UNIVERSIDAD CENTRAL DE VENEZUELA

FACULTAD DE CIENCIAS

ESCUELA DE QUIMICA

TRABAJO ESPECIAL DE GRADO

"COMPARACIÓN DE TRES MODELOS DE TEORÍA PARA EL CÁLCULO DE LOS DESPLAZAMIENTOS QUÍMICOS EN ESPECTROS RMN¹³C, EN MOLÉCULAS DEL TIPO ANDROSTANO"

Trabajo Especial de Grado presentado ante la ilustre Universidad Central de Venezuela por el Br. Samuel Antonio Rangel para optar al título de Licenciado en Química.

Caracas, septiembre de 2019

Yo, Profesor Gustavo Cabrera, Investigador del Laboratorio de Físico-Química Orgánica Computacional de la Escuela de Química de la Universidad Central de Venezuela.

Certifico que el presente Trabajo Especial de Grado, titulado:

"COMPARACIÓN DE TRES MODELOS DE TEORÍA PARA EL CÁLCULO DE LOS DESPLAZAMIENTOS QUÍMICOS EN ESPECTROS RMN¹³C, EN MOLÉCULAS DEL TIPO ANDROSTANO"

Que presenta el Br. <u>Samuel Antonio Rangel</u>, para aspirar al título de Licenciado en Química, se está realizando en el Laboratorio de Físico-Química Orgánica Computacional de la Escuela de Química de la Universidad Central de Venezuela, bajo mi dirección, durante los años <u>2018 y 2019</u>, y con esta fecha autorizo su presentación.

Caracas, septiembre de 2019

Dr. Gustavo Cabrera

(Tutor)

Los abajo firmantes asignados por la Universidad Central de Venezuela, como integrantes del jurado examinador del Trabajo Especial de Grado titulado 'Comparación de tres modelos de teoría para el cálculo de los desplazamientos químicos en espectros RMN¹³C, en moléculas del tipo androstano". Presentado por el Br. Samuel Antonio Rangel, certificamos que este trabajo cumple con los requisitos exigidos por nuestra Magna Casa de Estudios para optar por el título de Licenciado en Química.

Dr. Gustavo Cabrera

(Tutor)

Dra. María Lupe Márquez

(Jurado)

TTREE

Dra-Maria Luisa Serrano

(Jurado)

RESUMEN

En el presente trabajo de investigación se realizó la comparación de tres modelos de teoría, mediante su capacidad de reproducir los espectros de RMN¹³C de moléculas del tipo androstano. El principal objetivo de esta comparación es utilizar el modelo validado tanto como herramienta de ayuda para la elucidación de compuestos derivados de androstanos como para la obtención de información de interés, en particular datos fisicoquímicos, de estos compuestos; con el fin de crear y mantener actualizada una base de datos con dicha información.

Los modelos teóricos comparados fueron B3LYP, MPW1PW91 y BHandHLYP, los dos primeros utilizando la función base 6-311++G(d,p); y el último utilizando las funciones base 6-311G(d,p) y 6-311++G(d,p), a través del uso del programa Gaussian09 como software de cálculo computacional.

Mediante los modelos y funciones base antes mencionadas se realizó la optimización geométrica de las estructuras estudiadas y posteriormente se obtuvieron los espectros RMN¹³C de dichas moléculas; la data fue analizada estadísticamente haciendo uso de los parámetros coeficiente de correlación lineal R², error medio, error medio absoluto, error medio cuadrático y residuales. Finalmente, se reporta como mejor modelo de cálculo la combinación BHandHLYP/ 6-311G(d,p).

Palabras Clave: Química Computacional, Cálculos DFT, Optimización geométrica, RMN¹³C, Androstanos, Gaussian09.

INDICE GENERAL

INTR	ODUC	CION		1
FUNE	DAME	ΝΤΟ ΤΕΌΡ	RICO	3
1.	Quím	iica Cuánti	са	3
2.	Ecua	ción de Sc	hrödinger	3
	2.1.	Aproxima	aciones para la resolución de la ecuación de Schrödinger	5
3.	Quím	iica Compi	utacional	7
4.	Las h	erramienta	as de la química computacional	9
	4.1.	Mecánica	a molecular	9
	4.2.	Métodos	de Estructura Electrónica	11
	4.	2.1. Méto	dos <i>ab initio</i>	12
		4.2.1.1.	Hartree Fock (HF)	13
		4.2.1	.1.1. Funciones base	16
			Conjunto mínimo de funciones base	19
			Funciones base de valencia dividida	20
			Funciones bases polarizadas	22
			Funciones difusas	22
	4.	2.2. Méto	dos semiempíricos	23
	4.	2.3. Teorí	a del funcional de densidad	24
		4.2.3.1.	Aproximación de densidad local (LDA)	27
		4.2.3.2.	Aproximación de densidad de espín local (LSDA)	27
		4.2.3.3.	Funcionales de gradiente corregido (GGA)	28
		4.2.3.4.	Aproximación del gradiente meta-generalizado (MGGA)	29
		4.2.3.5.	Funcionales GGA híbridos (HGGA)	29
5.	Com	paración e	stadística	30

5.1	1. Correlación entre dos conjuntos de datos	32
5.2	2. Cálculos químico-computacionales de espectros RMN ¹³ C	34
ANTECE	DENTES	
OBJETIV	/OS	47
PARTE E	EXPERIMENTAL	48
RESULT	ADOS Y DISCUSIÓN	50
CONCLU	JSIONES	81
RECOME	ENDACIONES	83
APÉNDIC	CE: Tablas	84
BIBLIOG	RAFÍA	151

INDICE DE TABLAS

Tabla 1. Apantallamiento nuclear calculado y observado
Tabla 2. Compuestos utilizados y sus estructuras
Tabla 3. Valores de pendiente, punto de corte y R ² correspondientes a la correlación entre los datos teóricos y datos experimentales para cada método de los compuestos 1-16
Tabla 4. Valores de EM, EMA y ECM correspondientes a la correlación de datos de loscompuestos 1-16 en todas las combinaciones de niveles de teoría y funciones base 59
Tabla 5. Valores de EM, EMA y ECM correspondientes a la correlación de datos,obtenidos mediante ajuste, de los compuestos 1-16 para todos los niveles de teoría yfunciones base
Tabla 6. Comparación de los valores del EMA y ECM correspondientes a la correlación de los datos calculados mediante ajuste, ordenados tanto por número de carbono como de forma decreciente, de los compuestos 3-6 para todos los niveles de teoría y funciones base
Tabla 7. Valores del EMA y ECM correspondientes al Compuesto I-a y I-b para todos losniveles de teoría y funciones base
Tabla 8. Valores de EMA y ECM correspondientes al Compuesto II-a y II-b, ordenadospor carbono, para todos los niveles de teoría y funciones base
Tabla 9. Valores de EMA y ECM correspondientes al Compuesto II-a y II-b, ordenadospor desplazamiento, para todos los niveles de teoría y funciones base

Tabla 10. Valores de EM, EMA y ECM correspondientes al Compuesto III, ordenados por
carbono, para todos los niveles de teoría y funciones base
Tabla 11. Valores de EM, EMA y ECM correspondientes al Compuesto III, ordenados de
forma decreciente, para todos los niveles de teoría y funciones base
Tabla A-I: Valores de los desplazamientos químicos de RMN 13C experimentales 85
TablaA-II:Valoresdelasconstantesdeapantallamientoisotrópico(σ)y
desplazamientos químicos (δ) de RMN ¹³ C calculados con B3LYP/6-311++G(d,p) 92
Tabla A-III: Valores de las constantes de apantallamiento isotrópico (σ) de RMN 13C
calculados con MPW1PW91/6-311++G(d,p) 103
Tabla A-IV: Valores de las constantes de apantallamiento isotrópico (σ) de RMN 13C
calculados con BHandHLYP/6-311G(d,p) 114
Table A.V. Valeres de les constantes de constallemiente instrúction (a) de DMN 420

Tabla B-I. Desplazamientos químicos teóricos obtenidos mediante ajuste del Compuesto3 para todos los niveles de teoría y funciones base, ordenados de forma decreciente.136

Tabla B-II. Desplazamientos químicos teóricos obtenidos mediante ajuste del Compuesto4 para todos los niveles de teoría y funciones base, ordenados de forma decreciente.137

INDICE DE GRÁFICOS

Gráfico 1. Correlación de datos teóricos vs. datos experimentales: Compuestos 1-16, B3LYP/6-311++G(d,p)
Gráfico 2. Correlación de datos teóricos vs. datos experimentales: Compuestos 1-16, MPW1PW91/6-311++G(d,p)
Gráfico 3. Correlación de datos teóricos vs. datos experimentales: Compuestos 1-16, BHandHLYP/6-311G(d,p)
Gráfico 4. Correlación de datos teóricos vs. datos experimentales: Compuestos 1-16, BHandHLYP/6-311++G(d,p)
Gráfico 5. Valores de ECM y EMA correspondientes a la correlación de datos de los compuestos 1-16 en todas las combinaciones de niveles de teoría y funciones base 60
Gráfico 6. Valores de ECM y EMA correspondientes a la correlación de datos, obtenidos mediante ajuste, de los compuestos 1-16 para todos los niveles de teoría y funciones base
Gráfico 7. Comparación de los valores del EMA correspondientes a la correlación de los
datos calculados mediante ajuste, ordenados tanto por número de carbono como de
forma decreciente, de los compuestos 3-6 para todos los niveles de teoría y funciones base
Gráfico 8. Comparación de los valores del ECM correspondientes a la correlación de los
datos calculados mediante ajuste, ordenados tanto por número de carbono como de
forma decreciente, de los compuestos 3-6 para todos los niveles de teoría y funciones
base

Gráfico 10. Residuales de cada uno de los desplazamientos del Compuesto I-b 68
Gráfico 11. Residuales ordenados por carbonos del Compuesto II-a
Gráfico 12. Residuales ordenados por carbonos del Compuesto II-b
Gráfico 13. Residuales ordenados por desplazamiento (decreciente) del Compuesto II- a
Gráfico 14. Residuales ordenados por desplazamiento (decreciente) del Compuesto II- b
Gráfico 15. Residuales de cada uno de los carbonos del Compuesto III
Gráfico 16. Residuales de cada uno de los desplazamientos químicos del Compuesto III

INTRODUCCIÓN

La confrontación simultánea de la información experimental con aquella predicha según modelos químico-computacionales conduce a un proceso muy potente y creativo de intercambio entre la información experimental y las presunciones teóricas propuestas. Esta metodología asegura la confiabilidad de los resultados experimentales. La información teórica no sólo es un complemento a los datos experimentales, sino que también es una fuente independiente de información de estructuras moleculares, información vibracional y propiedades experimentales del estado basal electrónico y de los estados excitados. Así, el objetivo de la química computacional es desarrollar y ejecutar programas informáticos, los cuales se basan en algoritmos y teorías desarrolladas en química teórica, que permitan realizar predicciones precisas de propiedades atómicas y moleculares (energía, momento dipolar, frecuencias vibracionales, etc.), así como del desarrollo de reacciones químicas.^[1]

El desarrollo de nuevos métodos en mecánica cuántica para los cálculos de los parámetros de RMN, junto con el crecimiento continuo de herramientas tecnológicas, han permitido el estudio de una amplia gama de problemas químicos. Debido a la característica intrínseca del desplazamiento químico de ¹³C, su cálculo ha demostrado ser particularmente valioso como soporte en el análisis estructural de compuestos orgánicos. Este enfoque ha sido empleado para investigar mecanismos de reacción, iones inestables, complejos organometálicos, equilibrios tautoméricos, propiedades conformacionales y, en general, diferentes aspectos estructurales de moléculas orgánicas.^[2]

Dentro del universo de compuestos químicos, existen una serie de moléculas orgánicas muy conocidas y estudiadas actualmente por su actividad biológica, llamadas androstanos. Los androstanos, son terpenos tetracíclicos. Los terpenos son acoplamientos diméricos de unidades de difosfato reactivo de isopreno (pirofosfato de

isopreno), los cuales pueden ser de cadena abierta, cíclicos, policíclicos y policíclicos puenteados.^[3]

Este trabajo está enmarcado en un proyecto que vienen desarrollando en conjunto, los grupos de investigación de Productos Naturales y Fisicoquímica Orgánica, ambos de la Escuela de Química, que tiene como objetivo obtener un método computacional que permita predecir los espectros de RMN ¹³C, con el menor error posible, de una serie de compuestos orgánicos previamente sintetizados. Una vez encontrado este método, éste se utilizaría para calcular las propiedades físico-químicas de las moléculas estudiadas.

En particular, el presente trabajo, que es una continuación de un TEG previamente realizado, tiene como objetivo la comparación de tres modelos teóricos que permitan predecir los espectros RMN¹³C de moléculas del tipo androstano, con el menor sesgo respecto a los espectros obtenidos experimentalmente.

FUNDAMENTO TEÓRICO

1. Química Cuántica

A principios del siglo XX, los físicos determinan que la mecánica clásica no describía correctamente el comportamiento de las partículas subatómicas (como los electrones y los núcleos de los átomos y las moléculas). Es por ello que desarrollan y establecen un conjunto nuevo de leyes y ecuaciones que permiten explicar de una manera más precisa el comportamiento de estas partículas: la mecánica cuántica. La aplicación de esta a los problemas de la química constituye lo que conocemos como Química Cuántica.

El estado de un sistema en mecánica clásica se define especificando todas las fuerzas que actúan y todas las posiciones y velocidades (o momentos) de las partículas. El principio de incertidumbre de Heisenberg muestra que la especificación simultánea de la posición y del momento es imposible para una partícula cuántica. Es por esto que, en mecánica cuántica, el estado de un sistema es descrito mediante una función matemática Ψ , denominada como la función de onda dependiente del tiempo, o mejor conocida como: la ecuación de Schrödinger.

2. Ecuación de Schrödinger

El concepto de función de onda y la ecuación que proporciona la forma en la que dicha función cambia con el tiempo fueron expuestos en 1926 por el físico austríaco Erwin Schrödinger. Para un sistema unidimensional de una sola partícula se postula que la ecuación es:

$$-\frac{\hbar}{i}\frac{\partial\Psi(x,t)}{\partial t} = -\frac{\hbar^2}{2m}\frac{\partial^2\Psi(x,t)}{\partial x^2} + V(x,t)\Psi(x,t)$$

Ecuación 1. Ecuación de Schrödinger dependiente del tiempo.^[4]

Donde la constante $\hbar \equiv h/2\pi$; h es la constante de Planck, m es la masa de la partícula, y V(x,t) es la función de energía potencial del sistema.

En muchas aplicaciones de la química cuántica no es necesario utilizar la Ec.1; sino una forma más sencilla, la cual es independiente del tiempo. Así, si se considera el caso en el que la función de energía potencial "V" depende de la posición "x" pero no del tiempo (el sistema se encuentra en uno de sus estados estacionarios de energía constante) y además, que la función posee soluciones que pueden ser escritas como el producto de una función dependiente del tiempo por una función dependiente de x; es decir, (x,t) = f(t) $\psi(x)$; la Ec.1 queda entonces como:

$$-\frac{\hbar^2}{2m}\frac{\partial^2\psi(x)}{\partial x^2} + V(x)\psi(x) = E\psi(x)$$

Ecuación 2. Ecuación de Schrödinger independiente del tiempo.^[4]

Donde E es la energía total del sistema.

Usualmente la Ec.2 puede ser rescrita de la siguiente manera:

$$H\psi(x) = E\psi(x)$$

Ecuación 3. Expresión de la Ecuación de Schrödinger usando el operador Hamiltoniano.^[4]

Donde ψ son las autofunciones, E los autovalores y H es el operador Hamiltoniano del sistema, el cual viene dado por:

$$\mathbf{H} = -\frac{\hbar^2}{2m}\nabla^2 + \mathbf{V}(\mathbf{x})$$

Ecuación 4. Operador Hamiltoniano.^[4]

El formalismo en el uso de los operadores permite entonces extender la ecuación a un sistema de varias partículas en las tres dimensiones r=(x,y,z). Quedando así la Ec.3 como:

$$H\psi(r) = E\psi(r)$$

Ecuación 5. Expresión de la Ecuación de Schrödinger tridimensional usando el operador Hamiltoniano.^[4]

Vale destacar que la ecuación de Schrödinger independiente del tiempo contiene dos incógnitas, las energías permitidas E y las funciones de onda ψ . Para obtenerlas es necesario imponer condiciones adicionales (condiciones límite) a la función ψ para que se satisfaga la Ec.5. Dichas condiciones límites, a su vez, determinan las energías permitidas en el sistema.^[4]

2.1. Aproximaciones para la resolución de la ecuación de Schrödinger

La ecuación de Schrödinger para un átomo monoelectrónico (Ec.5) tiene solución exacta. Sin embargo, dicha ecuación para átomos polielectrónicos y para moléculas no puede ser resuelta de manera exacta, a causa de los términos de repulsión interelectrónica de sus Hamiltonianos:

electrones núcleos electrones electrones núcleos núcl

Ecuación 6. Hamiltoniano completo de la Ecuación de Schrödinger.^[9]

Para intentar resolver la ecuación general de Schrödinger, considerando el Hamiltoniano mostrado anteriormente, la primera aproximación que se hace toma en cuenta el hecho de que los núcleos se mueven mucho más lentamente que los electrones, por lo que se considera a los núcleos como estacionarios (aproximación de Born-Oppenheimer).

En consecuencia, el Hamiltoniano puede reescribirse despreciando la energía cinética de los núcleos, quedando de la siguiente forma:

$$H = T_e + V_{NN} + V_{eN} + V_{ee}$$

Ecuación 7. Operador Hamiltoniano: Aproximación Born-Oppenheimer.^[4]

Donde T_e representa la energía cinética de los electrones, V_{NN} es la energía potencial de repulsión entre los núcleos, V_{eN} es la energía potencial de atracción entre los electrones y núcleos; y V_{ee} es la energía potencial de repulsión entre los electrones. Por otro lado, si se agrupan todos los términos electrónicos entonces el Hamiltoniano se representa como:

$$H = H_{el} + V_{NN}$$

Ecuación 8. Operador Hamiltoniano: Términos electrónico y nuclear.^[4]

Las variables en la ecuación de Schrödinger son las coordenadas electrónicas. La cantidad V_{NN} es independiente de esas coordenadas, y es una constante para una configuración nuclear dada. La omisión de un término constante "C" en el Hamiltoniano no afecta a las funciones de onda, y simplemente hace que cada valor propio de la energía disminuya en una cantidad C. Por lo tanto, si V_{NN} se omite de la ecuación de Schrödinger, se obtiene:

$$H_{el}\psi_{el} = E_{el}\psi_{el}$$

Ecuación 9. Ecuación de Schrödinger electrónica.^[4]

Donde la energía puramente electrónica (E_{el}) depende paramétricamente de las coordenadas nucleares.^[4]

Sin embargo, aun así esta ecuación es irresoluble al considerar sistemas con muchos electrones; por lo tanto, para elaborar una teoría mecano-cuántica práctica, se han introducido aproximaciones adicionales con el fin de desarrollar métodos que permitan replicar los hechos experimentales, para luego con ellos realizar simulaciones que permitan obtener información acerca de algún sistema en particular que se quiera estudiar.

De la aplicación de estos métodos y del análisis y aprovechamiento de la información y resultados obtenidos de ellos se encarga la Química Computacional.

3. Química Computacional

La Química es la ciencia que se ocupa de la construcción, transformación y propiedades de las moléculas. La Química Teórica es una rama de la Química donde los métodos matemáticos se combinan con las leyes fundamentales de la física para estudiar los procesos de relevancia química.

Durante los años sesenta y setenta, las computadoras evolucionaron de unas máquinas muy costosas, escasas y difíciles de usar, a unas con completa accesibilidad (tanto en términos económicos como de manejo) para investigadores y personas en general en todo el mundo. La relación rendimiento-precio ha aumentado constantemente desde entonces y el uso de computadoras está ampliamente extendido en muchas ramas de la ciencia. Esto ha dado lugar a un nuevo campo en la Química, la Química Computacional, donde la computadora se utiliza como una herramienta "experimental", al igual que, por ejemplo, un espectrómetro de RMN.^[5]

La química computacional es una disciplina que se ocupa del modelado y la simulación por computadora de sistemas como biomoléculas, polímeros, drogas, moléculas orgánicas, moléculas inorgánicas, etc. Desde su aparición, la química computacional ha experimentado un rápido crecimiento hasta alcanzar gran importancia y popularidad hoy día, ya que se vio inmensamente beneficiada por las grandes mejoras en el desarrollo de hardware y software de las últimas décadas. Con una gran potencia de procesamiento, haciendo uso de grandes servidores y con algoritmos numéricos mucho más rápidos y eficientes, la química computacional se puede utilizar de manera muy efectiva para resolver problemas químicos y biológicos de alta complejidad.^[6]

En la práctica, la química computacional simula numéricamente las estructuras químicas y las reacciones, basadas total o parcialmente en las leyes fundamentales de la física. Permite que el químico estudie los fenómenos químicos ejecutando el cálculo en las computadoras. Algunos métodos pueden usarse para modelar no solo moléculas estables, sino también intermediarios inestables e incluso estados de transición. De esta manera, se puede obtener información sobre las moléculas y las reacciones que de otra manera sería imposible de obtener a través de la observación. La química computacional es, por lo tanto, un área de investigación independiente y un complemento vital para los estudios experimentales.^[7]

De esta manera, el uso y desarrollo de la química computacional podría ayudar a reducir el número de experimentos, lo que se traduce en una importante reducción de costos y tiempo. Las herramientas de software para la química computacional a menudo se basan en información empírica. Para utilizar estas herramientas de manera efectiva, debemos comprender el método de implementación de esta técnica y la naturaleza de la base de datos utilizada en la parametrización del método. Con este conocimiento, podemos rediseñar las herramientas para investigaciones específicas y definir los límites de confianza en los resultados.^[6]

4. Las herramientas de la química computacional

Hay dos áreas amplias dentro de la química computacional dedicadas a la estructura de las moléculas y su reactividad que basan su enfoque en principios y aproximaciones diferentes: la mecánica molecular y la teoría de la estructura electrónica. Ambos realizan los mismos tipos de cálculos básicos:

- Calcular la energía de una estructura molecular particular (disposición espacial de átomos o núcleos y electrones). Las propiedades de la molécula relacionadas con la energía también pueden ser predichas a través de algunos de estos métodos.
- Optimizaciones geométricas. Estas obtienen la estructura molecular de más baja energía de acuerdo a la estructura específica que fue introducida. Las optimizaciones geométricas dependen principalmente del gradiente de energía, es decir, la primera derivada de la energía con respecto a las posiciones atómicas.
- Calcular las frecuencias vibratorias de las moléculas como resultado del movimiento interatómico dentro de la molécula. Estas frecuencias dependen de la segunda derivada de la energía con respecto a la estructura atómica, y los cálculos de frecuencia también pueden predecir otras propiedades que dependen de segundas derivadas. Los cálculos de frecuencia no son posibles o prácticos para todos los métodos de química computacional.^[7]

4.1. Mecánica molecular

Los métodos de la mecánica molecular usan las leyes de la física clásica para predecir las estructuras y propiedades de las moléculas empleando expresiones algebraicas simples (como la ecuación del oscilador armónico) para la energía total de un compuesto, sin necesidad de calcular una función de onda o la densidad electrónica total. Se basa en un modelo que trata a la molécula como una colección de esferas (átomos) unidas por resortes (enlaces). Si conocemos las longitudes normales del resorte y los ángulos entre ellas, además de la energía asociada con el estiramiento, flexión, rotación y fuerzas entre los "resortes", podemos calcular la energía de una determinada colección de esferas y resortes, es decir, de una molécula determinada. Para obtener la geometría de una molécula se le realizan modificaciones hasta que se encuentre a aquella con la energía más baja, lo que se conoce como una optimización geométrica.

