.8)

2
— 222 + X|§|2 cos(pn)fa — fi = fol ==/ (28.)

Thete are two eigenvalues corresponding to a discrete spectrum. ‘The solution
corresponding to the eigenvalue Ay =0 is:

a4~
/' =—fo = AL = Ao (29)
H J21 dz b Z'J
cosh| 34—
For the positive eigenvalue }\.2 = ﬁ ~— _ we have the solution
4{{—
./|2 = ",/22 =— '—“0_-2— (30)
cosh A_J

The rest of the eigenvalues are imaginary (continuous spectrum). For type (9) solutions,
ie, =14 arclan[exp[ﬁ-ﬂ . P2 = 0, system (26) is topologically equivalent to:



7';%" = Wi+ 3] coS (@)Y | = 0 (31.a)

, 5 31b)
GV = Yoz +3-y2=0

which contains the classical sine-Gordon solitons with a single eigenvalue corresponding to the
discrete spectrum (A = 0) and a continuous spectrum. These solitons are stable.

Solitons of type (10.1) are unstable. Even while solitons of type (10.2.2) and (10.2.3) are
stable under small perturbations, they can decompose into one type (9.1) and one type (9.3)
solitons under strong petturbations.

V.- The Exact Maodel.

Let us now study the general system (1) with /o # 0 . In this case the solitons are solutions
of the system:

ol 91(01,92)
Wiy =——_=% o (32.0)

D 1(p1,92)

7o —
” 2([)2 - J ()]

(32.b)

where:

2

2
'I‘Pl~‘02)=*%k/?' J(2l% - cosp — cOS(PZ) +(singy. — sin(pz)2 - ',—‘;]

(33)

and the first integral is:

0T+ 302057 4 i, 92) = const, @4

10



From a qualitative point of view, the potential energy F((1, ¢2) for the exact system is
not different from the one described in Figure 1, i.e., the solitonic solutions connect the same
critical points. [lowever, there is a quantitative difference between both situations.

The eigenvalues of the Jacobi matrix at the points P1 =211, @2 =2mx for the system
(24) are all equal to 7zero. This result means that there: is no optical branch in the vibrational
spectrum for the general system (24), in contradiction to what is claimed in Reference 1.

In the neighborhood of the points @y = 217 and @2 = 2mm , the function Fipir, )
has the following behavior:

2
oo =4 3(114) (ot vot) - 5(144) otes rovad) (2 +h+4Jodod]

(35)

where € = Iﬁ' .

These points are completely degenerate and in its neighborhood, equations (34) do not
show linear terms. According to (35), the terms different from zero in the expansion of
M(@1,92) are of fourth order. This dependence is of particular importance in the properties of
the solitons, its dynamics and interactions ° First, as it was shown in equations (24), the
asymptotical behavior of the solitons at the critical point is as ¢ ~ 1 , which means that the
interaction between the solitons is long range. In Reference 9, it was demonstrated that if the local

behavior for the potential at the critical points is as 1p2" , > [ then the interaction foice
between the solitons decreases with the distance r as:

2
FF~rin (36)

The interaction force between the solitons for the system (1) with /o # 0 decreases with
the distance as:

I ~pt (37)

Some exact solutions when /o # 0 are obtained for different cases, assuming that
Wy =1, and G =Cr=ca) Qr=—@=¢, ‘

11 .



do' _z=z9 -V (38)
Jeia@io0 - cosgly e ZAaY

0
andb) @y =@ =¢:

22— —
¢ =2 arctan [7\/—72—%-—"—] +n G0

When 1o #0 . the behavior of all solitonic solutions is asymptotically slower than
exponential.

VLI.- The Perturbed Model.

So far we have studied the undiiven Yakushevich equation. Of unquestionable interest is
the influence of damping and external torsions on the solutions.

h@w+Yitpy — Kif'z‘Plzz - k"T'|(2R’ + Rlp)singy — Rsin (@1 + @2)| =11,

(40.2)
L@+ Y20 — K20 @iz — ké,-'|(2R2+Rlu)simp2 — Rsin(¢ +@2)| =112

(40.b)

The damping forces Y1y, and Yooy tend to slow down the solitons.