En la mecánica molecular hay una amplia variedad de métodos, los cuales se caracterizan por tener su propia base de datos de compuestos utilizados para parametrizar cada método. Dicha parametrización se realiza para cada clase específica de moléculas, como proteínas, moléculas orgánicas, compuestos organometálicos, etc. Estas bases de datos son un conjunto de parámetros y funciones que se denominan *forcefield* (campo de fuerza).

Un forcefield se compone de lo siguiente:

- Un conjunto de ecuaciones que definen cómo la energía potencial de una molécula varía con la ubicación de sus átomos componentes.
- Una serie de tipos de átomos que definen las características de un elemento dentro de un contexto químico específico. Los tipos de átomos prescriben diferentes características y comportamientos para un elemento dependiendo de su entorno, por ejemplo, un átomo de carbono en un carbonilo se trata de forma diferente a uno unido a tres hidrógenos. El tipo de átomo depende de la hibridación, la carga y los tipos de los otros átomos a los que está unido
- Uno o más conjuntos de parámetros que ajustan las ecuaciones y tipos de átomos a los datos experimentales. Los conjuntos de parámetros definen las constantes de fuerza, que son los valores utilizados en las ecuaciones para relacionar las características atómicas con los componentes de energía, y los datos estructurales, como las longitudes y ángulos de los enlaces.

Los cálculos de la mecánica molecular no tratan explícitamente los electrones en un sistema molecular. En cambio, realizan cálculos basados en las interacciones entre los núcleos. Los efectos electrónicos se incluyen implícitamente en los campos de fuerza a través de la parametrización.

Esta aproximación hace que los cálculos de la mecánica molecular sean bastante económicos desde el punto de vista computacional, y permite utilizarlos para sistemas muy grandes que contienen muchos miles de átomos. Sin embargo, también tiene varias limitaciones. Entre las más importantes están:

- Cada campo de fuerza logra buenos resultados solo para una clase limitada de moléculas, relacionadas con aquellas para las que fue parametrizado. Ningún campo de fuerza se puede usar generalmente para todos los sistemas moleculares de interés.
- El descuido de los electrones significa que la mecánica molecular no puede tratar los problemas químicos donde predominan los efectos electrónicos. Por ejemplo, no pueden describir los estados electrónicos excitados o los procesos que impliquen la formación o la ruptura de enlaces. Las propiedades moleculares que dependen de detalles electrónicos sutiles tampoco son reproducibles por métodos mecánico-moleculares. [7][8]

4.2. Métodos de Estructura Electrónica

Los métodos de estructura electrónica utilizan las leyes de la mecánica cuántica en lugar de la física clásica como base para sus cálculos. La mecánica cuántica establece que la energía y otras propiedades relacionadas de una molécula se pueden obtener resolviendo la ecuación de Schrödinger:

$$H\psi(r) = E\psi(r)$$

Ecuación 5. Expresión de la Ecuación de Schrödinger tridimensional usando el operador Hamiltoniano.^[4]

Excepto para los sistemas más pequeños, las soluciones exactas a la ecuación de Schrödinger no son computacionalmente prácticas. Los métodos de estructura electrónica se caracterizan por las diversas aproximaciones matemáticas a su solución. Hay dos clases principales de métodos de estructura electrónica^[7]:

4.2.1. Métodos ab initio

El término *ab initio* es el término latino que significa "desde el principio". Este nombre se da a los cálculos que se derivan directamente de los principios teóricos (como la ecuación de Schrödinger), sin inclusión de datos experimentales. Este método, de hecho, puede verse como un método mecánico cuántico aproximado. Las aproximaciones realizadas son aproximaciones matemáticas rigurosas, como utilizar una forma funcional más simple para una función u obtener una solución aproximada a una ecuación diferencial.

Los métodos *ab initio*, a diferencia de la mecánica molecular o los métodos semiempíricos, no usan parámetros experimentales en sus cálculos. En cambio, sus cálculos se basan únicamente en las leyes de la mecánica cuántica (los "primeros principios" a los que se refiere en el nombre *ab initio*) y en los valores de algunas constantes físicas, entre ellas:

- La velocidad de la luz.
- Las masas y cargas de electrones y núcleos.
- La constante de Planck.

Los cálculos *ab initio* proporcionan predicciones cuantitativas de alta calidad para una amplia gama de sistemas. No están limitados a ninguna clase específica de sistema. Se pueden realizar cálculos y predecir las estructuras de moléculas de hasta unas decenas de átomos.^[7]

4.2.1.1. Hartree Fock (HF)

El tipo más común de cálculo *ab initio* se denomina cálculo de Hartree-Fock (HF), Es una modificación del tratamiento de Hartree, una técnica de aproximación de un solo electrón utilizada en sistemas de múltiples electrones. La función de onda ψ (r) depende de las coordenadas de todos los electrones en la molécula. Douglas R. Hartree propuso que la función de onda electrónica se puede separar en un producto de funciones (conocido como producto Hartree) que dependen solo de un electrón cada una (**Ec.10**).

$$\Psi(r_1, r_2, ..., r_n) = \phi_1(r_1)\phi_2(r_2) ... \phi_n(r_n)$$

Ecuación 10. Producto Hartree.^[9]

Sin embargo, para describir completamente al electrón, no sólo es necesario describirlo en función de sus coordenadas espaciales, sino especificar también su espín. Por lo que se debe introducir el espín electrónico como un efecto cuántico, donde cada electrón posee un número cuántico de espín, que se puede orientar, en presencia de un campo, en el sentido de este u opuesto. Las funciones de spin son denotadas como +1/2 y -1/2. Es decir, un electrón es descrito apropiadamente por cuatro coordenadas: tres espaciales (r) y una coordenada spin (ω), que pueden expresarse como:

$$\chi(x) = \phi(r, \omega)$$

Así, el producto Hartree se convierte en:

$$\Psi(x_1, x_2, \dots, x_n) = \chi_1(x_1)\chi_2(x_2) \dots \chi_n(x_n)$$

Ecuación 12. Producto Hartree.^[9]

Esta función de onda resolvería la ecuación de Schrödinger exactamente si no fuera por el término de repulsión electrón-electrón del hamiltoniano. Hartree reescribió este término como una expresión que describe la repulsión que siente un electrón desde la posición promedio de los demás electrones. En otras palabras, la repulsión exacta electrón-electrón se reemplaza con un campo efectivo V_i^{eff} producido por las posiciones promedio de los electrones restantes (**Ec.13**). Con este supuesto, las funciones separables satisfacen las ecuaciones de Hartree.

$$\left(-\frac{1}{2}\nabla_i^2 - \sum_{I}^{N}\frac{Z_I}{r_{Ii}} + V_i^{eff}\right)\phi_i = E_i\phi_i$$

Ecuación 13. Ecuación de Hartree.^[9]

Resolver el conjunto de funciones ϕ i no es trivial porque el propio Vi^{eff} depende de todas las funciones ϕ i. Se necesita un esquema iterativo para resolver las ecuaciones de Hartree. Primero, se asume un conjunto de funciones ($\phi_1, \phi_2, ..., \phi_n$). Estos se utilizan para producir el conjunto de operadores potenciales efectivos Vi^{eff}, y las ecuaciones de Hartree se resuelven para producir un conjunto de funciones mejoradas ϕ i. Estas nuevas funciones producen un potencial efectivo actualizado, que a su vez produce un nuevo conjunto de funciones ϕ i. Este proceso continúa hasta que las funciones ϕ i prácticamente ya no cambian, lo que resulta en un campo autoconsistente (Self Consistent Field-SCF).

Vladimir A. Fock destacó que la función de onda separable empleada por Hartree no satisface el principio de exclusión de Pauli. En cambio, Fock sugirió usar el determinante de Slater (**Ec.14**), que es antisimétrico y satisface el principio de exclusión de Pauli.

$$\Psi(\chi_{1},\chi_{2},...,\chi_{n}) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \chi_{1}(1) & \chi_{2}(1) & ... & \chi_{N}(1) \\ \chi_{1}(2) & \chi_{2}(2) & ... & \chi_{N}(2) \\ \vdots & \vdots & \ddots & \vdots \\ \chi_{1}(N) & \chi_{2}(N) & ... & \chi_{N}(N) \end{vmatrix}$$

Ecuación 14. Determinante de Slater.^[9]

Nuevamente, se emplea un potencial efectivo y un esquema iterativo proporciona la solución a las ecuaciones de Hartree-Fock (HF).^[9]

Una consecuencia de esta forma funcional es que los electrones son indistinguibles, lo que es consistente con los resultados de la mecánica cuántica, ya que cada electrón está asociado con todos los orbitales. Por otra parte, esta teoría asigna cada electrón a un orbital del tipo hidrogenoide, lo que permite el cálculo de la energía cinética electrónica, la energía potencial de atracción núcleo-electrón y la energía potencial de repulsión con los electrones de otros orbitales a través de la siguiente ecuación:

$F\Phi_i = E_i \Phi_i$

Ecuación 15. Ecuación de Hartree-Fock. [5]

Donde F es el operador de Fock, el cual contiene los operadores de energía cinética y potencial e ϕ i es un orbital molecular generado de una combinación lineal de "orbitales atómicos" (o funciones base como se explicará más adelante).

Debido a que este método es un cálculo de tipo variacional (usa un esquema iterativo para resolver las ecuaciones y obtener los coeficientes), las energías de los cálculos de HF son siempre mayores que la energía exacta y tienden a un valor límite llamado límite Hartree Fock.

El aspecto favorable de los métodos *ab initio* es que eventualmente convergen a la solución exacta, una vez que todas las aproximaciones se hacen de una magnitud suficientemente pequeña.

El aspecto desfavorable es que estos métodos son exigentes. A menudo requieren enormes cantidades de tiempo de CPU, memoria y espacio en disco. El método de HF se escala como N⁴, donde N es el número de funciones base, por lo que un cálculo el doble de grande toma 16 veces más tiempo en completarse. En la práctica, solo se pueden obtener soluciones extremadamente precisas cuando la molécula contiene media docena de electrones o menos.

En general, los cálculos *ab initio* dan muy buenos resultados cualitativos y pueden dar resultados cuantitativos cada vez más precisos a medida que las moléculas en cuestión se vuelven más pequeñas.^[6]

4.2.1.1.1. Funciones base

Una función base es una descripción matemática de los orbitales de un sistema (que a su vez representa una aproximación a la función de onda electrónica total), que se utiliza para el cálculo o modelado teórico. Es un conjunto de "bloques" que se pueden "apilar" para tener las características que necesitamos. Por "apilar" en matemáticas, nos referimos a agregar cosas, como por ejemplo multiplicar cada término por su propia constante:

$$\psi = a_1\phi_1 + a_2\phi_2 + \ldots + a_k\phi_k$$

Ecuación 16. Combinación lineal de funciones base [6].

Donde k es el tamaño de la función base, φ_1 , φ_2 , ..., φ_k son las funciones base y a₁, a₂, ..., a_k son las constantes de normalización.^[6]

Para obtener la energía y la función de onda dentro del procedimiento Hartree-Fock, se deben especificar los Orbitales Atómicos (OA) con los que se van a construir los orbitales moleculares. Si el conjunto de OA es infinito, entonces el principio variacional nos dice que obtendremos la energía más baja posible dentro del método HF-SCF. Esto se denomina límite HF, E_{HF}. Esta no es la energía real de la molécula, ya que el método HF ignora las interacciones instantáneas electrón-electrón, conocidas también como correlación electrónica.

Dado que un conjunto infinito de OA no es práctico, debe hacerse una elección sobre cómo truncar la expansión. Esta selección de OA es lo que define el conjunto de funciones base.^[9]

Hay que aclarar que dicha expansión y selección se debe tratar bajo la denominación de "funciones base" en lugar de "OA". Estrictamente hablando, los OA son las soluciones reales a las ecuaciones de Hartree-Fock (HF) para el átomo, es decir, las funciones de onda para un solo electrón en el átomo. La construcción de este conjunto de funciones es completamente un "truco" matemático, y entre las condiciones impuestas está el colocar estas funciones centradas en un núcleo ya que esa es la región de mayor densidad electrónica. No estamos usando "OA" en el sentido de una solución a la ecuación atómica de Schrödinger, sino solo funciones matemáticas centradas en núcleos por conveniencia.^{[6][9]}

John C. Slater fue el primero que realizó cálculos de orbitales utilizando funciones base, utilizando lo que se definió como Orbitales tipo Slater (STO-Slater Type Orbital-). La solución de la ecuación de Schrödinger para el átomo de hidrógeno y otros iones de un electrón dan orbitales atómicos que son el producto entre una función radial y un armónico esférico. Slater señaló que se podrían usar funciones que consistieran solo en los armónicos esféricos y el término exponencial. La expresión general para una función base STO es ^[6]:

$$c = N x^i y^j z^k e^{-z(r-R)}$$

Ecuación 17. Expresión general de la función base STO.^[9]

Donde R es el vector de posición del núcleo sobre el que se centra la función y N es la constante de normalización. El valor de ζ para cada STO para un elemento dado se determina minimizando la energía atómica con respecto a ζ . Estos valores se utilizan para cada átomo de ese elemento, independientemente del entorno molecular.

Conceptualmente, la base STO es sencilla ya que imita la solución exacta para el átomo de un solo electrón. Los orbitales exactos para el carbono, por ejemplo, no son orbitales hidrogenoides, pero son similares a estos. Desafortunadamente, con las STO, muchas de las integrales que necesitan ser evaluadas para construir la matriz de Fock solo pueden ser resueltas usando una serie infinita. El truncamiento de esta serie infinita produce errores, que pueden ser significativos.^[9]

En la década de 1950, Frank Boys sugirió una modificación a la función de onda al introducir funciones de tipo gaussiano:

$$\chi = N x^i y^j z^k e^{-\alpha (r-R)^2}$$

Ecuación 18. Expresión general de la función base GTO.^[9]

Que contienen el exponencial $e^{-\alpha r^2}$, en lugar del $e^{-\alpha r}$ de las STO. La ventaja del orbital de tipo gaussiano (GTO-Gaussian Type Orbitals-) es que, con estas funciones, las integrales requeridas para construir la matriz de Fock se pueden evaluar exactamente. La desventaja es que los GTO difieren en su forma de los STO, particularmente al acercarse al núcleo donde el STO tiene una cúspide mientras que el GTO es continuamente diferenciable (Figura 1). Por lo tanto, se necesitan múltiples GTO para imitar adecuadamente cada STO, aumentando el tamaño computacional. Algunos cálculos iniciales utilizaron un gran número de GTO individuales. Luego se sugirió que

los GTO se contrajeran en funciones separadas. Cada función base en este enfoque consiste en varios GTO combinados de manera lineal con coeficientes fijos. Por lo tanto, podríamos definir una función de base GTO (3G) como ^{[6][9]}:

$$GTO(3G) = c_1 e^{-\beta_1 r^2} + c_2 e^{-\beta_2 r^2} + c_3 e^{-\beta_3 r^2}$$

Ecuación 19. Combinación lineal de 3 funciones base GTO. [6]

Donde los tres valores de c y β son fijos, y ese número se incluye en la designación. Nombrar a los gaussianos como GTO es probablemente inadecuado, ya que en realidad no son orbitales. Son formas modificadas y simplificadas de funciones. En la literatura reciente, a menudo se les llama gaussianas primitivas.^[6]

Figura 1. Comparación entre las bases STO y GTO. [6]

Conjunto mínimo de funciones base

Varios factores definen la base establecida para un cálculo químico cuántico. Primero, ¿Cuántas funciones de base deberían usarse? La base mínima establecida tiene una función de base para cada orbital ocupado u ocupado parcialmente en el átomo. Entonces, por ejemplo, la base mínima establecida para el hidrogeno (1s¹) y el carbono (1s²2s²2p²) tiene las siguientes funciones:

H: 1s

C: 1s, 2s, 2p_x, 2p_y, 2p_z

Este conjunto mínimo de funciones base se conoce como un conjunto de bases simple zeta (SZ). El uso del término zeta aquí refleja que cada función base imita una única STO, que se define por su exponente, ζ.^[9]

La base mínima establecida suele ser inadecuada, ya que no permite que los electrones centrales se acerquen lo suficiente al núcleo y que los electrones de valencia se deslocalicen. Una solución obvia es duplicar el tamaño del conjunto base, creando una base doble zeta (DZ). Entonces, para el hidrógeno y el carbono, el conjunto base DZ sería:

H: 1s, 1s'

C: 1s, 1s', 2s, 2s', 2p_x, 2p_y, 2p_z, 2p_x', 2p_y', 2p_z'

El hidrógeno tendría 2 funciones base s y el carbono cuatro funciones base s y dos funciones base p (refiriéndose aquí al conjunto completo p_x, p_y, y p_z), para un total de 10 funciones base, donde los orbitales primados (') y no primados difieren en tamaño. Se puede hacer una mejora adicional eligiendo una triple zeta (TZ) o incluso un conjunto de bases más grande.^[9]

Funciones base de valencia dividida

Dado que la mayor parte de la química se centra en la acción de los electrones de valencia, Pople desarrolló las funciones base de valencia dividida, SZ en el núcleo y DZ

en la región de valencia. Estos conjuntos, como por ejemplo el 3-21G y 6-31G, se representan, en el caso del hidrógeno y el carbono, como:

H: 1s, 1s'

C: 1s, 2s, 2s', 2p_x, 2p_y, 2p_z, 2p_x', 2p_y', 2p_z'

Para la gran mayoría de las funciones base, incluidas las de valencia dividida, estas no se componen de una sola función gaussiana, sino que se hace una combinación lineal de funciones primitivas (PGTO) para formar una función base, que se conoce como función base contraída (CGTO). La contracción es especialmente útil para describir los orbitales del "core" debido a que se requiere un gran número de GTO's para representar la cúspide de la función de onda cerca del núcleo. Es decir, las CTGO minimizan el problema de la representación del comportamiento de la densidad electrónica cerca del núcleo de los GTO.

Esto se explica fácilmente mediante un ejemplo, tomemos la función base de valencia dividida 6-31G. El nombre especifica el esquema de contracción empleado para crear las funciones base. El guion separa el núcleo o "core" (a la izquierda) de la capa de valencia (a la derecha). En este caso, cada orbital del "core" (aquí el único es el orbital 1s) está representado por una función base que está compuesta por seis funciones gaussianas primitivas contraídas. En la capa de valencia (aquí los orbitales: 2s, 2p_x, 2p_y y 2p_z) cada orbital está representado por 2 funciones base (en este caso por ser DZ) donde la primera está compuesta por 3 gaussianas primitivas y la otra por solo 1 gaussiana primitiva. Por lo tanto, el conjunto 6-31G para el carbono tiene 9 funciones base compuestas por 22 funciones gaussianas primitivas ^[9].

• Funciones base polarizadas

Grandes funciones bases multizeta permiten que los orbitales cambien de tamaño, pero no que cambien de forma, por lo que por sí solos no proporcionan suficiente flexibilidad matemática para describir adecuadamente la distribución electrónica en las moléculas. Un ejemplo de esta deficiencia es la incapacidad para describir enlaces doblados en anillos pequeños. Esta limitación se elimina al agregar orbitales con un momento angular superior (el próximo inmediato) al que se requiere para la descripción del estado fundamental de cada átomo, lo cual mejora en gran medida la flexibilidad de la base. Estas funciones base adicionales se denominan funciones de polarización. Por ejemplo, las funciones base polarizadas agregan funciones "p" a los átomos de hidrógeno, funciones "d" a los átomos de carbono y funciones "f" a los metales de transición. La designación de un conjunto de funciones base polarizadas es variada. Para las funciones base de valencia dividida, la adición de un conjunto de funciones de polarización a todos los átomos menos el hidrógeno se designa con un asterisco, es decir, 6-31G*, y agregar el conjunto de funciones p al hidrógeno también se indica mediante un segundo asterisco, es decir, 6-31G**. Dado que la adición de múltiples conjuntos de funciones de polarización se ha implementado ampliamente, el uso de asteriscos se ha desaprobado en favor de la indicación explícita del número de funciones de polarización entre paréntesis, por ejemplo 6-311G (2df,2p), que significa que se agregan dos conjuntos de funciones "d" y un conjunto de funciones "f" a átomos que no son de hidrógeno y dos conjuntos de funciones "p" a los átomos de hidrógeno. [7][9]

• Funciones difusas

Para sistemas donde los electrones están relativamente lejos del núcleo (aniones o moléculas con muchos pares de electrones libres), las funciones base deben ser ampliadas para permitir que la densidad electrónica se expanda en un mayor volumen. Para ello se agregan funciones difusas, que son versiones de gran tamaño de las funciones tipo "s" y "p" que permiten a los orbitales ocupar una región más grande del espacio. Las funciones difusas agregadas son un conjunto completo de funciones extras del mismo tipo que están presentes en la capa de valencia. Por ende, en el caso del carbono, las funciones difusas serían una función base tipo "s" y una "p" adicionales. Dichas funciones se designan con un signo "+", como en 6-31+G*. Cuando hay doble "+", como en 6-31++G*, esto indica que también se han agregado funciones difusas a los átomos de hidrógeno.^{[7][9]}

4.2.2. Métodos semiempíricos

Los métodos semiempíricos son aquellos que usan parámetros provenientes de datos experimentales para simplificar los cálculos. Resuelven una forma aproximada de la ecuación de Schrödinger que depende de tener los parámetros apropiados disponibles para el tipo de sistema químico bajo estudio. Cada método semiempírico se caracteriza principalmente por sus diferentes conjuntos de parámetros.

Estos métodos son relativamente poco exigentes y proporcionan descripciones cualitativas razonables de sistemas moleculares, así como predicciones cuantitativas bastante precisas de estructuras y energías para sistemas donde existen buenos conjuntos de parámetros. También se utilizan como un primer paso en cálculos ab-initio de sistemas muy grandes.

Una gran limitante es que sólo pueden ser usados para sistemas en los cuales los parámetros han sido desarrollados para todos los átomos que lo componen. Además, no son buenos para describir estructuras de transición, puentes de hidrógeno o moléculas que contienen átomos para los cuales no existe una buena parametrización. ^[7]

4.2.3. Teoría del funcional de densidad

Una tercera clase de métodos de estructura electrónica ha llegado a ser de amplio uso: métodos de los funcionales de densidad. En los últimos años, los métodos basados en esta teoría (DFT-Density Functional Theory) han ganado popularidad en forma creciente. Los mejores métodos DFT logran una precisión significativamente mayor que la teoría Hartree-Fock con solo un ligero aumento en el costo computacional.^[7]

La función de onda electrónica depende de 4n variables: 3 coordenadas espaciales (x, y, z) y una coordenada de spin (+1/2,-1/2) por cada electrón. Como tal, es bastante complicada y difícil de interpretar. En cambio, la densidad electrónica total ρ (r) depende de solo tres variables: las posiciones x, y, z en el espacio, y es independiente del número de electrones, por lo que a medida que aumenta la complejidad de la función de onda, el número de variables que describen la densidad electrónica permanece igual. Esto hace que los métodos DFT tengan un menor costo computacional, en especial comparados con aquellos que incluyen correlación electrónica. Ya que ρ (r) es más simple que la función de onda y también es un observable, nos ofrece una forma más directa de obtener la energía molecular.^[9]

Los primeros modelos de DFT tuvieron errores significativos en los cálculos moleculares, y debido a que la teoría aún no estaba rigurosamente respaldada (no se había establecido un principio variacional), esto llevó a que tuvieran poco impacto en la química. Esto cambiaría cuando Pierre Hohenberg y Walter Kohn (1964) demostraran dos teoremas críticos para establecer al DFT como una metodología química cuántica legítima.

El primer teorema (teorema de la existencia) establece que cada observable de un sistema mecánico cuántico estacionario (incluida la energía), se puede calcular, en principio exactamente, a partir de la densidad electrónica del estado fundamental únicamente, es decir, la energía (y cualquier observable) puede escribirse como un funcional de la densidad electrónica del estado fundamental:
$$E[\rho(r)] = E_{elec}$$

Ecuación 20. Expresión de la energía como funcional de la densidad electrónica.^[9]

Donde E_{elec} es la energía electrónica exacta^[6].

Antes de continuar, primero hay que definir el término funcional. Una función matemática es aquella que relaciona una cantidad escalar con otra cantidad escalar, es decir, y = f(x) (Figura 2).

$$2 \xrightarrow{x^3} 8$$
$$1 \xrightarrow{x^3} 1$$

Figura 2. Ejemplos de funciones.^[8]

Un funcional matemático relaciona o "transforma" una función en una cantidad escalar y se denota entre corchetes, es decir, y = F[f(x)] (Figura 3).

$$f(x) = x^3 \frac{\int_0^2 f(x)dx}{x^4} \frac{x^4}{4}\Big|_0^2 = 4$$

En la Ec.20, la función ρ (r) depende de las coordenadas espaciales, y a su vez la energía depende de los valores (es funcional) de ρ (r).

Hohenberg y Kohn también demostraron que la densidad electrónica obedece al teorema variacional; esto es que, dada una densidad electrónica específica, su energía será mayor o igual a la energía exacta. Estos dos teoremas constituyen la base de la teoría del funcional de la densidad (DFT), cuya esperanza radica en que la evaluación de

la Ec.20 podría ser más fácil que los métodos *ab initio* tradicionales debido a la dependencia de una variable más sencilla.

Para resolver la energía a través del método DFT, Kohn y Lu Jeu Sham propusieron que el funcional tiene la forma:

$$E[\rho(r)] = T_{e'}[\rho(r)] + V_{ne}[\rho(r)] + V_{ee}[\rho(r)] + E_{xc}[\rho(r)]$$

Ecuación 21. Expresión de los términos de la energía como funcional de la densidad electrónica.^[9]

Las ecuaciones para la atracción núcleo-electrón (V_{ne}) y la repulsión clásica coulombica electrón-electrón (V_{ee}) son las mismas que las que se usan en la teoría Hartree-Fock. La clave está en la definición del primer término de la ecuación. Kohn y Sham lo definieron como la energía cinética de los electrones no interactuantes cuya densidad electrónica es la misma que la densidad electrónica de los electrones reales, es decir, la de los electrones que si interactúan. El último término se denomina funcional de intercambio-correlación, y es un término global para dar cuenta de todos los demás aspectos del verdadero sistema, entre ellos:

- 1. El intercambio de electrones.
- 2. La correlación electrónica.
- La porción de la energía cinética que se necesita para corregir T_e[p] para obtener la energía cinética verdadera del sistema real T_e[p].
- 4. Corrección de la auto-interacción introducida por el potencial coulombico clásico.^[6]

La estrategia aquí es separar la energía electrónica de la molécula como una suma de términos, donde una porción puede calcularse con precisión sin usar DFT, y un término relativamente pequeño que requiere el funcional "desconocido" ($E_{xc} [\rho(r)]$). Por lo tanto, se espera que incluso los errores moderadamente grandes en este término no introduzcan grandes errores en la energía total.^[8]

DFT no está exento de problemas. Si bien el teorema de Hohenberg-Kohn demuestra la existencia de un funcional que relaciona la densidad electrónica con la energía, no ofrece ninguna guía sobre la forma de ese funcional. El problema real es el término de intercambio-correlación de la Ec.21. No hay manera de derivar este término ni de corregir sistemáticamente su rendimiento, es decir, si un funcional dado no proporciona un resultado adecuado, hay que volver al paso uno y seleccionar un nuevo funcional.

¿Cómo se selecciona el funcional correcto para el problema en cuestión? Desafortunadamente, no hay un solo funcional que parezca funcionar mejor para todos los sistemas químicos, por lo que uno debe definir un conjunto de supuestos al momento de crear una expresión de intercambio-correlación.

4.2.3.1. Aproximación de densidad local (LDA)

La aproximación más simple a $E_{xc}[p(r)]$ es la aproximación de densidad local, LDA. Esta se basa en el supuesto de que la densidad en cada punto de la molécula (localmente) puede tratarse como un gas de electrones homogéneo. Cabe destacar que la LDA no asume que la densidad de electrones en una molécula es uniforme, sino más bien que la densidad es una función que varía lentamente. Los funcionales LDA han sido reemplazados en gran parte por una familia que representa una extensión del método, los funcionales de aproximación de densidad de espín local (LSDA).^[8]

4.2.3.2. Aproximación de densidad de espín local (LSDA)

El "espín" aquí significa que los electrones de espín opuesto se colocan en diferentes orbitales de Kohn-Sham (KS), de manera análoga a algunos métodos avanzados de Hartree-Fock. El método LSDA asigna electrones de espín α y β a diferentes orbitales espaciales KS ψ_{α}^{KS} y ψ_{β}^{KS} , lo cual implica diferentes funciones de

densidad electrónica ρ_{α} y ρ_{β} . Esta aproximación tiene la ventaja de que puede manejar sistemas con uno o más electrones no apareados, como los radicales, y sistemas en los que los electrones se están desapareando, como moléculas fuera de sus geometrías de equilibrio, e incluso para las moléculas ordinarias parece adaptarse mejor al uso de funciones Exc inexactas. Las geometrías de LSDA, las frecuencias y las propiedades de distribución de electrones tienden a ser razonablemente buenas, pero (como en los cálculos de HF) las energías de disociación, incluidas las energías de atomización, son muy pobres. Los funcionales LSDA son útiles en la física del estado sólido, pero para los cálculos moleculares se han reemplazado en gran medida por un enfoque que utiliza no solo la densidad electrónica, sino también su gradiente.^[8]

4.2.3.3. Funcionales de gradiente corregido; la aproximación del gradiente generalizado (GGA)

La mayoría de los cálculos de DFT en la actualidad utilizan funcionales de energía de intercambio-correlación E_{xc} que utilizan tanto la densidad electrónica como su gradiente, la primera derivada de ρ con respecto a la posición, $(\partial/\partial x + \partial/\partial y + \partial/\partial z)\rho = \nabla \rho$. Estos funcionales se denominan "gradiente corregido", o se dice que usan la aproximación del gradiente generalizado (GGA). El funcional de energía de intercambio-correlación se puede escribir como la suma de un funcional de energía de intercambio con un funcional de energía de correlación, $E_{xc}=E_x + E_c$, ambas negativas, donde se ha calculado que $|E_x|$ es mucho más grande que $|E_c|$ (Para el átomo de argón, E_x es -30,19 hartrees, mientras que E_c es solo -0,72 hartrees). Por lo tanto, no es sorprendente que las correcciones de gradiente hayan demostrado ser más efectivas cuando se aplican al funcional de energía de intercambio, y un avance importante en los cálculos prácticos de DFT fue la introducción del funcional B88 (Becke 1988), un "funcional nuevo y muy mejorado para la energía de intercambio". Ejemplos de funciones de correlación de energía con correlación de gradiente son los funcionales LYP (Lee-Yang-Parr) y P86

(Perdew 1986). Todos estos funcionales se utilizan comúnmente con funciones base de tipo gaussiano para representar los orbitales KS.^[8]

4.2.3.4. Aproximación del gradiente meta-generalizado. Funcionales MGGA

De la misma forma que los funcionales que utilizan la primera derivada del funcional de densidad electrónica, los funcionales GGA, son generalmente una mejora sobre aquellos que dependen solo de ρ , se podría esperar una mejora similar al considerar la segunda derivada de ρ , $(\partial^2/\partial x^2 + \partial^2/\partial y^2 + \partial^2/\partial z^2) \rho = \nabla^2 \rho$. Este es el laplaciano del funcional de densidad electrónica. Los funcionales que utilizan la segunda derivada de ρ se denominan meta-gradiente corregido. Este enfoque parece ofrecer algunas mejoras, pero los funcionales que dependen del Laplaciano de ρ presentan algunos problemas computacionales. Una forma de evitar esto es hacer que el funcional MGGA no sea dependiente de ρ sino de la densidad de energía cinética τ , obtenida al sumar los cuadrados de los gradientes de los orbitales de Kohn-Sham, ya que esto varía con respecto a ρ esencialmente de la misma forma que el laplaciano de ρ .^[8]

4.2.3.5. Funcionales GGA híbridos (HGGA); el Método de Corrección Adiabática (ACM)

Los funcionales híbridos son aquellos que han agregado la energía de intercambio Hartree-Fock al cálculo DFT gracias al método de conexión adiabática (ACM), que demuestra que la energía de intercambio-correlación E_{XC} (ρ) puede tomarse como una combinación lineal de la energía intercambio-correlación DFT y la energía de intercambio HF. El porcentaje de energía de intercambio HF que se debe utilizar es la característica distintiva principal de los diversos funcionales híbridos y se determina mediante el ajuste de las predicciones del funcional a datos termodinámicos experimentales o calculados con precisión. El primer método híbrido popular y exitoso fue B3LYP, el cual fue desarrollado como una combinación del funcional de correlación de tres parámetros de Becke con el funcional de intercambio de Lee, Yang y Parr. Otro funcional muy utilizado, el MPW1PW91, tiene como diferencia principal con B3LYP que usa un mayor porcentaje de energía de correlación HF.^[8]

5. Comparación estadística

Un componente esencial de los cálculos computacionales es la calibración de los nuevos métodos, así como también el análisis y aplicación los resultados de los cálculos para predecir o explicar el resultado experimental. En ambos tipos de investigación se comparan dos grupos de datos y el interés se centra en la caracterización de cuán exacto los datos de un conjunto pueden representar o predecir al otro. Es común que, uno o ambos conjuntos de datos contengan "ruido" y se obtenga una pobre correlación, por lo que hay que determinar si se esto se debe a unos pocos datos "ruidosos" o a una falla fundamental en la metodología del cálculo. La estadística es la herramienta indicada para cuantificar este tipo de relaciones y solventar las dificultades antes mencionadas.

El "ruido" antes mencionado es lo que se conoce como errores, y estos pueden ser sistemáticos o aleatorios. Un error sistemático se debe a un sesgo inherente a la metodología implementada o a un error introducido por el usuario. Un error aleatorio es, como su nombre lo indica, una desviación no sesgada del resultado "verdadero". Un error sistemático puede eliminarse o reducirse, una vez que se identifica la fuente del error. Un error aleatorio, también llamado error estadístico, puede reducirse promediando los resultados de muchas mediciones. Hay que tener en cuenta que los errores aleatorios pueden ser verdaderamente aleatorios, por ejemplo, debido a fluctuaciones en las condiciones del experimento (temperatura, humedad, etc.), pero también pueden deberse a muchos pequeños errores sistemáticos no reconocidos que se suman a un aparente ruido aleatorio. Las mediciones experimentales pueden contener tanto errores sistemáticos como aleatorios. Este último puede cuantificarse repitiendo el experimento múltiples veces y tomando la desviación entre estos resultados como una medida de la incertidumbre del resultado (promedio). Sin embargo, los errores sistemáticos son difíciles de identificar. Una posibilidad para detectarlos es medir la misma cantidad por diferentes métodos, o usar el mismo método en diferentes laboratorios.

La teoría casi siempre contiene "errores", pero estos se denominan "aproximaciones" en la comunidad. El método Hartree-Fock, por ejemplo, subestima sistemáticamente las energías de atomización, ya que no toma en cuenta la correlación electrónica, y la energía de correlación es mayor para las moléculas que para los átomos. Para otras propiedades, como las barreras de energía para la rotación alrededor de enlaces simples, el método Hartree-Fock tiene el mismo defecto fundamental, pero esto no conduce a errores sistemáticos.

El uso de funciones base también introduce un error sistemático, pero su comportamiento dependerá de la función base en específico y de la molécula en cuestión. Para un sistema compuesto por elementos de la primera fila (como C, N, O), los átomos, de manera aislada, se pueden describir completamente con funciones s y p mediante Hartree-Fock, pero las moléculas requieren la adición funciones con un momento angular mayor (polarización). El uso de funciones base que contengan solo funciones s y p subestimará sistemáticamente la energía de atomización, mientras que un conjunto de funciones base que contengan pocas funciones s y p pero muchas funciones de polarización puede sobreestimar la energía de atomización. En principio, se debe elegir un conjunto de funciones base equilibrado, definido como aquel en el que el error para la molécula es casi el mismo que para los átomos, pero que no sea demasiado grande para que no sobrepase el tiempo y la capacidad computacional que se disponga. ^[5]

5.1. Correlación entre dos conjuntos de datos

En ciencias, a menudo se está interesado en saber si un tipo de datos está correlacionado con otro tipo, es decir, si los valores de un conjunto de datos pueden ser utilizados para predecir otros. Si se denota esos dos conjuntos de datos, "x" y "y" (función, f(x)), y se desconoce la forma de la función f(x), el análisis de correlación se puede utilizar para buscar dicha función, exacta o aproximada, que conecte los dos conjuntos de datos. El caso más simple corresponde a una correlación lineal (Figura 4):

$$y_i = f(x_i) = ax_i + b$$

Ecuación 22. Ecuación de la recta. [10]

Figura 4. Correlación lineal aproximada entre "x" y "y".^[10]

Se debe determinar la pendiente (a) y el parámetro de intersección (b) para dar el mejor ajuste posible (Ec.22); es decir, se hace un ajuste lineal por mínimos cuadrados que surge al definir la "mejor" línea como la que tiene la más mínima desviación entre los y_i puntos reales y los experimentales. ^[5] Los puntos individuales sobre la línea se denotan por (x₁,y₁), (x₂,y₂), … (x_i,y_i). La media de los valores de x se designa por \overline{x} y la media de los valores de y por \overline{y} .

Para estimar la bondad con que se ajustan los puntos experimentales a una línea recta, se calcula el coeficiente de correlación momento-producto, R. Para simplificar, a este dato estadístico se le denomina "coeficiente de correlación" debido a que en las ciencias cuantitativas es el tipo de coeficiente de correlación más usado. El valor de R viene dado por:

$$R = \frac{\sum_{i} \{(x_{i} - \bar{x})(y_{i} - \bar{y})\}}{\{[\sum_{i} (x_{i} - \bar{x})^{2}] [\sum_{i} (y_{i} - \bar{y})^{2}]\}^{1/2}}$$

Ecuación 23. Expresión matemática del coeficiente de correlación R. [10]

El coeficiente de correlación está limitado al intervalo [-1,1], donde R = 1 indica que todos los puntos se encuentran exactamente en una línea con una pendiente positiva (a> 0), R = -1 indica que todos los puntos se encuentran exactamente en una línea con una pendiente negativa (a <0), mientras que R = 0 indica dos conjuntos de datos no correlacionados o que no están linealmente relacionados. El "coeficiente de correlación" se da a menudo como R², que por supuesto está limitado al intervalo [0,1]. ^[10]

Cuando se quiere comparar los resultados experimentales contra los teóricos (dos métodos), uno de los ejes del gráfico de regresión se usa para los resultados obtenidos experimentalmente, y el otro para los resultados obtenidos teóricamente de los compuestos en estudio. En estas circunstancias, cada punto del gráfico representa una muestra única analizada por dos métodos distintos. De dicha regresión lineal se deduce si los datos se correlacionan, usando el R². Un método es considerado aceptable cuando el valor de R² \ge 0,5.

Luego de obtenida una función que permita establecer la relación entre los 2 conjuntos de datos, la pregunta es qué tan bien dicha función puede reproducir los y_i datos. Dos cantidades que se utilizan comúnmente para calificar la "bondad del ajuste" son el error cuadrático medio (ECM) y el error medio absoluto (EMA), que para un conjunto de N datos se definen según las siguientes ecuaciones:

ECM =
$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i))^2}$$

Ecuación 24. Error cuadrático medio (ECM). [5]

$$EMA = \frac{1}{N} \sum_{i=1}^{N} |y_i - f(x_i)|$$

Ecuación 25. Error medio absoluto (EMA). [5]

El EMA representa una ponderación uniforme de los errores de cada uno de los datos, mientras que el ECM tiende a ser dominado por los (pocos) puntos con mayores desviaciones. ^[5]

Adicionalmente, para comprobar si un ajuste de un modelo lineal es correcto, el análisis de residuos juega un papel fundamental. Llamamos residuos a las diferencias entre los valores observados y los pronosticados (yi-ŷ). Si es apropiado el gráfico de calibrado lineal, y si los errores aleatorios en los valores de "y" están distribuidos normalmente, los residuos en sí mismos deberían estar distribuidos normalmente en torno al valor cero. ^[10]

5.2. Cálculos químico-computacionales de espectros RMN¹³C

La asignación de las señales de los espectros de Resonancia Magnética Nuclear (RMN) de ¹³C en moléculas orgánicas es difícil y ha llevado a errores que han requerido múltiples revisiones.

El desarrollo de la química computacional, tanto en el aspecto del cómputo mismo (procesadores más rápidos, recursos de memoria más grandes, cómputo en paralelo, etc.) así como de la química teórica (nuevas teorías, conceptos innovadores, nuevos algoritmos) y de las matemáticas (métodos numéricos más eficientes, entre otros), permiten en la actualidad el cálculo de las propiedades electrónicas de las moléculas que se estudian experimentalmente, de tal modo que es posible obtener propiedades termodinámicas y espectroscópicas más confiables de las mismas y no sólo de modelos, en ocasiones sobre simplificados.

De manera general, desplazamientos químicos satisfactorios, para varios núcleos diferentes incluyendo ¹³C, ¹⁷O, ¹⁵N y ¹⁹F, se pueden obtener mediante cálculos DFT en combinación con los orbitales atómicos Gauge incluidos (GIAO's).^[11]

ANTECEDENTES

En el año 1998, **Wiberg** ^[12] examinó la habilidad de diversos funcionales de densidad para reproducir el apantallamiento de RMN¹³C experimentales, y se encontró que el híbrido funcional MPW1PW91 junto con la función base 6-311+G(2d,p) dio en general buena concordancia con los valores de apantallamiento isotrópico observados experimentalmente. El procedimiento MP2/GIAO fue el menos exitoso, debido a una subestimación significativa de los términos paramagnéticos en la mayoría de los casos. El método MPW1PW91 mostró 2 grandes ventajas: dio errores más pequeños con los grupos saturados y requirió pocos recursos computacionales para las moléculas en estudio.

Tabla 1.

Apantallamiento nuclear calculado y observado									
Compuesto	Átomo	HF	B3LYP	B1LYP	B3PW91	B2P86	MPW	MP2	Exp.
Metano	С	195	190	190	192	192	193	201	195
Tetrametilsilano	CH₃	193	183	184	186	186	187	197	186
Etano	CH₃	180	174	175	177	178	178	188	177
Propano	CH₃	174	165	165	168	168	169	177	170
Metanol	CH₃	145	130	131	134	134	135	144	136
Etanol	CH₃	175	165	165	168	169	169	179	167
Acetaldehído	CH₃	162	149	150	152	152	153	163	155
Acetona	CH₃	164	152	152	155	154	156	165	155
Ciclobutano	CH ₂	169	155	156	159	159	161	170	161
Biciclobutano	CH ₂	163	149	150	152	152	153	163	154
Biciclobutano	CH	162	186	187	188	189	190	202	192
Etanol	CH ₂	137	120	121	124	124	126	135	132
Eteno	CH ₂	62	52	53	55	55	56	74	60
Propeno	CH ₂	71	62	63	64	64	65	81	73
Propeno	CH	48	38	38	42	42	43	61	53
Acetileno	CH	117	110	111	112	112	112	126	116
Acetaldehído	C=O	-12	-24	-23	-21	-21	-20	5	-14
Acetona	C=O	-20	-31	-31	-27	-27	-26	-24	-22
Error RMS		9	7	7	5	5	4	10	

RMS: media cuadrática (root mean square)

Tabla 1. Apantallamiento nuclear calculado y observado (Wiberg, 1998)

En el año 2001, Blicharska y col.^[13] reportaron los resultados de los cálculos de orbitales moleculares extendidos utilizando DFT y los estudios de RMN de alta resolución en uracilo y 5-fluorouracilo (5FU). Los resultados del funcional híbrido B3PW91 fueron comparados con los obtenidos mediante el método Hartree-Fock restringido (RHF). Usando la función base 6-31G* y otras superiores, calcularon con el método DFT las longitudes de enlace, los momentos dipolares y las vibraciones de estiramiento armónico predichas de acuerdo con los datos experimentales disponibles. Calcularon también la estructura y las vibraciones armónicas del uracilo y 5-fluorouracilo en presencia de agua usando el modelo simple de Onsager. Este método se utiliza en simulaciones moleculares para estudiar la interacción entre un soluto y el solvente. La premisa de este modelo es que el soluto se coloca en una cavidad esférica dentro del solvente donde se tratan explícitamente las interacciones de Coulomb. Fuera de esta cavidad se supone que el medio es homogéneo y polarizable de constante dieléctrica uniforme. La molécula induce la polarización en este medio, que a su vez crea un campo de reacción. El tratamiento de esta polarización mutua de manera coherente conduce al modelo de campo de reacción de Onsager.

Otro estudio realizado por estos investigadores fue una correlación lineal entre los apantallamientos RMN GIAO de protones y de carbono del uracilo y 5FU y los datos experimentales.

Figura 5. Estructura del uracilo (X=H) y del 5-fluorouracilo (X=F)

Figura 6. Correlación entre desplazamientos de carbono y protones predichos teóricamente mediante DFT y RHF del uracilo y 5-fluorouracilo y la data experimental usando la función base 6-311++G**

En el 2002, **Barone y col.**^[14] realizaron la optimización geométrica y los cálculos de los desplazamientos químicos de RMN¹³C a 14 productos naturales de baja polaridad que contienen entre 10-20 átomos de carbono; utilizando los métodos Hartree-Fock (HF) y B3LYP y la base 6-31G(d), en ambos casos. Los compuestos utilizados fueron:

Se realizó la correlación de los parámetros de linealidad, obtenidos a partir del gráfico desplazamientos químicos de RMN¹³C teóricos versus experimentales; realizado para cada compuesto con ambos métodos. A partir de lo cual se propuso que tanto el método HF como el B3LYP son métodos computacionales adecuados para confirmar la data estructural de RMN, en productos naturales de baja polaridad y tamaño medio.

Por su parte, en 2004, **Cimino y col.**^[1] estudiaron la influencia del método de cálculo sobre cálculos teóricos de desplazamientos químicos de RMN¹³C; este estudio se llevó a cabo con 16 productos naturales de baja polaridad, que contienen entre 10-20 átomos de carbono. Las geometrías de las especies involucradas fueron optimizadas usando los métodos PM3, HF, B3LYP y MPW1PW91 mientras que los parámetros RMN¹³C se determinaron con el nivel de teoría HF, B3LYP y MPW1PW91. Los compuestos usados fueron los siguientes:

Análogamente, se realizó la correlación de los parámetros de linealidad y se obtuvo que el método híbrido MPW1PW91 ofrece la mejor coincidencia entre los resultados calculados y los experimentales. Además, independientemente del método de cálculo considerado, siempre se obtuvieron los resultados más fiables mediante el uso de la base 6-31G (d, p).

En el 2008, Aliev y col. ^[15] realizaron un ajuste lineal de los cálculos de desplazamientos químicos de RMN¹³C por DFT para mejorar la precisión de los mismos. Para ello eligieron el método GIAO B3LYP/6-311+G(2d,p) utilizando las geometrías optimizadas mediante B3LYP/6-31G(d), que permite cálculos rentables en los sistemas moleculares con 100 o más átomos. Utilizaron un conjunto de 27 desplazamientos químicos de RMN¹³C determinados experimentalmente para 22 moléculas simples con diversos grupos funcionales para determinar los coeficientes lineales. Los resultados muestran que el uso de una relación simple (δ_{scal} = 0.95 δ_{calc} + 0.30, donde δ_{calc} y δ_{scal} son los valores calculados y los valores ajustados linealmente de los desplazamientos químicos de ¹³C, respectivamente) permite lograr una mejora de hasta tres veces en las desviaciones medias absolutas. Para probar la aplicabilidad universal de los coeficientes lineales obtenidos, utilizaron moléculas orgánicas complejas como el taxol para probar la mejora significativa en precisión de los desplazamientos químicos previstos por el método DFT. Concluyeron también que este enfoque da mejores resultados que el uso recomendado por otros investigadores de las geometrías optimizadas mediante el método Hartree-Fock para los cálculos GIAO B3LYP / 6-311+G(2d,p).