Before analyzing the global action of the torsional forces /7, and 11, we will study the
local bifurcations they produce.

As shown before, the critical points (211, 2mmr) are degenerated (their eigenvalues are
equal to zer0). Under the effect of the torsional forces the system bifurcates and the resulting
aritical points are Morse type. So the original model is structurally unstable under perturbations in
the form of torsional forces like in equations (40).

To simplify the analysis we will use the approximation [y =0 and we will concentrate on
the point (.0) (see Figure 9 for reference and recall that the system is invariant under the
transformation p* =@; + 21 ).

12



In the cross hatched area the system has only one critical point close to zero. This point

corresponds to the minimum of potential {/(¢), ;) = — (1, ¢2) and therefore is stable.
In the point hatched area the system has three critical points close to zero, two stable and
1

one unstable. Moving in that area and varying the values of h, and h, with h; = iR—" in such a

way as to pass to the cross hatched area thea a bifurcation with the union of two of those three
points (the unstable and one of the stable) so both of them dissapear. If from the point hatched
arca we cross (o the solid filled one then one of the stable points merges with an unstable point

belonging to a zone not refated to the point (0,0) (a saddlc point of { J(@1,92)) and in a vicinity
of the zero still remain two points: one stable and one unstable.

If we pass fiom the hatched areas to those which aren't, then we will not have critical
points close to zero, i.e., the sole remaining point merges with a saddle point or a maximum of
U(91.92), while if we are in the solid filled area the remaining points annihilate between
themselves. In that case the system has no solitonic solutions, recalling that the solitons are
formed by connections between the maxima of F(@1,92) (minima of 1 J(91,92)).

If a soliton connects to points, for example (P11,921) and (912, 922) , then the value
of A=U(pn,pn) — ( J(912,92,) plays an important part in its dynamics.

For the kinks, A > () acts as an external force on the kink pushing it in the positive sense
of the 2 axis and inversely if A < 0. The effect on the antikink is exactly the opposite. If A= 0,
the soliton can exist at rest.

When besides the condition A # 0, we have damping then the soliton acquires a stable

velocity proportional to A and inversely propottional to the damping coeflicients ;. In our
system:

==1i(p12 = P22)-+1(pn — Q)] “n

For example, if /1y >0 and /13 > 0, the type (9.1) and (9.2) solitons are accelerated in
the negative sense of the 7 axis while the antisolitons would move in the opposite sense. But type
(9.3) solitons will behave in the opposite way. When we refer to type (9.1) or other solitons we
are addressing solitons joining points in the vicinity of those assigned by the formulae referenced
because when /1) # 0, /1y # 0, the critical points are not in (2n1t, 2mr).

Some interesting situations occur when || = Iha]. For h=hi=h>0 _ type
(10.2.2) and (10.2.3) solitons can exist at rest as A= (I M =—=hy=h>0, then type (10.1)
can exist at rest. In that case, an extremely interesting soliton can also exist at rest, which
connects two critieal points corresponding to minima of { (@1, 92) (or maxima of I(pr.2)).
since we are moving in the point hatched area in Figure 9 and for those points A = (. We have

called this soliton, a baby-soliton, because its amplitude is extremely small and it is shown in
Figure 10.

13



VIL- Genceral Dynamics,

We will intraduce some definitions to classify and explain all the solitonic interactions that
occur in these systems.

Let us define topological charge g, and chain charge ¢, as:

_ (01(>) = @r(= =) + (92(==) — P2(— =))
= 2n

(12)

go= 1) — @i (- oo)|2—1t |92(=) — @a(= )| .

If two solitons have chain charge of equal gign, then the fundamental interaction among
themsclves is of topological type. In that case two solitons with topological charge of equal sign
repel each other while two possesing topological charges of different sign attract each other. Then
it is not odd that breathers are formed by the interaction of a kink and antikink in type (9) solitons
if they both have equal chain charge.

If two solitons have different sign of the chain charge then, on top of the topological
interaction there is a repulsive force produced by the chain interaction. This interaction force is
zero when the distance between the center of mass of the solitons is zero (see Figure 11). It
reaches its maximum for a distance different from zero and then decreases rapidly with the
distance. The repulsive force produced by the chain interaction is of smaller range than the
topological interaction force, but the chain repulsive force is stronger when the solitons have
topological charge of different sign. Of course the effective interaction force is repulsive only for
short distances. At preater distances always prevails the attractive topological force.