Figura 7. Gráfico de la correlación lineal entre el desplazamiento química de RMN ¹³C experimental y calculado [GIAO B2LYP/6-311+G(2d,p)//B3LYP/6-31G(d)]

Figura 8. Desplazamientos químicos de RMN ¹³C (en ppm) calculados y experimentales (en paréntesis) del taxol en TMS.

En el 2011, **Bally y col.** ^[16] evaluaron la ejecución de 250 protocolos computacionales diferentes (combinaciones de funcionales de densidad, funciones base y métodos) en un conjunto de 165 constantes experimentales de acoplamiento nuclear ¹H-¹H de 65 moléculas con propiedades y características variadas. De todos los protocolos, B3LYP/6-31G(d,p)u+1s mostró la mejor correlación, además de ser uno de los más económicos computacionalmente, generando predicciones de J_{H-H} con una desviación de la media cuadrática con respecto al experimental de menos de 0,5 Hz. Otro método que mostró también buenos resultados sin la necesidad de funciones base 1s adicionales fue B3LYP/cc-pVTZ; sin embargo, resultó ser 8 veces más "caro" en términos de tiempo de CPU. Los resultados indican que los métodos mencionados son aplicables para las moléculas orgánicas.

Figura 9. Gráfico de los términos de contacto de Fermi calculados mediante B3LYP/6-31G(d,p)u+1s contra las constantes de acoplamiento experimentales del set de prueba (166 constantes de acoplamiento en total)

En el 2016, **Falcón y col**^[17] realizaron la comparación de dos modelos teóricos, que permiten predecir espectros RMN¹³C de moléculas de 23 androstanos, gran parte de ellos modificados estructuralmente en el Laboratorio de Síntesis de Productos Naturales, con el fin de utilizar el modelo validado para la creación y actualización de una base de datos de compuestos derivados de androstanos; específicamente, datos fisicoquímicos que estén directamente relacionados con la actividad viral que puedan poseer estos compuestos, concretamente contra el dengue y la fiebre amarilla.

Los modelos teóricos comparados fueron B3LYP y MPW1PW91, ambos con las funciones base 6-31G(d,p) y 6-311G(d,p); a través del uso del programa Gaussian 09 como herramienta de cálculo computacional.

Una vez obtenidos los espectros RMN¹³C de todas las moléculas, la data fue analizada estadísticamente donde se concluyó y reportó como mejor método de cálculo el funcional B3LYP, con la base 6-311G(d,p).

Adicionalmente, a partir del análisis de residuales, se pudieron resolver algunos problemas para la identificación de los productos de reacción.

En el primer caso, a partir del análisis de residuales, se pudo comprobar que los androstanos al someterse a una hidroboración y posterior oxidación, sólo reaccionan por la cara alfa de la molécula, debido al impedimento estérico de los grupos metilos en la cara beta, en los carbonos C-10 y C-13. A consecuencia de la premisa anterior, se determinó que el isómero sintetizado por Neacato, P.^[19] correspondió al 5 α -Androstan-4 α ,17 β -diol.

Figura 10. Ruta sintética de la obtención del 5 α -Androstan-4 α ,17 β -diol a partir de la testosterona.

Se probó, a través de los gráficos de residuales, que el espectro experimental de RMN¹³C para la 2 ξ -acetoxi-17 β -hidroxi-5 α -androstan-3-ona, sintetizada por Neacato, P. ^[19], posee una menor dispersión respecto a los datos calculados para el isómero alfa de dicho compuesto. Por lo que se considera que el compuesto sintetizado fue la 2 α -acetoxi-17 β -hidroxi-5 α -androstan-3-ona

Dihidrotestosterona

 $2\xi \text{-}acetoxi\text{-}17\beta \text{-}hidroxi\text{-}5\alpha\text{-}androstan\text{-}3\text{-}ona$

Se demostró, haciendo uso del análisis residual, que el producto colateral, obtenido en las esterificaciones realizadas por Paz, D.^[20], corresponde a la eliminación en C-3 (el isómero termodinámicamente más estable).

Figura 12. Posibles productos colaterales en la modificación sintética del epiandrostano.

OBJETIVOS

Objetivo General

Comparar los métodos computacionales B3LYP, MPW1PW91 y BHandHLYP a través del cálculo de los desplazamientos químicos en espectros RMN¹³C, en 23 moléculas del tipo androstano; usando las bases 6-311G(d,p) y 6-311++G(d,p).

Objetivos Específicos

- Optimizar la geometría molecular de los androstanos en estudio, con el método B3LYP y la base 6-311++G(d,p).
- Optimizar la geometría molecular de los androstanos en estudio, con el método MPW1PW91 y la base 6-311++G(d,p).
- Optimizar la geometría molecular de los androstanos en estudio, con el método BHandHLYP y las bases 6-311G(d,p) y 6-311++G(d,p).
- Se realizarán los cálculos de los espectros de RMN¹³C para cada uno de los androstanos, con el método B3LYP y la base 6-311++G(d,p).
- Se realizarán los cálculos de los espectros de RMN¹³C para cada uno de los androstanos, con el método MPW1PW91 y la base 6-311++G(d,p).
- Se realizarán los cálculos de los espectros de RMN¹³C para cada uno de los androstanos, con el método BHandHLYP y las bases 6-311G(d,p) y 6-311++G(d,p).
- Comparar los resultados obtenidos teóricamente a través del modelaje molecular para cada uno de los métodos usados con sus respectivas bases, con los experimentales; haciendo uso de parámetros estadísticos como: curvas de regresión lineal, parámetros de correlación, residuales y errores medios.

PARTE EXPERIMENTAL

Equipos y Software

- Carmen y Traviata: PC con procesador Intel Core2 Quad de 2,4 GHz x 4, memoria RAM de 4GB.
- Boheme: PC con procesador Intel Pentium Dual de 2,0 GHz x 2, memoria RAM de 4GB.
- Turandot: PC con procesador Intel Core i5-2310 de 2,9 GHz x 4, memoria RAM de 4GB.
- > Copérnico: PC con 64 procesadores 4 núcleos y memoria RAM de 512 GB
- Sistema Operativo Ubuntu 14.04 LTS y Ubuntu 16.04.2 LTS.
- Software Gaussian 09 y GaussView 5.0.
- Software Microsoft Office Excel 2013.

Procedimiento

La optimización geométrica y posterior modelado del espectro de RMN¹³C de los diversos androstanos se llevó a cabo con los niveles de teoría de funcional de densidad (métodos híbridos): B3LYP, MPW1PW91 y BHandHLYP, usando como funciones base 6-311G(d,p) y 6-311++G(d,p).

Se realizaron los cálculos con el programa Gaussian 09, a través de los siguientes pasos:

- 1. Se inició el programa GaussView y con este se dibujó la estructura a optimizar.
- 2. Luego, con el mismo programa, se creó la matriz de entrada (con extensión .com).
- 3. Se inició la terminal de Ubuntu a partir de la cual se dió la orden de ejecución del cálculo al programa Gaussian.

- 4. Se revisó el archivo de salida (con extensión .log) donde se verificó que el cálculo culminó de manera satisfactoria.
- Nuevamente, con el programa GaussView, se tomó la última geometría optimizada para la molécula en estudio y se creó una nueva matriz de entrada (con extensión .com), la cual permitió realizar el cálculo correspondiente a los desplazamientos químicos de ¹³C.
- 6. Se inició la terminal de Ubuntu y se dió la orden de ejecución del cálculo al programa Gaussian, usando la matriz creada previamente.
- Se revisó el archivo de salida (con extensión .log) donde se verificó que el cálculo culminó de manera satisfactoria.

Una vez culminados los cálculos, se procedió a visualizar el espectro de RMN¹³C obtenido, haciendo uso del programa GaussView; con el cual se obtuvieron los desplazamientos químicos calculados para cada átomo de C; los cuales fueron guardados en un archivo .txt.

Posteriormente, dichos desplazamientos se compararon con la data experimental ya existente, y se llevó a cabo la validación del método computacional, haciendo uso de herramientas estadísticas como cálculos de residuales, cálculos de los coeficientes de correlación lineal y cálculos de errores medio; utilizando el programa Office Excel.

RESULTADOS Y DISCUSIÓN

En la siguiente tabla se muestran todos los compuestos utilizados para el cálculo de los desplazamientos químicos de RMN¹³C. La numeración dada a cada compuesto en esta tabla será la que se utilice a lo largo del análisis y discusión de resultados:

Tabla 2. Compuestos utilizados	y sus estructuras:
--------------------------------	--------------------

Compuesto N°	Autor	Nombre	Estructura
1	N/A	5α-Androstan-3-ona ^[21]	
2	Ricco ^[22]	3β,7β-Dihidroxi-5α- androstan-17-ona	HO HO HO HO HO HO HO HO HO HO HO HO HO H
3	N/A	Dehidroepiandrosterona ^[23]	но
4	N/A	Dihidrotestosterona ^[23]	OH O

Compuesto N°	Autor	Nombre	Estructura
5	N/A	Epiandrosterona ^[23]	HO
6	N/A	Testosterona ^[23]	OH OH
7	Marcano ^[24]	5α-D-Homoandrostan-3-ona	
8	Neacato ^[18]	17β-Hidroxiandrost-1,4-dien- 3-ona	OH O
9	Neacato ^[19]	3β,6α-Dihidroxi-5α- androstan-17-ona	HO HO HO

Compuesto N°	Autor	Nombre	Estructura
10	Neacato ^[19]	3β,6α-Dihidroxi-5α- androstano	HO HO
11	Neacato ^[19]	5α-Androstan-3,6-diona	
12	Paz ^[20]	3β-Maloniloxi-5α- androstan-17-ona	HO O O
13	Paz ^[20]	3β-Benzoiloxi-5α- androstan-17-ona	
14	Alvarado ^[25]	17β-Acetoxiandrost-4-en- 3-ona	

Compuesto N°	Autor	Nombre	Estructura
15	Antunez ^[26]	4-Androst-en-3,6,17-ona	
16	Montilla ^[27]	17β-Acetoxiandrosta-4,6- dien-3-ona	
l-a	Paz ^[20]	5α-Androst-3-en-17-ona	
I-b	Paz ^[20]	5α-Androst-2-en-17-ona	
II-a	Neacato ^[19]	2α-Acetoxi-17β-hidroxi- 5α-androstan-3-ona	

Compuesto N°	Autor	Nombre	Estructura
II-b	Neacato ^[19]	2β-Acetoxi-17β-hidroxi- 5α-androstan-3-ona	OH OH
111	Antunez ^[26]	3β-Acetoxi-5α,6β,16α- Tribromoandrostan-17- ona	o Br Br

Cabe destacar también que, para todas las estructuras, la numeración usada en el esqueleto carbonado principal es la que se muestra en la figura (Figura 13):

Figura 13. Numeración del esqueleto carbonado

Se llevó a cabo la optimización geométrica de todos los compuestos mostrados anteriormente, 1-16 (Tabla 2) utilizando los métodos B3LYP, MPW1PW91 y BHandHLYP, con la función base 6-311++G(d,p) y el método BHandHLYP con la función base 6-311G(d,p). Posteriormente se compararon los valores teóricos de las constantes de apantallamiento isotrópico de los espectros de RMN¹³C con los desplazamientos químicos experimentales correspondientes, reportados en la literatura ^[18-27].

Dicha comparación también se realizó de manera gráfica para determinar si existía una correlación lineal entre ambos conjuntos de datos (experimentales y teóricos), tal como se muestra a continuación:

Gráfico 1. Correlación de datos teóricos vs. datos experimentales. Compuestos 1-16, B3LYP/6-311++G(d,p).

55

Gráfico 2. Correlación de datos teóricos vs. datos experimentales: Compuestos 1-16, MPW1PW91/6-311++G(d,p).

Gráfico 3. Correlación de datos teóricos vs. datos experimentales: Compuestos 1-16, BHandHLYP/6-311G(d,p).

Gráfico 4. Correlación de datos teóricos vs. datos experimentales: Compuestos 1-16, BHandHLYP/6-311++G(d,p).

En los cuatro gráficos antes mostrados se evidencia de forma cualitativa la tendencia lineal existente entre los grupos de datos, lo cual se puede constatar cuantitativamente con los valores de pendiente de la recta, punto de corte y coeficiente de correlación lineal R², calculados a partir de la regresión lineal aplicada sobre todos los carbonos de los compuestos 1-16 en cada uno de los métodos computacionales estudiados. Dichos valores se muestran tabulados a continuación:

Tabla 3. Valores de pendiente, punto de corte y R^2 correspondientes a la correlación entre los datos teóricos y datos experimentales para cada método de los compuestos 1-16.

Método / Función base	Pendiente	Punto de corte	R ²
B3LYP / 6-311++G(d,p)	-1,0137	179,12	0,9967
MPW1PW91 / 6-311++G(d,p)	-1,0095	185,6	0,9973
BHandHLYP / 6-311G(d,p)	-1,0037	188,22	0,997
BHandHLYP / 6-311++G(d,p)	-1,02	188,32	0,9974

De la tabla anterior se observa en primer lugar que, para todos los métodos estudiados, los valores de R² obtenidos son mayor a 0,9900. Esto indica que es correcto establecer la existencia de una relación lineal entre los datos experimentales y los datos calculados a través del programa Gaussian 09 y, por ende, los niveles de teoría y las bases usadas se pudieran emplear en la interpretación de espectros RMN¹³C de androstanos análogos a los listados en la Tabla 2.

Una vez establecida la linealidad entre los conjuntos de datos, de la regresión lineal se obtiene una ecuación con dos parámetros útiles. El primero es la pendiente de la recta, que es un indicador cuantitativo del error sistemático en el método computacional usado (una pendiente de exactamente -1 indicaría un error sistemático cero). Por lo tanto, el valor de la pendiente se puede usar para "ajustar" los resultados de tal manera que se pueda eliminar el error sistemático. El segundo parámetro es el punto de corte, que proporciona una alternativa al cálculo de la constante de apantallamiento para el compuesto de referencia que se esté utilizando (por ejemplo, tetrametilsilano, TMS), que es el enfoque tradicional en los cálculos de RMN. Calcular los desplazamientos químicos por comparación directa con un valor único para el TMS posee inconvenientes, pero con el método de regresión lineal se puede obtener un valor de referencia que no sólo se ajusta para eliminar el error sistemático, sino que también evita el error específico asociado con el uso de un único valor de referencia.^[28]

Ahora bien, un coeficiente de correlación muy cercano a 1, no es la única prueba de que los métodos computacionales utilizados sean adecuados para la simulación e interpretación de desplazamientos químicos de RMN¹³C de compuestos orgánicos. Éste debe tomarse como una primera medida, a completar con otras, para evaluar el modelo de regresión lineal y obtener conclusiones válidas sobre su grado de ajuste al conjunto de datos. ^[29] Siguiendo este planteamiento, se procedió a calcular los valores del error medio (EM), error medio absoluto (EMA) y error medio cuadrático (EMC)^[5] de los compuestos 1-16 de la Tabla 2 como medidas complementarias para la evaluación del modelo propuesto.

Para el cálculo de estos errores fue necesario convertir las constantes de apantallamiento calculadas (σ_{calc}) en desplazamientos químicos teóricos (δ_{calc}), lo cual se realizó aplicando la siguiente formula ^[2]:

$$\delta_{calc} = \sigma_{TMS} - \sigma_{calc}$$

Ecuación 26. Fórmula que relaciona el desplazamiento químico con el apantallamiento isotrópico. [2]

Utilizando el valor de referencia del TMS (σ_{TMS}) de 182,4656 ppm calculado por el programa Gaussian09 usando B3LYP/6-311+G(2d,p). A continuación, se muestran los valores de los errores:

Tabla 4. Valores de EM, EMA y ECM correspondientes a la correlación de datos de los compuestos 1-16 en todas las combinaciones de niveles de teoría y funciones base.

Método / Función base	EM	EMA	ECM
B3LYP / 6-311G(d,p) *	-2,351414107	3,329283699	4,588414561
B3LYP / 6-311++G(d,p)	-4,102616301	4,421216301	5,103965253
MPW1PW91 / 6-311G(d,p) *	3,291770846	4,040848589	5,08357833
MPW1PW91 / 6-311++G(d,p)	2,610725705	3,181664263	3,74698016
BHandHLYP / 6-311G(d,p)	5,555140752	5,807261755	6,216356075
BHandHLYP / 6-311++G(d,p)	4,754284639	5,108208777	5,541294164

* Valores obtenidos del TEG realizado por Falcón, G. [17]

También se realizó la comparación gráfica de los ECM y de los EMA para todos los métodos aplicados:

Gráfico 5. Valores de ECM y EMA correspondientes a la correlación de datos de los compuestos 1-16 en todas las combinaciones de niveles de teoría y funciones base.

La gráfica muestra que la combinación MPW1PW91/6-311++G(d,p) es el método que mejor reproduce el desplazamiento químico de RMN¹³C (sin realizar ningún ajuste adicional) debido a que exhibe los EMA y ECM más bajos. También se nota la proximidad entre ambos valores, lo cual es un indicador positivo, ya que esta cercanía se puede interpretar como que en los datos analizados hay pocos valores con desviaciones altas, esto debido a que los valores del ECM, por definición, están dominados por los puntos con desviaciones más grandes ^[5], gracias al término cuadrático de la ecuación 24. Si en el conjunto de datos hubiese valores con desviaciones notoriamente más altas que el resto, la diferencia entre el EMA y el ECM se incrementaría.

Como se mencionó previamente, el uso de un valor único de referencia para el TMS suele ser inconveniente, ya que cualquier sesgo en este valor puede verse reflejado en los valores de errores como los mostrados anteriormente, por lo que a continuación
se mostraran los valores del EM, EMA y ECM de los desplazamientos químicos obtenidos del "ajuste" (del inglés "*scaled*") realizado a los valores de σ calculados utilizando la pendiente de la recta y el punto de corte correspondiente (Tabla 3) mediante la siguiente ecuación ^[28]:

$$\delta_{scal} = \frac{\sigma_{calc} - pto.\,corte}{pendiente}$$

Ecuación 27. Fórmula para la obtención del desplazamiento químico por ajuste. [28]

A continuación, los errores obtenidos al comparar los desplazamientos químicos ajustados y los desplazamientos químicos experimentales:

Tabla 5. Valores de EM, EMA y ECM correspondientes a la correlación de datos, obtenidos mediante ajuste, de los compuestos 1-16 para todos los niveles de teoría y funciones base.

Método / Función base	EM	EMA	ECM
B3LYP / 6-311G(d,p) *	0,002576617	2,571980217	3,951803018
B3LYP / 6-311++G(d,p)	-0,004148334	2,046420614	2,915554866
MPW1PW91 / 6-311G(d,p) *	-0,001404316	2,437673562	3,884817606
MPW1PW91 / 6-311++G(d,p)	-0,001636429	1,704817898	2,619691192
BHandHLYP / 6-311G(d,p)	0,004039761	1,833867593	2,773348123
BHandHLYP / 6-311++G(d,p)	-0,001099023	1,748165222	2,608770213

* Valores obtenidos del TEG realizado por Falcón, G. [17]

También se realizó, para los desplazamientos químicos ajustados, la comparación gráfica de los ECM y de los EMA para todos los métodos aplicados:

Gráfico 6. Valores de ECM y EMA correspondientes a la correlación de datos, obtenidos mediante ajuste, de los compuestos 1-16 para todos los niveles de teoría y funciones base.

En esta gráfica se observa que el uso de ajuste genera una disminución de los valores de EMA y ECM para todos los métodos evaluados. Para B3LYP y MPW1PW91 el uso de funciones difusas en la función base reduce el sesgo notoriamente, incluso en B3LYP se invierte la tendencia observada en la comparación directa en la que el uso de funciones difusas mostraba una desmejoría en la simulación del espectro. Con BHandHLYP también se observa mejoría en el uso de funciones difusas, pero en términos cuantitativos dicha mejoría no es muy significativa.

En el gráfico 6 también se observa que los métodos MPW1PW91/6-311++G(d,p), BHandHLYP/6-311G(d,p) y BHandHLYP/6-311++G(d,p) muestran los mejores resultados de ECM y EMA (menos de 3 y 2 ppm respectivamente), por lo que, en términos de los errores obtenidos, los 3 son equivalentes. Al momento de seleccionar uno de estos métodos se puede tomar en cuenta una serie de factores. El primero de ellos es el tiempo de cálculo. Para MPW1PW91/6-311++G(d,p) y BHandHLYP/6-311++G(d,p) los tiempos promedio que se tomaron fueron, respectivamente, 27 horas 20 minutos y 23 horas 54 minutos; en cambio con BHandHLYP/6-311G(d,p) el tiempo promedio fue solamente de 6 horas 26 minutos, lo que refleja el alto costo en términos de recursos computacionales y tiempo de trabajo que conlleva el uso de funciones difusas en las funciones base.

Otro factor sería la relación ECM/EMA. Como se explicó previamente, la mayor proximidad de estos 2 valores es lo recomendado ya que eso indicaría la presencia de pocos valores con desviaciones altas. Considerando este factor se tiene que la mejor correlación entre valores experimentales y valores teóricos, estos últimos calculados mediante ajuste, se obtuvo mediante el uso del método BHandHLYP/6-311++G(d,p).

Para poner a prueba la capacidad de estos métodos de modelar los espectros de RMN¹³C y su aplicabilidad en la resolución de problemas se evaluarán una serie de compuestos. Primero se analizarán los compuestos I-a y I-b (Figura 14 y 15); la 5α-Androst-3-en-17-ona y la 5α-Androst-2-en-17-ona, respectivamente. Estos compuestos son los dos posibles productos colaterales de eliminación obtenidos de las esterificaciones sobre la Epiandrosterona, en presencia de diciclohexilcarbodiimida (DCC) y distintos agentes acilantes y medios de reacción, llevadas a cabo por Paz, D ^[20].

Figura 14. Compuesto I-a: 5α-Androst-3-en-17-ona.

Figura 15. Compuesto I-b: 5α-Androst-2-en-17-ona.

Mediante la comparación entre el espectro de RMN¹³C que obtuvo Paz con los desplazamientos teóricos de los 2 posibles isómeros se buscará discernir cuál isómero obtuvo al determinar cuál de ellos da la mejor correspondencia entre teoría y experimento. Como no hay previa elucidación del espectro, la comparación de las señales se realizó ordenando los desplazamientos de forma decreciente para determinar que tan bien se corresponde la data experimental con los cálculos realizados.

Llegado a este punto se debe hacer la siguiente aclaratoria: Todos los valores calculados hasta ahora (R², pendiente, punto de corte y errores) fueron obtenidos

mediante comparación carbono-carbono, es decir, la señal experimental obtenida, a la cual, de acuerdo a la referencia bibliográfica correspondiente, se le asignó un carbono específico, fue comparada con el desplazamiento teórico del carbono respectivo. Esto quiere decir que al momento de realizar el análisis estadístico se tomaron como correctas todas las asignaciones realizadas a todas las estructuras de los compuestos 1-16.