‘The presence of external forces leading to A # () influence the solitons through the
topological charge. If A > 0, the solitons with positive topological charge are accelerated in the
positive sense of the z axis while those with negative topological charge are accelerated in the
negative sense. If A < (), the opposite happens. This result is more general than the one for kinks
and antikinks because is valid alto for compounded stiuctures with topological charge different
from those of kink and antikink and even zero. .

These "laws" explain all the phenomena detected in the system (40), whether as theoretical
results or as found by numerical experiments.

‘The unstability of type (10.1) solitons is due to their being composed of a type (9.1) and a
type (9.2) kink. In that case the slightest perturbation displacing their respective centers of mass
allows the repulsive force to star sparating them.

'The same happens with type (10.2.1) solitons which are composed with a type (9.1) and a
(9.3). As these solitons have topological charge of unequal sign, then for big distances the
topological attraction prevails.

14



A compromise bhetween those two opposing forces produce type (10.2.2) and (10.2.3)
solitons. In these composite stiuctures the centers of mass of both the (9.1) and (9.3) solitons are
displaced.

In principle it is posible to define solitonic reactions. For example:

a0.n -5O.n+9.2)+Al (U}
(0.2.1) -5 (9.1) 4 (9.3) + Al an
(10.2.1) > (102.2) 4 AK am

In these reactions the energy, the topological charge and the linear momentum are
conscrved. the cncigy liberated can be determined calculating the encrgy difference between the
initial and final states. Note that in equations (13), (15) and (20) the rest energy of the composite
states is higher than the rest energy of type (9) solitons.

It is important to point out that the reaction (1) could only occur if there is damping,
because the rest energy of state (10.2.1) is much bigger than that of state (10.2.2) and the kinetic
cnergy acquired by the (9.1) and (9.3) solitons by the reaction (1), since linear momentum is
conserved, is very high so the attracting force is not able to stop the accelerated separation of the
solitons. Only the damping is able to slow down enough the emerging type (9) solitons and to
stabilize in a type (10.2.2).

In a damped system the stable states are spatio-temporal attractors and any initial
condition close to those states leads inevitably to them. We must point out that our analysis shows
that the equations of Yakushevich are non integrable because the interaction between the solitons
is unelastic.

Type (10.1) solitons can be stabilized using torsional forces of equal modulo but different
sign 1y =~hy="h . To achieve this we must use as initial condition a type (9.1) and (9.2)
solitons with displaced centers of mass. It produces an equilibrinm between the repulsive force
among them and the external torsional forces, one acting in one direction on one soliton and the
other acting on the other soliton in the opposite direction.

A similar state can be achieved by coupling type (9.1) and (9.3) solitons but now using
Iy =hy (see Figures 12 and 13). The baby-soliton mentioned above is due fo the same cause
Note that the last two composite states have 7ero topological charge. With a fixed relative
position of the centers of mass, they have traslational freedom.

It is interesting to notice that when type (10.1) solitons are perturbed by external torsional
forces suchas /1y > 0, hh; = 0, then the solitons (9.1) and (9.2) composing it move as a whole,
bhecause when over the one on the iight acts an external force in the negative sense it pushes (by
the repulsive interaction) the one on the left.

Al this phenomena has been corroborated with the aid of numerical experiments.

When A # 0, for two critical points of the system bell-solitons can form ‘which are no
more than linked kink-antikink states .

There is a crilical distance when the atractive forces between kink and antikink are
equilibrated with the external force scparating them. The result is unstable. Beginning with an
initial condition where a kink and an antikink arc at a distance which is lower than the o itical one,

15



the solitons tend to get closer. If the initial distance between the solitons is above the critical value
then the external force do separate them.

VIIl.- Chaos.