En el caso ideal, los métodos computacionales simularían a la perfección los espectros de RMN, lo que implicaría que si la comparación entre los desplazamientos se realiza de acuerdo al número del carbono o de acuerdo al valor (creciente o decreciente) de la señal, la correspondencia sería la misma. Ahora bien, no nos encontramos en el caso ideal y, como se dijo anteriormente, para el compuesto I-a y I-b no se tiene asignación de las señales experimentales, por lo que la comparación carbono-carbono no es posible. Es por ello que se planteó ordenar, tanto las señales experimentales como las calculadas, de forma decreciente para realizar en este caso la comparación y el análisis estadístico. Pero para ello, primero se evaluó dicho planteamiento: se tomaron los desplazamientos, tanto teóricos como experimentales, de los compuestos 3, 4, 5 y 6 y, por una parte, se ordenaron de acuerdo al número de carbono, y por el otro, se ordenaron las señales de forma decreciente; se calcularon los errores para ambos casos y se analizaron los resultados. Se seleccionaron estos compuestos porque la data espectroscópica de ellos ha sido estudiada ampliamente y además el resto de los compuestos son derivados de alguno de estos 4. Los valores teóricos utilizados (Tablas B-I a la B-VIII) en esta evaluación fueron calculados tomando las constantes de apantallamiento isotrópico (σ) teóricas (Tablas A-II a la A-V) y aplicando la Ecuación 27 con los valores de pendiente y punto de corte respectivos de la Tabla 3. A continuación, se tabularon y compararon gráficamente los valores de los errores para ambas propuestas:

Tabla 6. Comparación de los valores del EMA y ECM correspondientes a la correlación de los datos calculados mediante ajuste, ordenados tanto por número de carbono como de forma decreciente, de los compuestos 3-6 para todos los niveles de teoría y funciones base.

Método /	Carbono-	Carbono	Forma Decreciente		
Función base	EMA	ECM	EMA	ECM	
B3LYP / 6-311++G(d,p)	1,566714096	2,097284381	1,47274861	2,019687828	
MPW1PW91 / 6-311++G(d,p)	1,153192271	1,728318655	1,135585362	1,702601501	
BHandHLYP / 6-311G(d,p)	1,176793532	1,884318512	1,174222825	1,875752493	
BHandHLYP / 6-311++G(d,p)	1,130011037	1,679238543	1,124111445	1,663049176	

Gráfico 7. Comparación de los valores del EMA correspondientes a la correlación de los datos calculados mediante ajuste, ordenados tanto por número de carbono como de forma decreciente, de los compuestos 3-6 para todos los niveles de teoría y funciones base.

Gráfico 8. Comparación de los valores del ECM correspondientes a la correlación de los datos calculados mediante ajuste, ordenados tanto por número de carbono como de forma decreciente, de los compuestos 3-6 para todos los niveles de teoría y funciones base.

Se evidencia, de acuerdo a los gráficos 7 y 8, que los errores obtenidos para ambas metodologías son bastante similares entre sí; incluso, observando los valores en detalle, la comparación realizada ordenando de forma decreciente en todos los casos da errores menores a la comparación hecha mediante carbonos, en especial para el caso de B3LYP, donde dicha mejoría se hace más evidente. De esto se concluye que es válido el planteamiento realizado, a saber, la comparación de los desplazamientos experimentales con los valores teóricos ordenando ambos grupos de datos de acuerdo al valor de la señal.

En base a lo expresado anteriormente, se ordenaron los desplazamientos de forma decreciente (Tablas IX y X) y se realizó al análisis de los residuales de los compuestos Ia y I-b:

Gráfico 10. Residuales de cada uno de los desplazamientos del Compuesto I-b.

De acuerdo al Gráfico 9, se observa una mejor correspondencia entre los desplazamientos experimentales y los teóricos para la eliminación en Δ^3 (Compuesto Ia) al mostrar que la mayoría de los residuales se encuentran en un rango entre -2 y 2 ppm, pero se observa una discrepancia notoria en el segundo desplazamiento (entre -3,4 y -6,6 ppm), correspondiente a uno de los carbonos olefínicos en cuestión. Para el caso de la eliminación en Δ^2 (Compuesto I-b) se observan 4 desplazamientos que rondan los ±3 ppm (desplazamientos 7, 8, 14 y 15), pero en este caso los carbonos olefínicos muestran una excelente correspondencia (desplazamientos 2 y 3). También se calculó el EMA y el ECM para ambos isómeros, donde se observa que la eliminación Δ^3 posee la menor desviación:

Tabla 7. Valores del EMA y ECM correspond	lientes al Compuesto I-a y I-b para todos los niveles
de teoría y funciones base.	

Método /	Compue	esto I-a	Compuesto I-b		
Función base	EMA	ЕСМ	EMA	ЕСМ	
B3LYP / 6-311++G(d,p)	1,279597929	1,783245087	1,683292576	2,090007941	
MPW1PW91 / 6-311++G(d,p)	0,915153411	1,530520249	1,230786476	1,806421071	
BHandHLYP / 6-311G(d,p)	1,211344342	1,847302009	1,475982024	1,882600878	
BHandHLYP / 6-311++G(d,p)	0,992358101	1,59303537	1,306444788	1,744385717	

Aún con el amplio residual obtenido para uno de los carbonos olefínicos en el compuesto I-a, los resultados se inclinan por este como el compuesto obtenido, lo cual

coincide con el hecho de que, termodinámicamente, el producto más estable es la eliminación Δ^{3} ^[20].

A continuación, se analizarán los compuestos II-a y II-b (Figura 16 y 17), los mismos son los estereoisómeros alfa y beta, respectivamente, de la 2 ξ -Acetoxi-17 β -hidroxi-5 α -androstan-3-ona. La síntesis de esta molécula, realizada por Neacato, P., se llevó a cabo a través de la acetilación del carbono C-2 de la Dihidrotestosterona y, al caracterizar el producto, no se pudo concluir cuál isómero se había obtenido ^[19].

Figura 16. Compuesto II-a: 2α-Acetoxi-17β-hidroxi-5α-androstan-3-ona.

Figura 17. Compuesto II-b: 2β-Acetoxi-17β-hidroxi-5α-androstan-3-ona.

Para este caso, los residuales obtenidos son los siguientes:

Gráfico 11. Residuales ordenados por carbonos del Compuesto II-a.

Gráfico 12. Residuales ordenados por carbonos del Compuesto II-b.

Al comparar el compuesto II-a (Gráfico 11) con el compuesto II-b (Gráfico 12) se observa que existe una diferencia notoria entre los desplazamientos químicos calculados para los carbonos 3 y 5. En el compuesto II-a se observa una menor desviación en los desplazamientos químicos de dichos carbonos en comparación con los residuales correspondientes al compuesto II-b. De igual forma, de los valores del ECM y EMA calculados para los compuestos II-a y II-b (Tabla 8), se observa que los desplazamientos químicos calculados para el compuesto II-a poseen menor desviación respecto a la data espectroscópica experimental.

Tabla 8. Valores de EMA y ECM correspondientes al Compuesto II-a y II-b, ordenados por carbono, para todos los niveles de teoría y funciones base.

Método /	Сотрі	iesto II-a	Compuesto II-b		
Función base	EMA	ECM	EMA	ECM	
B3LYP / 6-311++G(d,p)	1,597824565	2,184799231	1,888033465	2,439545765	
MPW1PW91 / 6-311++G(d,p)	1,265569943	1,776336614	1,70624543	2,436886292	
BHandHLYP / 6-311G(d,p)	1,066242996	1,512293158	1,642303003	2,403841757	
BHandHLYP / 6-311++G(d,p)	1,171848739	1,732826563	1,683688142	2,496581701	

La evaluación antes realizada fue hecha tomando en consideración la elucidación realizada al espectro (Tablas B-XI y B-XII). También se realizó el análisis mediante ordenamiento decreciente de los desplazamientos teóricos (Tablas B-XIII y B-XIV). Los residuales y los valores del EMA y EMC obtenidos con esta metodología fueron los siguientes:

Gráfico 13. Residuales ordenados por desplazamiento (decreciente) del Compuesto II-a.

Gráfico 14. Residuales ordenados por desplazamiento (decreciente) del Compuesto II-b.

Tabla 9. Valores de EMA y ECM correspondientes al Compuesto II-a y II-b, ordenados por desplazamiento, para todos los niveles de teoría y funciones base.

Método /	Compue	esto II-a	Compuesto II-b		
Función base	EMA	ECM	EMA	ECM	
B3LYP / 6-311++G(d,p)	1,51145826	2,091909738	1,760894319	2,138244685	
MPW1PW91 / 6-311++G(d,p)	1,084386424	1,577661397	1,560916531	2,016224488	
BHandHLYP / 6-311G(d,p)	0,891639505	1,29509589	1,570574114	1,948306758	
BHandHLYP / 6-311++G(d,p)	1,022194211	1,54028316	1,601335201	2,075302623	

Se observa que, realizando la evaluación de esta manera, los valores de EMC y EMA mejoran para ambos isómeros, al igual que la examinación visual de los residuales, pero la tendencia se mantiene: el compuesto II-a posee la mejor correspondencia entre teoría y experimento, lo que permite descartar al compuesto II-b como posible isómero sintetizado.

En la práctica, esto podría explicarse debido a que la esterificación en el C-2, por la cara beta, podría presentar impedimento estérico debido al metilo angular en el C-10, favoreciéndose así la obtención del isómero alfa.

A continuación, se evaluará la 3β -Acetoxi- 5α , 6β , 16α -tribromo-androstan-17-ona (Compuesto III). Dicho compuesto es el producto de la bromación de la 3β -hidroxi-

androst-5-en-17-ona, realizada por Antunez, D. ^[26], con el fin de proteger el doble enlace ubicado en el anillo B.

Figura 18. Compuesto III: 3β-Acetoxi-5α,6β,16α-tribromo-androstan-17-ona.

A continuación, se muestran los errores (EM, EMA y ECM) y la gráfica de los residuales obtenidos para el compuesto III:

Tabla 10. Valores de EM, EMA y ECM correspondientes al Compuesto III, ordenados por carbono, para todos los niveles de teoría y funciones base.

Método / Función base	EM	EMA	ECM
B3LYP / 6-311++G(d,p)	-2,66238899	4,26361552	5,75044241
MPW1PW91 / 6-311++G(d,p)	-0,53473101	4,20031038	5,78900342
BHandHLYP / 6-311G(d,p)	-0,38103009	4,10571533	5,673953712
BHandHLYP / 6-311++G(d,p)	-0,420943044	4,078039216	5,620571471

Gráfico 15. Residuales de cada uno de los carbonos del Compuesto III.

De la tabla de errores se observa que este compuesto presenta unos valores bastante altos, entre 4,08 y 4,26 ppm para el EMA y 5,62 y 5,69 ppm para el ECM, valores muy por encima de los obtenidos en la evaluación de los métodos computacionales (Tabla 5). En la gráfica de residuales se observan múltiples carbonos con desviaciones que superan, tanto positiva como negativamente, los 5 ppm; incluso algunos superan la barrera de los -15 ppm (C-5 y B3LYP en el C-17). Cabe destacar que estos valores se obtuvieron mediante la comparación carbono-carbono (Tabla B-XV). También se realizó la comparación de las señales ordenando los desplazamientos de forma decreciente (Tabla B-XVI) para determinar si este comportamiento se mantiene o si se ve alguna mejoría (o desmejoría) en la evaluación de la data experimental con respecto a los cálculos realizados.

A continuación, se muestran los errores (EM, EMA y ECM) y la gráfica de los residuales obtenidos para el compuesto III, ordenando las señales de forma decreciente:

Tabla 11. Valores de EM, EMA y ECM correspondientes al Compuesto III, ordenados de forma decreciente, para todos los niveles de teoría y funciones base.

Método / Función base	EM	EMA	ECM
B3LYP / 6-311++G(d,p)	-2,662388985	3,416553409	5,015875484
MPW1PW91 / 6-311++G(d,p)	-0,534731008	2,685162858	4,574411026
BHandHLYP / 6-311G(d,p)	-0,381030093	2,785263003	4,597491791
BHandHLYP / 6-311++G(d,p)	-0,420943044	2,691960784	4,488401428

Gráfico 16. Residuales de cada uno de los desplazamientos químicos del Compuesto III.

Con respecto al valor de los errores, el compuesto III muestra valores del EMA entre 2,69 y 3,41 ppm, y para el ECM los valores van entre 4,49 y 5,01 ppm, ambos valores por debajo de los valores obtenidos en la comparación carbono-carbono, en especial el EMA, con lo que se podría plantear la posibilidad de que se hayan cometido errores al momento de realizar las asignaciones. Esta posibilidad se respalda con el análisis de los residuales, en los cuales se observa que no solo hay una mejoría en general, sino que solo 3 desplazamientos muestran desviaciones altas y negativas, lo cual no solo representa una mejoría con respecto a la metodología anterior, sino que este comportamiento era de esperarse, por lo que se explicará a continuación:

En el Gráfico 16 se observa que destacan los desplazamientos # 1, # 3 y # 5, por las desviaciones altas y negativas que presentan, a diferencia del comportamiento mostrado por el resto. Estos desplazamientos corresponden, para todos los métodos, a los carbonos 17, 5 y 6, respectivamente, siendo estos 2 últimos, átomos de carbono donde se encuentran enlazados átomos de bromo y el C-17 es un carbono carbonílico, vecino del carbono (C-16) donde se encuentra enlazado el tercer átomo de bromo (desplazamiento # 6), el cual por cierto muestra una correspondencia casi perfecta.

En el trabajo de Falcón, G. ^[17] se evaluó la capacidad de los métodos B3LYP y MPW1PW91 con el uso de las funciones base 6-31G(d,p) y 6-311G(d,p) para modelar el espectro de RMN¹³C de este compuesto, donde se observó que los valores teóricos que obtuvo presentaron desviaciones altas, en especial el carbono # 5, uno de los que tiene enlazado un átomo de bromo. En el presente trabajo se realizó la misma evaluación utilizando un nuevo método (BHandHLYP) y agregando funciones difusas a las funciones base, con el fin de observar si esto podría generar una mejoría en la simulación de los espectros y así resolver la discrepancia que se observa comúnmente entre teoría y experimento cuando de compuestos halogenados se trata; pero, como se describió anteriormente en el análisis del estudio estadístico y de residuales del Compuesto III, los valores de los errores mostraron un incremento significativo con respecto al valor general de cada método y, en los desplazamientos de 2 de los carbonos unidos directamente a los átomos de bromo, los residuales fueron bastante altos y negativos. Cabe destacar que el carbono unido al tercer átomo de bromo no mostró una gran desviación, en cambio

el carbono vecino, el cual es un carbono carbonílico, sí mostró una desviación alta y negativa.

Esta disminución observada, con frecuencia, en el desplazamiento químico del núcleo unido directamente al halógeno que se incrementa al aumentar el número atómico del halógeno, se le denomina dependencia normal del halógeno (NHD, por sus siglas en inglés). ^[30]

El número de explicaciones sobre este efecto, a veces contradictorias entre sí, es notable. La mayoría de los libros de texto de RMN lo explican en términos del apantallamiento diamagnético debido a los electrones alrededor del halógeno; otros toman en consideración los efectos de electronegatividad. ^[31]

Algunos autores han sugerido que este efecto se debe a la polarización del espín electrónico inducida por el acoplamiento spin-orbital ^[30]. Aparentemente, este argumento no había sido considerado anteriormente por los espectroscopistas. Recientemente, con el desarrollo e implementación de técnicas ab initio (Hartree Fock) y la Teoría del Funcional de la Densidad (DFT) se han hecho disponibles tratamientos cuantitativos de las correcciones spin-orbital a los desplazamientos químicos de RMN (tanto para ¹H como ¹³C). Estos enfoques han ayudado a confirmar que la causa del efecto NHD es, en gran medida, la interacción spin-orbital.

Como consecuencia de lo expuesto anteriormente, los resultados observados el Gráfico 16 eran previsibles. A pesar de ello, se llevó a cabo el cálculo de los desplazamientos químicos de RMN¹³C del Compuesto III, no sólo con el fin de observar si el uso de funciones difusas podría resultar de utilidad, sino también se quería conocer si el efecto NHD podía extenderse sobre el desplazamiento químico de los átomos de carbono adyacentes, los cuales serían el C-4, C-10, C-7, C-15 y C-17.

En este sentido, se pudo constatar que, excepto para el carbono C-17, no hay un efecto significativo en los desplazamientos químicos de dichos carbonos, a pesar de que

los carbonos C-7 y C-10 (desplazamientos #12 y #10 respectivamente) muestran un residual ligeramente alto, esto no se le podría atribuir a este efecto. El carbono C-17, por su parte, muestra un residual alto y negativo, similar a los carbonos C-5 y C-6. Esto, junto con el hecho de que el carbono C-16 (enlace C-Br) muestra un residual inesperadamente bajo, podría explicarse gracias al hecho de que el carbono C-17 es un carbono carbonílico; pero para ello es necesario realizar estudios con compuestos con características similares para determinar si este es un comportamiento común y proceder entonces a buscar una explicación para el mismo. En conclusión, se puede constatar al examinar el gráfico de residuales (Gráfico 16) que no hay un efecto significativo en los desplazamientos químicos de dichos carbonos, es decir, el efecto NHD producido, en este caso por el átomo de Br, no se extiende a los átomos de carbonos vecinales.

CONCLUSIONES

- ✓ Se determinó, mediante el uso de gráficos de correlación lineal, coeficiente de correlación R², error medio (EM), error medio absoluto (EMA) y error medio cuadrático (ECM), que la combinación de funcional híbrido y función base que, por comparación directa, mejor replica los espectros de RMN¹³C de moléculas del tipo androstano, es MPW1PW91/6-311++G(d,p).
- ✓ Se determinó, mediante el uso de gráficos de correlación lineal, coeficiente de correlación R², EM, EMA y ECM, que la combinación de funcional híbrido y función base que mejor replica los espectros de RMN¹³C de moléculas del tipo androstano, realizando ajuste a los valores calculados utilizando la pendiente de la recta y el punto de corte obtenidos de la regresión lineal, es BHandHLYP/6-311++G(d,p).
- ✓ Se determinó, mediante el uso de gráficos de correlación lineal, coeficiente de correlación R², EM, EMA y ECM, que la combinación de funcional híbrido y función base que produce una excelente simulación de los espectros de RMN¹³C de moléculas del tipo androstano, realizando ajuste a los valores calculados, en el menor tiempo posible, es BHandHLYP/6-311G(d,p).
- Se demostró, mediante el cálculo del EM, EMA y ECM, que es válido hacer la comparación entre la data teórica y la data experimental ordenando de forma decreciente los desplazamientos químicos, para aquellos casos donde no se tenga disponible las asignaciones de los carbonos.
- Se observó, a través de los gráficos de residuales y cálculo del EMA y ECM, que el producto colateral, obtenido en las esterificaciones realizadas por Paz, D.^[20], que muestra la mejor correspondencia entre la data experimental y los cálculos teóricos, es la eliminación en Δ³ (el isómero termodinámicamente más estable).
- Se determinó, a través de los gráficos de residuales y cálculo del EM, EMA y ECM, que el espectro de RMN¹³C experimental para la 2ξ-acetoxi-17β-hidroxi-5αandrostan-3-ona, sintetizada por Neacato, P.^[19], posee una menor dispersión respecto

a los datos calculados para el isómero alfa de dicho compuesto. Por lo que se considera que el compuesto sintetizado fue la 2α -acetoxi- 17β -hidroxi- 5α -androstan-3-ona

Se comprobó, a través de los gráficos de residuales y cálculo del EM, EMA y ECM, que el uso de funciones difusas en las funciones base no permiten la simulación de espectros de RMN¹³C de androstanos halogenados, ya que los mismos no describen correctamente los efectos NHD en dichas moléculas.

RECOMENDACIONES

- Realizar las mismas evaluaciones para determinar la mejor combinación de funcional y función base, pero realizando la comparación entre la data teórica y la data experimental mediante ordenamiento de los desplazamientos de forma creciente o decreciente.
- Comparar y analizar los valores estadísticos obtenidos al realizar la evaluación ordenando los desplazamientos por carbono con los obtenidos ordenando los desplazamientos de forma creciente o decreciente.
- Evaluar la viabilidad y validez del uso de métodos computacionales como criterio de peso al momento de realizar la asignación de carbonos en la elucidación de espectros de RMN¹³C.

APÉNDICE: Tablas

Compuesto	Carbono	Señal δ	Carbono	Señal δ	Carbono	Señal δ
N°	N°	(ppm)	N°	(ppm)	N°	(ppm)
	1	38,7	8	35,7	15	25,5
	2	38,1	9	54,1	16	20,5
	3	211	10	35,7	17	40,3
1	4	44,6	11	21,5	18	17,4
	5	46,7	12	38,8	19	11,4
	6	29	13	40,8		
	7	32,1	14	54,3		
	1	24,76	8	51,02	15	31,43
	2	35,96	9	52,41	16	38,82
	3	70,1	10	34,95	17	221,8
2	4	36,74	11	20,55	18	13,94
	5	41,95	12	31,19	19	12,31
	6	37,55	13	48,11		
	7	73,91	14	42,44		
	1	37,21	8	31,01	15	27,85
	2	31,48	9	50,23	16	35,82
	3	71,36	10	36,63	17	221,23
3	4	42,14	11	20,35	18	13,52
	5	141,17	12	30,77	19	19,41
	6	120,72	13	47,52		
	7	30,29	14	51,75		

 Tabla A-I.
 Valores de los desplazamientos químicos de RMN ¹³C experimentales:

Compuesto	Carbono	Señal δ	Carbono	Señal δ	Carbono	Señal δ
N°	N°	(ppm)	N°	(ppm)	N°	(ppm)
	1	38,63	8	35,54	15	23,42
	2	38,13	9	54,05	16	30,57
	3	211,72	10	35,8	17	81,84
4	4	44,7	11	21,08	18	11,15
	5	46,81	12	36,73	19	11,5
	6	28,85	13	43,04		
	7	31,3	14	50,92		
	1	36,96	8	35,03	15	21,75
	2	34,35	9	54,43	16	35,81
	3	70,91	10	35,62	17	221,34
5	4	38,01	11	20,47	18	13,78
	5	44,84	12	31,54	19	12,29
	6	28,38	13	47,76		
	7	30,88	14	51,41		
	1	35,67	8	35,73	15	23,34
	2	33,94	9	53,93	16	30,41
6	3	199,6	10	38,67	17	81,56
	4	123,85	11	20,65	18	11,06
	5	171,35	12	36,44	19	17,42
	6	32,8	13	42,82		
	7	31,55	14	50,49		

Tabla A-I. Valores de los desplazamientos químicos de RMN ¹³C experimentales (cont.):

Compuesto	Carbono	Señal δ	Carbono	Señal δ	Carbono	Señal δ
N°	N°	(ppm)	N°	(ppm)	N°	(ppm)
	1	38,5	8	35,5	15	27,2
	2	38,1	9	54,1	16	24,1
	3	212,3	10	36,1	17	21,5
7	4	44,7	11	20,8	18	42,3
	5	46,5	12	42	19	17
	6	29,1	13	33,6	20	11,5
	7	30,8	14	51		
	1	162,9	8	39,7	15	23,2
	2	123,3	9	49,5	16	27,3
	3	184,2	10	49,3	17	81,9
8	4	120,4	11	21,1	18	12,1
	5	171,1	12	42,4	19	20,6
	6	36,3	13	44,8		
	7	29,4	14	53,6		
	1	32,7	8	30,8	15	23,5
9	2	29,8	9	40,4	16	36,9
	3	75,9	10	38,9	17	221,2
	4	31,5	11	21,9	18	13,5
	5	50,3	12	31,5	19	19,4
	6	66,6	13	47,6		
	7	35,9	14	51,8		

Tabla A-I. Valores de los desplazamientos químicos de RMN ¹³C experimentales (cont.):

Compuesto	Carbono	Señal δ	Carbono	Señal δ	Carbono	Señal δ
N°	N°	(ppm)	N°	(ppm)	N°	(ppm)
	1	34,5	8	27,1	15	24,1
	2	31	9	50,8	16	20,5
	3	71,3	10	33,5	17	40,8
10	4	32,3	11	21,4	18	13,5
	5	51,2	12	36,4	19	16,9
	6	69,8	13	42,2		
	7	37,1	14	53,9		
	1	36,9	8	37,3	15	26,9
	2	33,9	9	51,4	16	21,2
	3	211,3	10	38,2	17	40,9
11	4	41,9	11	24	18	20,9
	5	57,2	12	37,9	19	16,8
	6	209,6	13	41,4		
	7	45,8	14	53,6		
	1	36,6	9	54,3	17	221,2
	2	27,2	10	35	18	12,2
	3	74,7	11	20,5	19	13,8
12	4	30,8	12	31,5	20	166,3
	5	44,6	13	47,8	21	42
	6	29,7	14	51,4	22	166,8
	7	28,2	15	21,8		
	8	35,6	16	35,8		

Tabla A-I. Valores de los desplazamientos químicos de RMN ¹³C experimentales (cont.):

Compuesto	Carbono	Señal δ	Carbono	Señal δ	Carbono	Señal δ
N°	N°	(ppm)	N°	(ppm)	N°	(ppm)
	1	35,5	10	34,5	19	13,4
	2	25,7	11	20,1	20	168
	3	76	12	31,3	21	131,8
	4	30,4	13	47,4	22	125,4
13	5	41,2	14	50,6	23	130,8
	6	30	15	21,5	24	122,3
	7	28,2	16	34,9	25	125,3
	8	34,8	17	220,8	26	133,5
	9	51,2	18	11,6		
	1	35,69	8	35,39	15	23,45
	2	33,91	9	53,7	16	27,46
	3	199,34	10	38,59	17	82,43
14	4	123,93	11	20,51	18	12
	5	171,07	12	36,5	19	17,38
	6	32,71	13	42,44	20	170,87
	7	31,48	14	50,24	21	21,12
	1	35,45	8	33,67	15	21,56
	2	33,88	9	51,45	16	35,56
	3	201,1	10	39,67	17	219,1
15	4	125,88	11	20,19	18	13,65
	5	160,14	12	30,9	19	17,57
	6	198,98	13	47,55		
	7	45,36	14	50,87		

Tabla A-I. Valores de los desplazamientos químicos de RMN ¹³C experimentales (cont.):

Compuesto	Carbono	Señal δ	Carbono Señal δ		Carbono	Señal δ
N°	N°	(ppm)	N°	(ppm)	N°	(ppm)
	1	33,87	8	37,36	15	23,07
	2	33,87	9	48,04	16	27,44
	3	199,47	10	36,51	17	82,07
16	4	123,8	11	20,17	18	11,92
	5	163,44	12	36,06	19	16,29
	6	128,18	13	43,41	20	171,06
	7	139,96	14	50,62	21	21,09
	-	221,2	-	35,8	-	24,8
	-	130,5	-	35,6	-	21,8
	-	129,8	-	35	-	20,4
I-a,I-b	-	54,2	-	33,8	-	13,8
	-	51,4	-	31,5	-	12,2
	-	47,8	-	31,4		
	-	221,2	-	35,8	-	24,8
	1	42,4	8	34,2	15	23,2
	2	74,1	9	53,4	16	30,8
	3	204	10	37	17	82,5
II-a,II-b	4	43,2	11	20,9	18	11,2
	5	47,5	12	36,4	19	12,4
	6	27,9	13	44,5	20	171,1
	7	27,2	14	50,1	21	20,5

Tabla A-I. Valores de los desplazamientos químicos de RMN ¹³C experimentales (cont.):

Compuesto	Carbono	Señal δ	Carbono	Señal δ	Carbono	Señal δ
N°	N°	(ppm)	N°	(ppm)	N°	(ppm)
	1	29,53	8	36,2	15	36,41
	2	26,06	9	46,63	16	47,31
	3	71,65	10	42,03	17	205,75
	4	46,48	11	20,13	18	16,36
	5	86,71	12	32,44	19	20,04
	6	59,14	13	47,8	20	170,35
	7	41,3	14	54,64	21	21,3

Tabla A-I. Valores de los desplazamientos químicos de RMN ¹³C experimentales (cont.):

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	139,849	42,6166	11	157,7426	24,723
	2	142,4941	39,9715	12	140,0126	42,453
	3	-32,0625	214,5281	13	136,4308	46,0348
	4	134,6766	47,789	14	123,7224	58,7432
1	5	130,1372	52,3284	15	154,0933	28,3723
	6	149,755	32,7106	16	158,0575	24,4081
	7	146,2135	36,2521	17	138,8559	43,6097
	8	141,3565	41,1091	18	165,8274	16,6382
	9	123,5805	58,8851	19	170,9422	11,5234
	10	140,5184	41,9472			
	1	141,9477	40,5179	11	157,9507	24,5149
	2	146,4979	35,9677	12	146,9722	35,4934
	3	106,5456	75,92	13	129,0666	53,399
	4	139,8672	42,5984	14	126,7825	55,6831
2	5	134,7967	47,6689	15	154,5515	27,9141
Z	6	139,7156	42,75	16	142,626	39,8396
	7	102,755	79,7106	17	-44,3867	226,8523
	8	132,9126	49,553	18	169,1974	13,2682
	9	124,3275	58,1381	19	170,3631	12,1025
	10	141,5194	40,9462			

Tabla A-II. Valores de las constantes de apantallamiento isotrópico (σ) y desplazamientos químicos (δ) de RMN¹³C calculados con B3LYP/6-311++G(d,p):

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	140,9446	41,521	11	158,3433	24,1223
	2	146,2885	36,1771	12	147,2462	35,2194
	3	105,3052	77,1604	13	130,0826	52,383
	4	134,5589	47,9067	14	126,3831	56,0825
3	5	31,4809	150,9847	15	157,9433	24,5223
Ũ	6	53,9227	128,5429	16	143,6044	38,8612
	7	148,0501	34,4155	17	-44,2938	226,7594
	8	145,6708	36,7948	18	168,9994	13,4662
	9	126,975	55,4906	19	162,6926	19,773
	10	140,1894	42,2762			
	1	139,8719	42,5937	11	158,0252	24,4404
	2	142,7718	39,6938	12	142,1644	40,3012
	3	-31,6048	214,0704	13	134,8741	47,5915
	4	134,7631	47,7025	14	127,2746	55,191
4	5	129,6435	52,8221	15	156,9715	25,4941
7	6	149,7084	32,7572	16	145,3619	37,1037
	7	147,2796	35,186	17	94,6373	87,8283
	8	142,2216	40,244	18	173,6348	8,8308
	9	123,6746	58,791	19	171,157	11,3086
	10	140,5897	41,8759			

Tabla A-II. Valores de las constantes de apantallamiento isotrópico (σ) y desplazamientos químicos (δ) de RMN¹³C calculados con B3LYP/6-311++G(d,p) (cont.):

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	141,9292	40,5364	11	158,2518	24,2138
	2	146,676	35,7896	12	147,0541	35,4115
	3	106,6879	75,7777	13	129,9296	52,536
	4	139,5713	42,8943	14	126,5362	55,9294
5	5	131,9512	50,5144	15	158,0935	24,3721
Ũ	6	150,5282	31,9374	16	143,4398	39,0258
	7	147,6042	34,8614	17	-44,4409	226,9065
	8	142,0446	40,421	18	169,08	13,3856
	9	123,1598	59,3058	19	170,4929	11,9727
	10	140,6613	41,8043			
	1	142,3051	40,1605	11	158,5708	23,8948
	2	146,2846	36,181	12	142,487	39,9786
	3	-18,2763	200,7419	13	135,4662	46,9994
	4	52,1026	130,363	14	127,3181	55,1475
6	5	3,5486	178,917	15	156,8321	25,6335
0	6	145,3208	37,1448	16	146,1312	36,3344
	7	146,7051	35,7605	17	94,6087	87,8569
	8	142,3252	40,1404	18	173,0251	9,4405
	9	122,759	59,7066	19	164,2643	18,2013
	10	137,9061	44,5595			

Tabla A-II. Valores de las constantes de apantallamiento isotrópico (σ) y desplazamientos químicos (δ) de RMN¹³C calculados con B3LYP/6-311++G(d,p) (cont.):

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	140,371	42,0946	11	158,333	24,1326
	2	142,4438	40,0218	12	136,7451	45,7205
	3	-32,0912	214,5568	13	143,6008	38,8648
	4	134,6522	47,8134	14	127,6266	54,839
7	5	131,2809	51,1847	15	155,1742	27,2914
	6	150,0196	32,446	16	152,3604	30,1052
	7	148,0084	34,4572	17	157,651	24,8146
	8	141,874	40,5916	18	137,0767	45,3889
	9	124,29	58,1756	19	166,3725	16,0931
	10	140,2708	42,1948	20	170,7526	11,713
	1	22,3348	160,1308	11	156,7818	25,6838
	2	46,8631	135,6025	12	142,6784	39,7872
	3	-5,9546	188,4202	13	134,9409	47,5247
	4	51,4826	130,983	14	127,5355	54,9301
8	5	7,731	174,7346	15	156,3208	26,1448
0	6	145,7565	36,7091	16	146,8827	35,5829
	7	144,9864	37,4792	17	94,4745	87,9911
	8	143,2042	39,2614	18	172,7347	9,7309
	9	124,3895	58,0761	19	162,4306	20,035
	10	133,5443	48,9213			

Tabla A-II. Valores de las constantes de apantallamiento isotrópico (σ) y desplazamientos químicos (δ) de RMN¹³C calculados con B3LYP/6-311++G(d,p) (cont.):

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	141,2604	41,2052	11	158,255	24,2106
	2	147,0575	35,4081	12	147,1765	35,2891
	3	106,3833	76,0823	13	129,8155	52,6501
	4	146,1547	36,3109	14	125,9788	56,4868
9	5	122,183	60,2826	15	157,7802	24,6854
Ũ	6	108,6825	73,7831	16	143,6247	38,8409
	7	136,5958	45,8698	17	-44,1425	226,6081
	8	143,0591	39,4065	18	168,7051	13,7605
	9	123,658	58,8076	19	169,4375	13,0281
	10	139,681	42,7846			
	1	141,0417	41,4239	11	157,8455	24,6201
	2	147,0083	35,4573	12	139,991	42,4746
	3	106,1503	76,3153	13	136,44	46,0256
	4	146,0651	36,4005	14	123,3193	59,1463
10	5	122,0814	60,3842	15	153,9908	28,4748
10	6	108,5885	73,8771	16	157,8422	24,6234
	7	134,9899	47,4757	17	138,5628	43,9028
	8	142,3875	40,0781	18	165,7231	16,7425
	9	123,6253	58,8403	19	169,2936	13,172
	10	139,9497	42,5159			

Tabla A-II. Valores de las constantes de apantallamiento isotrópico (σ) y desplazamientos químicos (δ) de RMN¹³C calculados con B3LYP/6-311++G(d,p) (cont.):

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	139,9643	42,5013	11	157,3937	25,0719
	2	143,2206	39,245	12	140,5467	41,9189
	3	-33,1463	215,6119	13	135,8055	46,6601
	4	142,3006	40,165	14	123,4372	59,0284
11	5	119,6182	62,8474	15	154,5711	27,8945
, ,	6	-33,4455	215,9111	16	157,9997	24,4659
	7	132,0782	50,3874	17	139,1735	43,2921
	8	138,882	43,5836	18	166,4259	16,0397
	9	123,267	59,1986	19	169,8837	12,5819
	10	134,4016	48,064			
	1	142,4439	40,0217	12	147,1832	35,2824
	2	152,7006	29,765	13	129,834	52,6316
	3	103,2755	79,1901	14	126,4652	56,0004
	4	145,5718	36,8938	15	158,0603	24,4053
	5	133,1347	49,3309	16	144,16	38,3056
12	6	150,2866	32,179	17	-43,6731	226,1387
	7	147,6301	34,8355	18	169,1961	13,2695
	8	142,2467	40,2189	19	170,7389	11,7267
	9	122,63	59,8356	20	12,2275	170,2381
	10	140,3591	42,1065	21	140,5812	41,8844
	11	157,8039	24,6617	22	8,8606	173,605

Tabla A-II. Valores de las constantes de apantallamiento isotrópico (σ) y desplazamientos químicos (δ) de RMN¹³C calculados con B3LYP/6-311++G(d,p) (cont.):
Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	141,3912	41,0744	14	126,9286	55,537
	2	152,2758	30,1898	15	158,0576	24,408
	3	104,7985	77,6671	16	141,9085	40,5571
	4	145,6767	36,7889	17	-44,1637	226,6293
	5	133,0927	49,3729	18	169,1813	13,2843
13	6	150,7219	31,7437	19	170,6075	11,8581
	7	147,2754	35,1902	20	10,7211	171,7445
	8	142,8364	39,6292	21	45,278	137,1876
	9	122,2972	60,1684	22	48,0459	134,4197
	10	141,4456	41,02	23	46,4835	135,9821
	11	158,1264	24,3392	24	50,1849	132,2807
	12	147,2701	35,1955	25	49,5682	132,8974
	13	129,7467	52,7189	26	45,7511	136,7145

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	141,8451	40,6205	12	141,9929	40,4727
	2	145,8977	36,5679	13	135,0557	47,4099
	3	-18,2467	200,7123	14	128,0701	54,3955
	4	52,2446	130,221	15	156,0022	26,4634
	5	4,2405	178,2251	16	151,4725	30,9931
14	6	146,3113	36,1543	17	94,7389	87,7267
	7	146,5568	35,9088	18	171,0551	11,4105
	8	142,4848	39,9808	19	164,6292	17,8364
	9	123,1509	59,3147	20	7,0734	175,3922
	10	138,0471	44,4185	21	161,5419	20,9237
	11	158,1454	24,3202			
	1	142,5368	39,9288	11	158,7007	23,7649
	2	146,4021	36,0635	12	147,5504	34,9152
	3	-20,338	202,8036	13	129,9402	52,5254
	4	49,8888	132,5768	14	125,8344	56,6312
15	5	14,8036	167,662	15	158,0891	24,3765
15	6	-25,484	207,9496	16	143,7401	38,7255
	7	132,861	49,6046	17	-43,0482	225,5138
	8	143,6108	38,8548	18	169,1466	13,319
	9	126,0297	56,4359	19	164,1483	18,3173
	10	136,9446	45,521			

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	144,857	37,6086	12	142,2716	40,194
	2	145,9075	36,5581	13	134,0887	48,3769
	3	-18,1783	200,6439	14	130,1136	52,352
	4	52,6453	129,8203	15	156,6707	25,7949
	5	13,2864	169,1792	16	151,3901	31,0755
16	6	46,5055	135,9601	17	95,0834	87,3822
	7	35,6239	146,8417	18	170,4653	12,0003
	8	139,9172	42,5484	19	165,3944	17,0712
	9	126,8214	55,6442	20	7,0947	175,3709
	10	140,6837	41,7819	21	161,5438	20,9218
	11	158,6518	23,8138			
	1	138,5159	43,9497	12	141,7955	40,6701
	2	150,2712	32,1944	13	129,3944	53,0712
	3	105,7377	76,7279	14	128,0889	54,3767
	4	133,6303	48,8353	15	139,4376	43,028
	5	83,6844	98,7812	16	127,0167	55,4489
<i>III</i>	6	115,3619	67,1037	17	-47,446	229,9116
	7	138,2926	44,173	18	161,789	20,6766
	8	148,2276	34,238	19	154,6843	27,7813
	9	129,9041	52,5615	20	-0,2648	182,7304
	10	139,3789	43,0867	21	158,8802	23,5854
	11	154,3353	28,1303			

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	145,0138	37,4518	11	158,3863	24,0793
	2	155,5879	26,8777	12	147,0427	35,4229
	3	49,3991	133,0665	13	129,7513	52,7143
	4	43,3534	139,1122	14	126,6363	55,8293
l-a	5	132,359	50,1066	15	158,0736	24,392
, a	6	152,4587	30,0069	16	143,5925	38,8731
	7	147,6802	34,7854	17	-44,5171	226,9827
	8	141,7885	40,6771	18	169,0466	13,419
	9	124,1157	58,3499	19	170,8757	11,5899
	10	141,6811	40,7845			
	1	139,6701	42,7955	11	158,6619	23,8037
	2	48,8742	133,5914	12	147,0589	35,4067
	3	49,6535	132,8121	13	129,9822	52,4834
	4	148,2487	34,2169	14	126,4573	56,0083
I-b	5	136,1718	46,2938	15	158,1016	24,364
	6	150,6736	31,792	16	143,4736	38,992
	7	147,9939	34,4717	17	-44,618	227,0836
	8	142,121	40,3446	18	169,2134	13,2522
	9	123,4522	59,0134	19	171,1926	11,273
	10	141,7987	40,6669			

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	134,2428	48,2228	12	142,6607	39,8049
	2	104,5901	77,8755	13	134,8358	47,6298
	3	-27,9212	210,3868	14	127,609	54,8566
	4	135,5712	46,8944	15	156,812	25,6536
	5	130,0286	52,437	16	144,7215	37,7441
II-a	6	150,921	31,5446	17	95,3701	87,0955
	7	147,4999	34,9657	18	173,7229	8,7427
	8	143,1754	39,2902	19	169,5125	12,9531
	9	123,2736	59,192	20	7,1166	175,349
	10	139,324	43,1416	21	161,8711	20,5945
	11	158,2385	24,2271			
	1	135,4498	47,0158	12	141,5013	40,9643
	2	104,7118	77,7538	13	134,7239	47,7417
	3	-31,204	213,6696	14	126,9488	55,5168
	4	136,8893	45,5763	15	156,6272	25,8384
	5	137,3886	45,077	16	146,5502	35,9154
II-b	6	151,5017	30,9639	17	94,8152	87,6504
	7	147,7654	34,7002	18	172,4841	9,9815
	8	142,7842	39,6814	19	168,295	14,1706
	9	122,2152	60,2504	20	7,0386	175,427
	10	140,623	41,8426	21	161,7506	20,715
	11	157,6266	24,839			

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	146,3502	36,1154	11	164,0825	18,3831
	2	148,3189	34,1467	12	146,3756	36,09
	3	-25,0321	207,4977	13	144,6079	37,8577
	4	140,9617	41,5039	14	130,8545	51,6111
1	5	137,9401	44,5255	15	160,265	22,2006
	6	156,0908	26,3748	16	163,8889	18,5767
	7	152,7588	29,7068	17	145,3235	37,1421
	8	149,2273	33,2383	18	171,3399	11,1257
	9	131,3987	51,0669	19	175,6884	6,7772
	10	149,0264	33,4392			
	1	148,1837	34,2819	11	164,3564	18,1092
	2	152,7933	29,6723	12	153,1134	29,3522
	3	114,612	67,8536	13	136,7719	45,6937
	4	146,3899	36,0757	14	134,3157	48,1499
2	5	142,3801	40,0855	15	160,5472	21,9184
2	6	146,228	36,2376	16	148,6179	33,8477
	7	111,1075	71,3581	17	-36,6841	219,1497
	8	140,8059	41,6597	18	174,3099	8,1557
	9	132,122	50,3436	19	174,9194	7,5462
	10	150,0523	32,4133			

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	147,5859	34,8797	11	164,7754	17,6902
	2	152,4606	30,005	12	153,4228	29,0428
	3	113,5242	68,9414	13	137,7391	44,7265
	4	140,9706	41,495	14	133,8105	48,6551
.3	5	38,4476	144,018	15	163,8726	18,593
Ū	6	58,974	123,4916	16	149,5369	32,9287
	7	154,013	28,4526	17	-36,5345	219,0001
	8	153,2999	29,1657	18	174,354	8,1116
	9	134,9604	47,5052	19	167,5671	14,8985
	10	148,4255	34,0401			
	1	146,4599	36,0057	11	164,3868	18,0788
	2	148,5063	33,9593	12	148,4133	34,0523
	3	-24,6429	207,1085	13	143,1211	39,3445
	4	140,987	41,4786	14	134,6354	47,8302
4	5	137,545	44,9206	15	163,1423	19,3233
	6	156,0606	26,405	16	151,8397	30,6259
	7	153,745	28,7206	17	103,081	79,3846
	8	149,8458	32,6198	18	178,7743	3,6913
	9	131,4769	50,9887	19	175,9104	6,5552
	10	149,0823	33,3833			

Tabla A-III. Valores de las constantes de apantallamiento isotrópico (σ) de RMN ¹³C calculados con MPW1PW91/6-311++G(d,p) (cont.):

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	148,271	34,1946	11	164,5876	17,878
	2	152,911	29,5546	12	153,1289	29,3367
	3	114,6944	67,7712	13	137,2658	45,1998
	4	146,0486	36,417	14	133,8521	48,6135
5	5	139,6949	42,7707	15	163,8213	18,6443
Ū	6	156,9466	25,519	16	149,4762	32,9894
	7	154,0456	28,42	17	-36,2467	218,7123
	8	150,1976	32,268	18	174,2066	8,259
	9	131,0237	51,4419	19	175,1914	7,2742
	10	149,1862	33,2794			
	1	148,8302	33,6354	11	164,9524	17,5132
	2	152,17	30,2956	12	148,8314	33,6342
	3	-11,5576	194,0232	13	143,6717	38,7939
	4	57,4046	125,061	14	134,6977	47,7679
6	5	10,8301	171,6355	15	163,0101	19,4555
Ū	6	151,3416	31,124	16	152,5341	29,9315
	7	153,1659	29,2997	17	103,1665	79,2991
	8	150,0776	32,388	18	178,2187	4,2469
	9	130,8266	51,639	19	169,2898	13,1758
	10	146,1536	36,312			

Tabla A-III. Valores de las constantes de apantallamiento isotrópico (σ) de RMN ¹³C calculados con MPW1PW91/6-311++G(d,p) (cont.):

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	146,6657	35,7999	11	164,6421	17,8235
	2	148,0919	34,3737	12	143,2127	39,2529
	3	-25,114	207,5796	13	152,0674	30,3982
	4	141,0595	41,4061	14	135,1416	47,324
7	5	139,0945	43,3711	15	161,3274	21,1382
	6	156,3661	26,0995	16	158,3402	24,1254
	7	154,5147	27,9509	17	163,6606	18,805
	8	150,035	32,4306	18	143,3353	39,1303
	9	131,7832	50,6824	19	171,3205	11,1451
	10	149,2598	33,2058	20	175,5028	6,9628
	1	28,1407	154,3249	11	163,0399	19,4257
	2	52,1795	130,2861	12	148,9011	33,5645
	3	0,9117	181,5539	13	143,2907	39,1749
	4	56,7646	125,701	14	134,6384	47,8272
8	5	14,8362	167,6294	15	162,6813	19,7843
U	6	151,7572	30,7084	16	153,1534	29,3122
	7	151,5213	30,9443	17	103,0903	79,3753
	8	150,3094	32,1562	18	177,5986	4,867
	9	132,663	49,8026	19	167,793	14,6726
	10	141,656	40,8096			

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	147,713	34,7526	11	164,7207	17,7449
	2	153,1859	29,2797	12	153,1825	29,2831
	3	114,4086	68,057	13	137,2105	45,2551
	4	152,4038	30,0618	14	133,5549	48,9107
9	5	130,2639	52,2017	15	163,6952	18,7704
Ū	6	117,1101	65,3555	16	149,5503	32,9153
	7	143,1749	39,2907	17	-36,1527	218,6183
	8	151,1032	31,3624	18	173,9602	8,5054
	9	131,278	51,1876	19	174,2316	8,234
	10	148,2586	34,207			
	1	147,4307	35,0349	11	164,2081	18,2575
	2	153,1341	29,3315	12	146,3663	36,0993
	3	114,2039	68,2617	13	144,6593	37,8063
	4	152,4508	30,0148	14	130,4927	51,9729
10	5	130,0467	52,4189	15	160,2008	22,2648
10	6	116,9838	65,4818	16	163,6794	18,7862
	7	141,6414	40,8242	17	145,0204	37,4452
	8	150,186	32,2796	18	171,219	11,2466
	9	131,3883	51,0773	19	174,0532	8,4124
	10	148,4515	34,0141			