Let us return to the equations of the unperturbed exact model. In the vicinity of the
equilibrium points (¢ = 211, (pr = 2mmr) the equations (1) appear as:

. 2
v = K, =4 (1= ) o - Hrot) (oo s ) o2+ 44 Jove |

(44.2)
2
1@~ Kaaps = ;mz[(l - 1) 0} - {1+1)(30ker +01) +2(;§;+%+§)«pmf]

(44.b)
Note that the terms in the right hand side of the equations are of 3rd order.
If these equations are perturbed by periodic forces and dissipation, the dynamical behavior
will be in some sense similar to that of the cubic Duffing equation B

d’x dx I _ 1
;-'7 +y a1 4 Ax’ = I'gc0s ((l)l) (45)

which is well known to have a chaotic attractor. ‘This result means that in addition to the expected
chaotic behavior in the periodically perturbed DNA system (1) due to the nonintegrability of these
equations and the homoclinic loops that they contain, we can predict chaotic oscillations around
the equilibrium points. Due to this phenomenon, the tails of the solitons will perform chaotic
oscillations.

As we saw in Section VI, when the external torsional forces are of equal modulo but
different sign, the system bifurcates and the equilibrium points @) = 28R, @3 =2mn
degenerate in thiee points, two stable and one unstable. If we now drive the system with a
periodical force, it will perform oscillations similar to those described by Duffing's equations, but
now with several critical points "

d’x dx 3 -
——— = — X A Vo M S
I by, — Xt Ax? = IFpcos (wr) 6

16



For several vahies of the parameters the equation (46) has a chaotic atttactor. In onr case,
this can be scen as oscillations of the system around one of the critical points and yandom jumps
to other critical point and vice versa in unpredictable fashion. Of cowse, the dynamics of
equations (1) diiven by external forces is much more complex than that of Dufling's system

hecause (1) is more than a nonlinear oscillator but a system possesing complex spatio-temporal
structures.

N

IX.- Conclusions,

We have studicd the solitons that result from the solution of the torsional cquations of
Yakushevich for the DNA.

Our research shows that the most important solitons are those of type (9) because they are
the only strictly stable ones and they play the part of building blocks to form more complex
stiuctwres. It is surprising that this solitons have 1cceived very little attention in curient literature,

Besides that, other works dedicated to Yakushevich's model consider only the simplified
case (o = 0), which we show to have important dynamical differences with the exact and more
1ealistic model.

We have shown that all the solitons in the exact model have long range interaction. This
phenomenon can be of particular interest in the regnlation of biological processes like 1eplication
and transcription of DNA, because the existence of open stafes in one place of the chain can
influence the dynamics of other distant open states. Furthermore, a soliton propagating through
the chain can contribute to its opening helping these processes.

The original Yakushevich system is stiucturally unstable under external torques. When
they act, the critical points stop being degenerated, which changes the range of the soliton
interaction. For a given relation between the torques, the equilibrium points can bifincate and
instead of one appear thiee. one unstable and two stable, something like a Thom's catastrophe

All this situation generates a scries of complex structures. It is possible that toiques are
present at all times due 1o the normal torsion of the spital chain In that case, the gystem (40)
proposed by us is much more adapted to the reeal situation than system (1), and also it is
stiucturally more stable.

The dynamics and interactions of the solitons axisting in these equations are extiemely
tich. We have developed a qualitative theory to desciibe it.. If the system is pertuthed by a
pesiodical foree then chaotical dynamics might appear.
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Figure Captions.

Figure 1. Critical points of F(@1,¢2) and phase plane trajectories corresponding to
solitonic solutions of (2).

Figure 2. Solitonic solution of equations (2) with properties (9.1).

Figure 3. Solitonic solution of equations (2) with properties (9.2).

Figure 4. Solitonic solution of equations (2) with properties (9.3).

Figure 5. Solitonic solution of equations (2) with properties (10.1).

Figure 6. Solitonic solution of equations (2) with properties (10.2.1).

Figure 7. Solitonic solution of equations (2) with properties (10.2.2).

Figure 8. Solitonic solution of equations (2) with properties (10.2.3).

Figure 9. Bifurcation diagram for system (40).

Figure 10, Small solitonic solution (baby soliton) in perturbed system with /yy = — 5.

Figure 11. Repulsive force due to chain interaction between solitons with chain charge of
different sign.

Figure 12. Kink-antikink stable state under external forces due to chain interaction

’l| = - h),

Figure 13, Kink-kink stable state under external forces due to chain interaction ry = h, .
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