Tabla A-III. Valores de las constantes de apantallamiento isotrópico (σ) de RMN ¹³C calculados con MPW1PW91/6-311++G(d,p) (cont.):

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	146,4776	35,988	11	163,8237	18,6419
	2	149,0172	33,4484	12	146,9206	35,545
	3	-26,1305	208,5961	13	144,0222	38,4434
	4	148,4589	34,0067	14	130,4963	51,9693
11	5	126,9255	55,5401	15	160,6353	21,8303
	6	-26,2332	208,6988	16	164,0325	18,4331
	7	138,5206	43,945	17	145,6538	36,8118
	8	146,5927	35,8729	18	171,7952	10,6704
	9	131,047	51,4186	19	174,7071	7,7585
	10	143,2183	39,2473			
	1	148,9843	33,4813	12	153,2372	29,2284
	2	158,9683	23,4973	13	137,4738	44,9918
	3	111,5122	70,9534	14	133,7303	48,7353
	4	151,9326	30,533	15	163,9387	18,5269
	5	140,8369	41,6287	16	149,9432	32,5224
12	6	156,6238	25,8418	17	-35,8977	218,3633
	7	153,9134	28,5522	18	174,6504	7,8152
	8	150,1015	32,3641	19	175,4641	7,0015
	9	130,5267	51,9389	20	18,9499	163,5157
	10	148,939	33,5266	21	146,3583	36,1073
	11	164,4219	18,0437	22	15,4575	167,0081

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	147,7662	34,6994	14	134,1801	48,2855
	2	158,3029	24,1627	15	163,9251	18,5405
	3	112,7324	69,7332	16	148,2004	34,2652
	4	152,1325	30,3331	17	-36,4603	218,9259
	5	141,2141	41,2515	18	174,021	8,4446
	6	157,2771	25,1885	19	175,362	7,1036
13	7	153,5626	28,903	20	17,9113	164,5543
	8	150,5748	31,8908	21	51,756	130,7096
	9	130,1434	52,3222	22	53,5627	128,9029
	10	149,8362	32,6294	23	51,9166	130,549
	11	164,7691	17,6965	24	55,6391	126,8265
	12	153,3175	29,1481	25	54,965	127,5006
	13	137,4353	45,0303	26	50,8873	131,5783

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	148,6396	33,826	12	148,3734	34,0922
	2	151,8225	30,6431	13	143,3134	39,1522
	3	-11,6085	194,0741	14	135,3594	47,1062
	4	57,5861	124,8795	15	162,1249	20,3407
	5	11,4188	171,0468	16	157,8847	24,5809
14	6	152,2177	30,2479	17	102,9605	79,5051
	7	153,085	29,3806	18	176,1886	6,277
	8	149,9778	32,4878	19	169,6304	12,8352
	9	131,0381	51,4275	20	13,8156	168,65
	10	146,3347	36,1309	21	166,3337	16,1319
	11	164,5311	17,9345			
	1	149,2837	33,1819	11	165,1663	17,2993
	2	152,1661	30,2995	12	153,7664	28,6992
	3	-13,5871	196,0527	13	137,5933	44,8723
	4	55,2168	127,2488	14	133,1935	49,2721
15	5	22,3074	160,1582	15	164,0078	18,4578
10	6	-18,3687	200,8343	16	149,721	32,7446
	7	139,1924	43,2732	17	-35,3468	217,8124
	8	151,3111	31,1545	18	174,3873	8,0783
	9	134,074	48,3916	19	169,4025	13,0631
	10	145,3232	37,1424			

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	151,7053	30,7603	12	148,7407	33,7249
	2	151,7065	30,7591	13	142,3965	40,0691
	3	-11,6471	194,1127	14	137,5131	44,9525
	4	58,0284	124,4372	15	162,8132	19,6524
	5	20,4427	162,0229	16	157,7165	24,7491
16	6	52,0773	130,3883	17	103,2664	79,1992
	7	40,9295	141,5361	18	175,6593	6,8063
	8	146,8949	35,5707	19	170,6457	11,8199
	9	134,6444	47,8212	20	13,7495	168,7161
	10	149,0831	33,3825	21	166,3408	16,1248
	11	165,0601	17,4055			
	1	148,3681	34,0975	12	152,4762	29,9894
	2	160,5085	21,9571	13	136,9037	45,5619
	3	115,6939	66,7717	14	139,2753	43,1903
	4	144,3045	38,1611	15	151,6411	30,8245
	5	82,0713	100,3943	16	129,8152	52,6504
111	6	119,1904	63,2752	17	-31,0235	213,4891
	7	149,5541	32,9115	18	173,0105	9,4551
	8	155,3629	27,1027	19	164,6404	17,8252
	9	138,4751	43,9905	20	13,8989	168,5667
	10	142,3424	40,1232	21	165,9074	16,5582
	11	164,5841	17,8815			

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	151,4703	30,9953	11	164,7061	17,7595
	2	161,2627	21,2029	12	153,1821	29,2835
	3	54,6427	127,8229	13	137,4043	45,0613
	4	48,7317	133,7339	14	134,0172	48,4484
l-a	5	139,5957	42,8699	15	163,9937	18,4719
, a	6	158,7414	23,7242	16	149,5855	32,8801
	7	154,0853	28,3803	17	-36,7109	219,1765
	8	149,5425	32,9231	18	174,2601	8,2055
	9	131,9223	50,5433	19	175,6202	6,8454
	10	150,3385	32,1271			
	1	145,7924	36,6732	11	164,9889	17,4767
	2	54,0769	128,3887	12	153,1782	29,2874
	3	54,8296	127,636	13	137,4333	45,0323
	4	154,3335	28,1321	14	133,8536	48,612
l-h	5	143,9361	38,5295	15	163,9078	18,5578
10	6	157,1489	25,3167	16	149,4908	32,9748
	7	154,4107	28,0549	17	-36,4669	218,9325
	8	150,2736	32,192	18	174,3365	8,1291
	9	131,1417	51,3239	19	176,2316	6,234
	10	150,4145	32,0511			

Tabla A-III. Valores de las constantes de apantallamiento isotrópico (σ) de RMN ¹³C calculados con MPW1PW91/6-311++G(d,p) (cont.):

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	140,8767	41,5889	12	148,9144	33,5512
	2	111,8819	70,5837	13	143,1375	39,3281
	3	-21,3606	203,8262	14	134,8836	47,582
	4	141,8267	40,6389	15	162,9949	19,4707
	5	137,9583	44,5073	16	151,4233	31,0423
II-a	6	157,256	25,2096	17	103,9593	78,5063
	7	153,9481	28,5175	18	178,6057	3,8599
	8	150,8569	31,6087	19	174,4081	8,0575
	9	131,1789	51,2867	20	13,9603	168,5053
	10	147,8665	34,5991	21	166,6046	15,861
	11	164,7166	17,749			
	1	142,2074	40,2582	12	147,7852	34,6804
	2	112,0538	70,4118	13	142,8902	39,5754
	3	-24,8042	207,2698	14	134,2634	48,2022
	4	142,9449	39,5207	15	162,8349	19,6307
	5	145,4589	37,0067	16	152,969	29,4966
II-b	6	157,7799	24,6857	17	103,303	79,1626
	7	154,2446	28,221	18	177,3672	5,0984
	8	150,262	32,2036	19	173,1985	9,2671
	9	129,9441	52,5215	20	13,8277	168,6379
	10	149,1163	33,3493	21	166,5044	15,9612
	11	164,0458	18,4198			

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	149,7441	32,7215	11	166,4745	15,9911
	2	150,53	31,9356	12	149,2665	33,1991
	3	-19,5374	202,003	13	147,1956	35,27
	4	144,0378	38,4278	14	134,6538	47,8118
1	5	142,5846	39,881	15	162,5307	19,9349
	6	158,951	23,5146	16	167,662	14,8036
	7	155,9882	26,4774	17	148,0376	34,428
	8	152,9252	29,5404	18	172,0469	10,4187
	9	134,6339	47,8317	19	177,6473	4,8183
	10	152,4948	29,9708			
	1	150,9587	31,5069	11	166,9674	15,4982
	2	154,9345	27,5311	12	156,1944	26,2712
	3	118,7617	63,7039	13	141,2722	41,1934
	4	148,7487	33,7169	14	137,6606	44,805
2	5	146,1071	36,3585	15	162,5735	19,8921
2	6	148,363	34,1026	16	152,9437	29,5219
	7	114,671	67,7946	17	-31,7861	214,2517
	8	143,9411	38,5245	18	175,6549	6,8107
	9	135,6148	46,8508	19	176,801	5,6646
	10	153,1016	29,364			

Tabla A-IV. Valores de las constantes de apantallamiento isotrópico (σ) de RMN ¹³C calculados con BHandHLYP/6-311G(d,p):

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	150,4964	31,9692	11	167,2957	15,1699
	2	154,8064	27,6592	12	156,2975	26,1681
	3	118,0164	64,4492	13	141,9214	40,5442
	4	143,7257	38,7399	14	137,1667	45,2989
.3	5	39,2596	143,206	15	166,1094	16,3562
U	6	60,7142	121,7514	16	153,3584	29,1072
	7	156,9575	25,5081	17	-30,9837	213,4493
	8	156,9938	25,4718	18	175,8619	6,6037
	9	138,0113	44,4543	19	169,4774	12,9882
	10	151,1012	31,3644			
	1	149,8625	32,6031	11	166,7521	15,7135
	2	150,592	31,8736	12	151,556	30,9096
	3	-19,379	201,8446	13	145,9582	36,5074
	4	144,068	38,3976	14	138,2027	44,2629
4	5	142,5246	39,941	15	165,1	17,3656
	6	159,1028	23,3628	16	156,0126	26,453
	7	156,7372	25,7284	17	107,4105	75,0551
	8	153,0262	29,4394	18	178,9804	3,4852
	9	134,697	47,7686	19	177,7368	4,7288
	10	152,5284	29,9372			

Tabla A-IV. Valores de las constantes de apantallamiento isotrópico (σ) de RMN ¹³C calculados con BHandHLYP/6-311G(d,p) (cont.):

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	150,9859	31,4797	11	167,1314	15,3342
	2	154,8544	27,6112	12	156,1936	26,272
	3	118,6198	63,8458	13	141,5999	40,8657
	4	148,4824	33,9832	14	137,5016	44,964
5	5	143,7318	38,7338	15	166,1502	16,3154
U	6	159,3839	23,0817	16	153,3745	29,0911
	7	156,9039	25,5617	17	-31,0872	213,5528
	8	153,5535	28,9121	18	175,6801	6,7855
	9	134,0717	48,3939	19	177,0851	5,3805
	10	152,6234	29,8422			
	1	151,6602	30,8054	11	167,154	15,3116
	2	154,5482	27,9174	12	151,7408	30,7248
	3	-7,6926	190,1582	13	146,0745	36,3911
	4	59,436	123,0296	14	138,594	43,8716
6	5	13,1566	169,309	15	165,0937	17,3719
0	6	154,5497	27,9159	16	156,1284	26,3372
	7	156,2893	26,1763	17	107,5376	74,928
	8	152,8504	29,6152	18	178,9765	3,4891
	9	134,4117	48,0539	19	171,4894	10,9762
	10	149,8933	32,5723			

Tabla A-IV. Valores de las constantes de apantallamiento isotrópico (σ) de RMN ¹³C calculados con BHandHLYP/6-311G(d,p) (cont.):

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	149,9237	32,5419	11	167,1993	15,2663
	2	150,5749	31,8907	12	146,4683	35,9973
	3	-19,584	202,0496	13	154,9799	27,4857
	4	144,1465	38,3191	14	138,6122	43,8534
7	5	143,0991	39,3665	15	163,8472	18,6184
	6	158,9609	23,5047	16	160,8874	21,5782
	7	157,3263	25,1393	17	166,4847	15,9809
	8	153,4037	29,0619	18	146,3265	36,1391
	9	134,9535	47,5121	19	172,4186	10,047
	10	152,5695	29,8961	20	177,6118	4,8538
	1	29,7721	152,6935	11	165,6014	16,8642
	2	54,7782	127,6874	12	151,9321	30,5335
	3	4,2175	178,2481	13	145,7802	36,6854
	4	59,2019	123,2637	14	138,8429	43,6227
8	5	16,4644	166,0012	15	164,8937	17,5719
0	6	154,9396	27,526	16	156,188	26,2776
	7	154,8633	27,6023	17	107,6482	74,8174
	8	152,9967	29,4689	18	178,9148	3,5508
	9	136,2863	46,1793	19	169,6274	12,8382
	10	145,7347	36,7309			

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	150,54	31,9256	11	167,1915	15,2741
	2	155,0103	27,4553	12	156,2891	26,1765
	3	118,4173	64,0483	13	141,5664	40,8992
	4	154,6095	27,8561	14	137,3569	45,1087
9	5	134,692	47,7736	15	166,1205	16,3451
Ū	6	120,7756	61,69	16	153,4074	29,0582
	7	145,743	36,7226	17	-30,8088	213,2744
	8	154,4229	28,0427	18	175,671	6,7946
	9	134,2846	48,181	19	176,017	6,4486
	10	151,7937	30,6719			
	1	150,4027	32,0629	11	166,5868	15,8788
	2	154,8987	27,5669	12	149,2812	33,1844
	3	118,2727	64,1929	13	147,1834	35,2822
	4	154,5421	27,9235	14	134,475	47,9906
10	5	134,7529	47,7127	15	162,4712	19,9944
10	6	120,597	61,8686	16	167,7067	14,7589
	7	144,4642	38,0014	17	148,0046	34,461
	8	153,7711	28,6945	18	172,0698	10,3958
	9	134,4485	48,0171	19	175,8798	6,5858
	10	151,7773	30,6883			

Tabla A-IV. Valores de las constantes de apantallamiento isotrópico (σ) de RMN ¹³C calculados con BHandHLYP/6-311G(d,p) (cont.):

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	150,3121	32,1535	11	166,326	16,1396
	2	151,1454	31,3202	12	149,6451	32,8205
	3	-19,8762	202,3418	13	146,9842	35,4814
	4	151,3523	31,1133	14	134,1269	48,3387
11	5	131,9824	50,4832	15	162,6627	19,8029
	6	-21,5246	203,9902	16	167,7881	14,6775
	7	141,6693	40,7963	17	148,285	34,1806
	8	151,1425	31,3231	18	172,1432	10,3224
	9	134,6492	47,8164	19	176,8977	5,5679
	10	148,2115	34,2541			
	1	151,8636	30,602	12	156,2634	26,2022
	2	161,8581	20,6075	13	141,646	40,8196
	3	116,3223	66,1433	14	137,4418	45,0238
	4	154,1218	28,3438	15	166,1961	16,2695
	5	144,1209	38,3447	16	153,4286	29,037
12	6	159,4109	23,0547	17	-30,9935	213,4591
	7	156,8358	25,6298	18	175,7324	6,7332
	8	153,5646	28,901	19	177,0505	5,4151
	9	134,2018	48,2638	20	19,9547	162,5109
	10	152,3271	30,1385	21	148,5411	33,9245
	11	167,2548	15,2108	22	17,7634	164,7022

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	151,1644	31,3012	14	137,0958	45,3698
	2	160,4154	22,0502	15	166,2886	16,177
	3	116,8518	65,6138	16	153,2125	29,2531
	4	154,9503	27,5153	17	-31,0447	213,5103
	5	144,6162	37,8494	18	175,5415	6,9241
	6	159,6627	22,8029	19	176,9878	5,4778
13	7	156,8446	25,621	20	20,2574	162,2082
	8	153,5682	28,8974	21	53,9415	128,5241
	9	134,0741	48,3915	22	53,277	129,1886
	10	152,6148	29,8508	23	51,2576	131,208
	11	167,228	15,2376	24	56,9414	125,5242
	12	156,2898	26,1758	25	56,363	126,1026
	13	141,6028	40,8628	26	50,2745	132,1911

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	151,5726	30,893	12	151,67	30,7956
	2	154,5773	27,8883	13	146,5188	35,9468
	3	-7,6258	190,0914	14	138,5539	43,9117
	4	59,3378	123,1278	15	164,5847	17,8809
	5	13,5277	168,9379	16	160,3516	22,114
14	6	154,7129	27,7527	17	106,9168	75,5488
	7	156,2888	26,1768	18	176,9761	5,4895
	8	153,2444	29,2212	19	171,5799	10,8857
	9	134,5067	47,9589	20	15,3674	167,0982
	10	149,9452	32,5204	21	167,796	14,6696
	11	167,235	15,2306			
	1	152,2994	30,1662	11	167,515	14,9506
	2	154,5778	27,8878	12	156,6805	25,7851
	3	-8,6401	191,1057	13	141,8343	40,6313
	4	55,3071	127,1585	14	137,2054	45,2602
15	5	23,8068	158,6588	15	166,2924	16,1732
10	6	-13,2683	195,7339	16	153,5144	28,9512
	7	142,7211	39,7445	17	-30,0091	212,4747
	8	155,2443	27,2213	18	175,8205	6,6451
	9	137,4573	45,0083	19	171,2044	11,2612
	10	149,7678	32,6978			

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	154,0241	28,4415	12	151,3465	31,1191
	2	154,6988	27,7668	13	144,1085	38,3571
	3	-7,8361	190,3017	14	139,9367	42,5289
	4	59,3176	123,148	15	165,3487	17,1169
	5	20,5171	161,9485	16	160,9605	21,5051
16	6	54,1041	128,3615	17	109,9439	72,5217
	7	43,8142	138,6514	18	177,0592	5,4064
	8	151,0947	31,3709	19	172,5423	9,9233
	9	137,8423	44,6233	20	15,4592	167,0064
	10	152,3537	30,1119	21	167,6563	14,8093
	11	167,5715	14,8941			
	1	152,6967	29,7689	12	155,7953	26,6703
	2	162,5758	19,8898	13	141,2177	41,2479
	3	120,1189	62,3467	14	142,6022	39,8634
	4	146,5965	35,8691	15	153,873	28,5926
	5	85,4481	97,0175	16	133,3545	49,1111
	6	121,3702	61,0954	17	-26,0193	208,4849
	7	152,3533	30,1123	18	174,7886	7,677
	8	159,1733	23,2923	19	167,7012	14,7644
	9	142,2892	40,1764	20	15,8	166,6656
	10	145,4884	36,9772	21	167,4742	14,9914
	11	167,3454	15,1202			

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	153,7454	28,7202	11	167,2917	15,1739
	2	164,3094	18,1562	12	156,1764	26,2892
	3	56,2757	126,1899	13	141,4213	41,0443
	4	50,621	131,8446	14	137,4251	45,0405
l-a	5	143,0872	39,3784	15	166,2063	16,2593
, a	6	160,7392	21,7264	16	153,3805	29,0851
	7	156,8993	25,5663	17	-31,1484	213,614
	8	153,4634	29,0022	18	175,5491	6,9165
	9	135,1924	47,2732	19	177,2912	5,1744
	10	153,4196	29,046			
	1	148,5242	33,9414	11	167,4379	15,0277
	2	55,8358	126,6298	12	156,1897	26,2759
	3	56,4028	126,0628	13	141,6887	40,7769
	4	157,6703	24,7953	14	137,3932	45,0724
l-h	5	147,2895	35,1761	15	166,2119	16,2537
	6	159,7468	22,7188	16	153,365	29,1006
	7	157,1468	25,3188	17	-31,1989	213,6645
	8	153,4786	28,987	18	175,7252	6,7404
	9	134,405	48,0606	19	177,8046	4,661
	10	153,6461	28,8195			

Tabla A-IV. Valores de las constantes de apantallamiento isotrópico (σ) de RMN ¹³C calculados con BHandHLYP/6-311G(d,p) (cont.):

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	143,823	38,6426	12	151,6979	30,7677
	2	116,8235	65,6421	13	145,9371	36,5285
	3	-16,1994	198,665	14	138,0245	44,4411
	4	145,3983	37,0673	15	165,1265	17,3391
	5	141,7139	40,7517	16	155,9789	26,4867
II-a	6	159,6532	22,8124	17	107,5482	74,9174
	7	156,8153	25,6503	18	178,9363	3,5293
	8	153,5767	28,8889	19	176,2384	6,2272
	9	134,8267	47,6389	20	15,7806	166,685
	10	151,3846	31,081	21	167,9691	14,4965
	11	166,7103	15,7553			
	1	144,9462	37,5194	12	151,6463	30,8193
	2	116,9277	65,5379	13	145,6213	36,8443
	3	-19,7707	202,2363	14	138,02	44,4456
	4	146,3473	36,1183	15	165,0626	17,403
	5	148,5797	33,8859	16	156,1331	26,3325
II-b	6	159,776	22,6896	17	107,5893	74,8763
	7	157,0937	25,3719	18	178,8497	3,6159
	8	152,9485	29,5171	19	174,7854	7,6802
	9	133,4905	48,9751	20	15,6467	166,8189
	10	152,4553	30,0103	21	167,9958	14,4698
	11	166,6175	15,8481			

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	149,3879	33,0777	11	166,1958	16,2698
	2	150,5938	31,8718	12	148,7667	33,6989
	3	-24,3792	206,8448	13	147,0536	35,412
	4	143,4307	39,0349	14	133,8364	48,6292
1	5	141,6183	40,8473	15	162,2738	20,1918
	6	158,3428	24,1228	16	166,5031	15,9625
	7	155,1961	27,2695	17	147,7224	34,7432
	8	152,0126	30,453	18	172,0438	10,4218
	9	134,3869	48,0787	19	177,1552	5,3104
	10	151,7306	30,735			
	1	150,7506	31,715	11	166,5938	15,8718
	2	154,7671	27,6985	12	155,6213	26,8443
	3	118,1196	64,346	13	140,0083	42,4573
	4	148,4051	34,0605	14	136,8592	45,6064
2	5	145,4725	36,9931	15	162,5521	19,9135
2	6	148,2115	34,2541	16	151,4323	31,0333
	7	114,619	67,8466	17	-35,5971	218,0627
	8	143,6062	38,8594	18	175,6726	6,793
	9	135,2606	47,205	19	176,4669	5,9987
	10	152,6263	29,8393			

Tabla A-V. Valores de las constantes de apantallamiento isotrópico (σ) de RMN ¹³C calculados con BHandHLYP/6-311++G(d,p):

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	150,062	32,4036	11	166,9139	15,5517
	2	154,5527	27,9129	12	155,8682	26,5974
	3	117,1849	65,2807	13	140,8029	41,6627
	4	143,4793	38,9863	14	136,3587	46,1069
.3	5	38,168	144,2976	15	165,8777	16,5879
Ū	6	59,8999	122,5657	16	152,2073	30,2583
	7	156,7559	25,7097	17	-35,16	217,6256
	8	156,0483	26,4173	18	175,7249	6,7407
	9	137,6284	44,8372	19	169,1991	13,2665
	10	150,9134	31,5522			
	1	149,4594	33,0062	11	166,5043	15,9613
	2	150,754	31,7116	12	150,9672	31,4984
	3	-24,0816	206,5472	13	145,5333	36,9323
	4	143,4925	38,9731	14	137,4648	45,0008
Δ	5	141,3358	41,1298	15	164,9953	17,4703
7	6	158,3866	24,079	16	154,5699	27,8957
	7	156,0454	26,4202	17	107,114	75,3516
	8	152,4996	29,966	18	179,3071	3,1585
	9	134,4901	47,9755	19	177,3006	5,165
	10	151,7878	30,6778			

Tabla A-V. Valores de las constantes de apantallamiento isotrópico (σ) de RMN ¹³C calculados con BHandHLYP/6-311++G(d,p) (cont.):

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	150,738	31,7276	11	166,756	15,7096
	2	154,8417	27,6239	12	155,6868	26,7788
	3	118,0819	64,3837	13	140,4188	42,0468
	4	148,0525	34,4131	14	136,5223	45,9433
5	5	142,8592	39,6064	15	165,7963	16,6693
U	6	158,9903	23,4753	16	152,1711	30,2945
	7	156,3049	26,1607	17	-35,0269	217,4925
	8	152,9156	29,55	18	175,6065	6,8591
	9	134,0262	48,4394	19	176,6846	5,781
	10	151,8756	30,59			
	1	151,1469	31,3187	11	166,9553	15,5103
	2	154,1695	28,2961	12	151,2618	31,2038
	3	-11,9999	194,4655	13	145,7139	36,7517
	4	59,0502	123,4154	14	137,6215	44,8441
6	5	10,624	171,8416	15	164,8885	17,5771
U	6	154,1265	28,3391	16	155,0929	27,3727
	7	155,6735	26,7921	17	107,26	75,2056
	8	152,4536	30,012	18	178,8776	3,588
	9	133,9786	48,487	19	170,9792	11,4864
	10	149,1285	33,3371			

Tabla A-V. Valores de las constantes de apantallamiento isotrópico (σ) de RMN ¹³C calculados con BHandHLYP/6-311++G(d,p) (cont.):

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	149,6278	32,8378	11	166,7382	15,7274
	2	150,4254	32,0402	12	145,7618	36,7038
	3	-24,4594	206,925	13	154,4726	27,993
	4	143,516	38,9496	14	138,0082	44,4574
7	5	142,6105	39,8551	15	163,3572	19,1084
	6	158,5669	23,8987	16	160,4777	21,9879
	7	156,7389	25,7267	17	165,7259	16,7397
	8	152,6188	29,8468	18	145,8792	36,5864
	9	134,7623	47,7033	19	172,3503	10,1153
	10	151,9397	30,5259	20	177,0259	5,4397
	1	28,109	154,3566	11	165,3025	17,1631
	2	53,6935	128,7721	12	151,3931	31,0725
	3	0,143	182,3226	13	145,624	36,8416
	4	58,59	123,8756	14	137,8099	44,6557
8	5	14,2425	168,2231	15	164,6355	17,8301
0	6	154,5095	27,9561	16	155,5036	26,962
	7	154,3505	28,1151	17	107,1964	75,2692
	8	152,7432	29,7224	18	178,5812	3,8844
	9	136,1403	46,3253	19	169,3415	13,1241
	10	145,0064	37,4592			

Tabla A-V. Valores de las constantes de apantallamiento isotrópico (σ) de RMN ¹³C calculados con BHandHLYP/6-311++G(d,p) (cont.):

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	150,2837	32,1819	11	166,868	15,5976
	2	155,0864	27,3792	12	155,7467	26,7189
	3	117,8824	64,5832	13	140,3904	42,0752
	4	154,2731	28,1925	14	136,3981	46,0675
9	5	133,6669	48,7987	15	165,7114	16,7542
Ū	6	120,3162	62,1494	16	152,2216	30,244
	7	145,3117	37,1539	17	-34,8247	217,2903
	8	153,8992	28,5664	18	175,4306	7,035
	9	134,295	48,1706	19	175,7591	6,7065
	10	151,1055	31,3601			
	1	150,0888	32,3768	11	166,3138	16,1518
	2	155,002	27,4636	12	148,7589	33,7067
	3	117,7109	64,7547	13	147,049	35,4166
	4	154,2805	28,1851	14	133,5909	48,8747
10	5	133,5242	48,9414	15	162,1968	20,2688
10	6	120,1602	62,3054	16	166,3683	16,0973
	7	143,922	38,5436	17	147,5482	34,9174
	8	153,0263	29,4393	18	171,9625	10,5031
	9	134,3626	48,103	19	175,6173	6,8483
	10	151,2155	31,2501			

Tabla A-V. Valores de las constantes de apantallamiento isotrópico (σ) de RMN ¹³C calculados con BHandHLYP/6-311++G(d,p) (cont.):

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	149,7385	32,7271	11	166,0097	16,4559
	2	151,1833	31,2823	12	149,1742	33,2914
	3	-24,8771	207,3427	13	146,6735	35,7921
	4	150,7802	31,6854	14	133,5795	48,8861
11	5	130,9493	51,5163	15	162,6609	19,8047
, ,	6	-25,08	207,5456	16	166,5593	15,9063
	7	141,1576	41,308	17	148,0348	34,4308
	8	150,4188	32,0468	18	172,4553	10,0103
	9	134,1671	48,2985	19	176,3623	6,1033
	10	147,2794	35,1862			
	1	151,5752	30,8904	12	155,7729	26,6927
	2	161,1102	21,3554	13	140,498	41,9676
	3	115,0841	67,3815	14	136,534	45,9316
	4	153,5594	28,9062	15	165,7417	16,7239
	5	143,6849	38,7807	16	152,528	29,9376
12	6	158,9404	23,5252	17	-34,7113	217,1769
	7	156,1697	26,2959	18	175,8202	6,6454
	8	152,8839	29,5817	19	176,8138	5,6518
	9	133,7627	48,7029	20	18,2357	164,2299
	10	151,7268	30,7388	21	147,736	34,7296
	11	166,5862	15,8794	22	15,5684	166,8972

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	150,4542	32,0114	14	136,5965	45,8691
	2	159,9604	22,5052	15	165,8675	16,5981
	3	116,105	66,3606	16	151,1171	31,3485
	4	154,0259	28,4397	17	-35,2354	217,701
	5	144,1443	38,3213	18	175,4153	7,0503
	6	159,2884	23,1772	19	176,7059	5,7597
13	7	155,8903	26,5753	20	17,9986	164,467
	8	153,4188	29,0468	21	51,6999	130,7657
	9	133,5235	48,9421	22	52,0984	130,3672
	10	152,2328	30,2328	23	50,364	132,1016
	11	166,8865	15,5791	24	55,8293	126,6363
	12	155,7256	26,74	25	55,1731	127,2925
	13	140,5483	41,9173	26	49,6617	132,8039

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	150,8729	31,5927	12	151,0238	31,4418
	2	153,9994	28,4662	13	145,908	36,5576
	3	-11,9325	194,3981	14	138,2473	44,2183
	4	58,8961	123,5695	15	164,2124	18,2532
	5	11,0143	171,4513	16	159,5925	22,8731
14	6	154,5753	27,8903	17	106,4209	76,0447
	7	155,5943	26,8713	18	177,0133	5,4523
	8	152,6958	29,7698	19	171,2121	11,2535
	9	134,2042	48,2614	20	13,2453	169,2203
	10	149,212	33,2536	21	167,5253	14,9403
	11	166,6943	15,7713			
	1	151,6372	30,8284	11	167,2176	15,248
	2	154,2712	28,1944	12	156,219	26,2466
	3	-12,6324	195,098	13	140,7244	41,7412
	4	54,5742	127,8914	14	136,2193	46,2463
15	5	21,4418	161,0238	15	166,0189	16,4467
15	6	-16,9285	199,3941	16	152,3824	30,0832
	7	142,0104	40,4552	17	-33,9682	216,4338
	8	154,3697	28,0959	18	175,7917	6,6739
	9	136,6942	45,7714	19	170,9676	11,498
	10	148,6739	33,7917			

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	153,4965	28,9691	12	151,0789	31,3867
	2	153,8719	28,5937	13	143,5795	38,8861
	3	-12,2331	194,6987	14	139,5676	42,898
	4	58,6561	123,8095	15	164,9669	17,4987
	5	18,1108	164,3548	16	160,0977	22,3679
16	6	53,2406	129,225	17	109,7284	72,7372
	7	41,7508	140,7148	18	176,9135	5,5521
	8	150,3345	32,1311	19	172,0274	10,4382
	9	137,4883	44,9773	20	13,3843	169,0813
	10	151,8072	30,6584	21	167,404	15,0616
	11	167,0428	15,4228			
	1	151,7895	30,6761	12	155,1171	27,3485
	2	162,366	20,0996	13	140,1193	42,3463
	3	119,6378	62,8278	14	142,0109	40,4547
	4	146,1294	36,3362	15	153,387	29,0786
	5	84,2446	98,221	16	132,2009	50,2647
	6	120,9607	61,5049	17	-29,4078	211,8734
	7	151,6828	30,7828	18	174,5192	7,9464
	8	158,3487	24,1169	19	167,2474	15,2182
	9	141,6437	40,8219	20	13,5578	168,9078
	10	144,7826	37,683	21	167,1161	15,3495
	11	166,8245	15,6411			
Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
-------	---------	----------	----------	---------	----------	----------
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	153,5961	28,8695	11	166,8768	15,5888
	2	163,9513	18,5143	12	155,6987	26,7669
	3	55,0971	127,3685	13	140,4242	42,0414
	4	49,2934	133,1722	14	136,594	45,8716
l-a	5	142,822	39,6436	15	165,9144	16,5512
, a	6	160,5107	21,9549	16	152,2107	30,2549
	7	156,3188	26,1468	17	-35,3933	217,8589
	8	152,5234	29,9422	18	175,6181	6,8475
	9	134,8518	47,6138	19	177,0593	5,4063
	10	152,8814	29,5842			
	1	148,4599	34,0057	11	167,0718	15,3938
	2	54,5552	127,9104	12	155,7231	26,7425
	3	55,2933	127,1723	13	140,5454	41,9202
	4	157,0269	25,4387	14	136,5353	45,9303
l-h	5	146,4917	35,9739	15	165,8464	16,6192
1.5	6	159,0907	23,3749	16	152,1677	30,2979
	7	156,564	25,9016	17	-35,2337	217,6993
	8	152,9292	29,5364	18	175,7334	6,7322
	9	134,1274	48,3382	19	177,4166	5,049
	10	152,9828	29,4828			

Tabla A-V. Valores de las constantes de apantallamiento isotrópico (σ) de RMN ¹³C calculados con BHandHLYP/6-311++G(d,p) (cont.):

Comp.	Carbono	Señal σ	Señal δ	Carbono	Señal σ	Señal δ
N°	N°	(ppm)	(ppm)	N°	(ppm)	(ppm)
	1	143,4692	38,9964	12	151,2962	31,1694
	2	115,7875	66,6781	13	145,5891	36,8765
	3	-19,8878	202,3534	14	137,6833	44,7823
	4	144,5647	37,9009	15	164,9446	17,521
	5	141,3199	41,1457	16	154,1648	28,3008
II-a	6	159,4557	23,0099	17	107,5779	74,8877
	7	156,1731	26,2925	18	179,0975	3,3681
	8	153,3125	29,1531	19	175,844	6,6216
	9	134,3518	48,1138	20	13,4852	168,9804
	10	150,7031	31,7625	21	167,6985	14,7671
	11	166,6344	15,8312			
	1	144,7901	37,6755	12	150,5919	31,8737
	2	116,0513	66,4143	13	145,3994	37,0662
	3	-22,8793	205,3449	14	137,3103	45,1553
	4	145,632	36,8336	15	164,7929	17,6727
	5	148,233	34,2326	16	155,2851	27,1805
II-b	6	159,6842	22,7814	17	107,2482	75,2174
	7	156,4643	26,0013	18	178,4372	4,0284
	8	152,735	29,7306	19	174,4236	8,042
	9	132,9498	49,5158	20	13,367	169,0986
	10	151,9505	30,5151	21	167,7564	14,7092
	11	166,2169	16,2487			

Tabla A-V. Valores de las constantes de apantallamiento isotrópico (σ) de RMN ¹³C calculados con BHandHLYP/6-311++G(d,p) (cont.):

Desplazamientos	Desp	lazamientos teóri	cos ajustados (δ,	ppm)
experimentales	B3LYP/	MPW1PW91 /	BHandHLYP /	BHandHLYP /
(δ,ppm)	6-311++G(d,p)	6-311++G(d,p)	6-311G(d,p)	6-311++G(d,p)
221,23	219,8857985	220,0084092	219,0370481	219,6209369
141,17	145,4143489	145,8274634	148,8919513	147,6107238
120,72	123,3585258	125,5203799	127,4673457	126,2693705
71,36	72,8597543	71,55302731	70,24525664	70,01384661
51,75	52,14437346	51,48347843	51,12172958	51,18462143
50,23	51,56265356	50,34586466	50,27831037	49,93773937
47,52	48,50850123	47,59685398	46,37367685	46,82028872
42,14	44,10918919	44,39988128	44,57189934	44,19198664
37,21	38,57552826	37,85526316	37,81066507	37,72758519
36,63	37,83331695	37,02463395	37,20671061	36,89148581
35,82	35,2192629	35,92510882	34,95266627	35,62083865
31,48	33,18840295	33,03264741	33,50669063	33,31758814
31,01	32,58132678	32,202315	32,01767525	32,02572916
30,77	31,64009828	32,08072814	31,35859796	31,84886576
30,29	30,85002457	31,49683419	31,32234871	31,15398213
27,85	21,12697789	21,74258013	22,21949271	22,19611117
20,35	20,73385749	20,8494262	21,03485121	21,17853285
19,41	16,45936118	18,08755441	18,85620132	18,93440047
13,52	10,26103194	11,37316977	12,48062712	12,52587646

Tabla B-I. Desplazamientos químicos teóricos obtenidos mediante ajuste del Compuesto3 para todos los niveles de teoría y funciones base, ordenados de forma decreciente.

Desplazamientos	Desp	Desplazamientos teóricos ajustados (δ,ppm)					
experimentales	B3LYP/	MPW1PW91 /	BHandHLYP /	BHandHLYP /			
(δ,ppm)	6-311++G(d,p)	6-311++G(d,p)	6-311G(d,p)	6-311++G(d,p)			
211,72	207,4150369	208,2438662	207,448572	208,7416282			
81,84	83,3441769	81,88464583	80,83632914	79,90376117			
54,05	54,80628993	53,79214484	53,58797683	53,01964058			
50,92	51,26820639	50,66739216	50,08717795	50,09839929			
46,81	48,94004914	47,78888009	45,77132015	46,29696553			
44,7	43,90850123	44,38365651	44,23007789	44,17902386			
43,04	43,79941032	42,27235853	42,34252047	42,17489934			
38,63	38,88756757	38,96923229	38,44367885	38,31935579			
38,13	38,18211302	37,0367036	37,71519872	37,04802121			
36,73	36,63449631	36,94469727	36,75254643	36,83865266			
35,8	36,5782801	36,3748516	35,78150589	36,03279976			
35,54	36,037543	35,6195093	35,28440184	35,33379161			
31,3	33,49199017	33,64691334	32,30217695	33,30069724			
30,57	31,60727273	31,76197072	31,57858997	31,85171364			
28,85	29,2202457	29,47111199	29,21629718	29,55258765			
23,42	22,08206388	22,46507717	23,22748153	23,06265344			
21,08	21,04648649	21,23387416	21,57769123	21,58077187			
11,5	8,140540541	9,833399288	10,60834831	10,97849357			
11,15	5,705356265	7,000098932	9,366486918	9,008052637			

Tabla B-II. Desplazamientos químicos teóricos obtenidos mediante ajuste del Compuesto4 para todos los niveles de teoría y funciones base, ordenados de forma decreciente.

Tabla B-III. Desplazamientos químicos teóricos obtenidos mediante ajuste del Compuesto 5 para todos los niveles de teoría y funciones base, ordenados de forma decreciente.

Desplazamientos	Desp	lazamientos teóri	icos ajustados (δ,	ppm)
experimentales	B3LYP/	MPW1PW91/	BHandHLYP /	BHandHLYP /
(δ,ppm)	6-311++G(d,p)	6-311++G(d,p)	6-311G(d,p)	6-311++G(d,p)
221,34	220,0303686	219,7236842	219,1404034	219,4902288
70,91	71,50083538	70,39533043	69,64270022	69,13296671
54,43	55,31223587	54,24050257	54,21240264	53,47520377
51,41	51,99390663	51,44232291	50,78729778	51,0239615
47,76	48,65886978	48,06509695	46,69472738	47,19748601
44,84	46,67203931	45,66195093	44,56580787	44,80094275
38,01	39,18299754	39,37613771	39,82184941	39,70097221
36,96	38,11174447	37,17748318	37,32184941	37,06373367
35,81	36,86565111	36,27206173	35,68663871	35,94657763
35,62	36,75223587	35,98516027	34,93658878	35,6563881
35,03	35,38103194	35,27146814	34,75783903	34,9252676
34,35	32,2004914	32,58705975	33,45875774	33,03378179
31,54	31,82889435	32,37148793	32,12143	32,20386919
30,88	31,28825553	31,46458251	31,41212303	31,59687715
28,38	28,41454545	28,59457855	28,93559017	28,95973682
21,75	20,97936118	21,79333201	22,17874975	22,27604832
20,47	20,82378378	21,03521963	21,19892151	21,33359521
13,78	10,18181818	11,51899486	12,66217296	12,64214868
12,29	8,793218673	10,54471706	11,25913721	11,58342335

Tabla B-IV. Desplazamientos químicos teóricos obtenidos mediante ajuste del Compuesto 6 para todos los niveles de teoría y funciones base, ordenados de forma decreciente.

Desplazamientos	Desp	olazamientos teóri	icos ajustados (δ,	ppm)
experimentales	B3LYP/	MPW1PW91/	BHandHLYP /	BHandHLYP /
(δ,ppm)	6-311++G(d,p)	6-311++G(d,p)	6-311G(d,p)	6-311++G(d,p)
199,6	194,315774	195,2983775	195,7785101	196,87705
171,35	172,8662408	173,1498813	174,9584582	174,659727
123,85	125,1473219	127,0730115	128,7437587	127,1038005
81,56	83,37228501	81,80005936	80,70940683	79,76038496
53,93	55,70614251	54,43549664	53,87287797	53,52194835
50,49	51,22545455	50,60575782	49,696425	49,94451537
42,82	43,21749386	41,72764147	42,22638306	41,99754493
38,67	40,81955774	39,2722596	38,41292191	38,64430914
36,44	36,49621622	36,62425801	36,64849211	36,66218207
35,73	36,47646192	36,62307083	36,56800479	36,54934695
35,67	36,31744472	35,39018599	35,45995606	35,37896494
33,94	33,53238329	34,13969133	33,76452966	33,73612884
32,8	32,73592138	33,32014246	33,76303176	33,6939016
31,55	32,58515971	32,95993273	32,18653885	32,78709614
30,41	32,17189189	32,33488326	32,02586379	32,21693018
23,34	22,21906634	22,59586466	23,23377272	23,16753413
20,65	20,51027027	20,67431737	21,17635311	21,13787685
17,42	14,91469287	16,38326078	16,84701418	17,18629088
11,06	6,304570025	7,549762564	9,370381466	9,429834037

Tabla B-V. Desplazamientos químicos teóricos obtenidos mediante ajuste delCompuesto 3 para todos los niveles de teoría y funciones base, ordenados por carbono.

Carbono	Desplazamientos	Desplazamientos teóricos ajustados (δ,ppm)				
#	experimentales	B3LYP/	MPW1PW91/	BHandHLYP /	BHandHLYP /	
	(δ,ppm)	6-311++G(d,p)	6-311++G(d,p)	6-311G(d,p)	6-311++G(d,p)	
1	37,21	37,82481321	37,84670955	37,80823012	37,72517434	
2	31,48	32,57127409	33,02266205	33,50339592	33,31431097	
3	71,36	72,86158081	71,55447798	70,24930084	70,01777821	
4	42,14	44,10253637	44,39327066	44,57081502	44,19084569	
5	141,17	145,4375737	145,8509649	148,911706	147,6298988	
6	120,72	123,3752458	125,5378525	127,4828206	126,2843532	
7	30,29	30,83946127	31,48639287	31,35487415	31,15027993	
8	31,01	33,1785293	32,19208313	31,31861766	31,84530007	
9	50,23	51,55819898	50,3410193	50,27836596	49,93772714	
10	36,63	38,56724341	37,01583375	37,20415501	36,88891072	
11	20,35	20,72031066	20,83582385	21,02906512	21,17287103	
12	30,77	31,62976799	32,07046017	32,0140831	32,02219821	
13	47,52	48,50314589	47,59119248	46,37295246	46,81966408	
14	51,75	52,14009044	51,47897081	51,12195366	51,18485414	
15	27,85	21,11354699	21,72924295	22,21394327	22,19064925	
16	35,82	35,2099882	35,91598219	34,94966041	35,61801395	
17	221,23	219,930987	220,0539337	219,070815	219,6542579	
18	13,52	10,24439638	11,35675408	12,47313224	12,51851488	
19	19,41	16,44455368	18,07313211	18,84998002	18,92829781	

 Tabla
 B-VI.
 Desplazamientos
 químicos
 teóricos
 obtenidos
 mediante
 ajuste
 del

 Compuesto 4 para todos los niveles de teoría y funciones base, ordenados por carbono.
 Instanto de teoría y funciones base, ordenados por carbono.
 Instanto de teoría y funciones base, ordenados por carbono.
 Instanto de teoría y funciones base, ordenados por carbono.
 Instanto de teoría y funciones base, ordenados por carbono.

Carbono	Desplazamientos	Desplazamientos teóricos ajustados (δ,ppm)			
#	experimentales	B3LYP/	MPW1PW91 /	BHandHLYP /	BHandHLYP /
	(δ,ppm)	6-311++G(d,p)	6-311++G(d,p)	6-311G(d,p)	6-311++G(d,p)
1	38,63	38,87937475	38,9610094	38,44137036	38,31706119
2	38,13	36,02850963	36,93587333	37,71274471	37,04547687
3	211,72	207,4565474	208,2858981	207,480024	208,7728121
4	44,7	43,90178923	44,37704107	44,22892529	44,17788037
5	46,81	48,93482108	47,78327561	45,77047543	46,29623809
6	28,85	29,20920173	29,46006927	29,21214543	29,54857087
7	31,3	31,59693276	31,75160811	31,57491011	31,84814851
8	35,54	36,56940621	35,61029193	35,28146225	35,33091052
9	54,05	54,80279198	53,78832261	53,58869357	53,02023377
10	35,8	38,17371215	36,36585849	35,7786656	36,03005599
11	21,08	21,03303185	21,22038595	21,57201358	21,57518908
12	36,73	36,62563901	37,02790698	36,74990012	36,83606718
13	43,04	43,79266614	42,26511628	42,34099081	42,17336215
14	50,92	51,26366496	50,66264226	50,08719537	50,09841862
15	23,42	22,06891467	22,45195448	23,22213344	23,05736175
16	30,57	33,48220606	33,63711034	32,29864163	33,29741676
17	81,84	83,34909556	81,88916378	80,84248901	79,9096356
18	11,15	5,687377114	6,982384958	9,358369956	9
19	11,5	8,123279591	9,816526472	10,60047942	10,97082801

Tabla B-VII. Desplazamientos químicos teóricos obtenidos mediante ajuste delCompuesto 5 para todos los niveles de teoría y funciones base, ordenados por carbono.

Carbono	Desplazamientos	Desplazamientos teóricos ajustados (δ,ppm)				
#	experimentales	B3LYP/	MPW1PW91/	BHandHLYP /	BHandHLYP /	
	(δ,ppm)	6-311++G(d,p)	6-311++G(d,p)	6-311G(d,p)	6-311++G(d,p)	
1	36,96	36,85686197	37,16872835	37,31931682	37,06119242	
2	34,35	32,19032639	32,57694211	33,45545346	33,03044888	
3	70,91	71,50226111	70,39643741	69,64662405	69,13672527	
4	38,01	39,17489186	39,36803563	39,81981622	39,69894902	
5	44,84	46,66614235	45,65571499	44,56472233	44,79992142	
6	28,38	28,40326386	28,58327561	28,93138234	28,95560358	
7	30,88	31,27782147	31,45413162	31,40840991	31,59326196	
8	35,03	36,74341329	35,26214745	34,75479425	34,92230626	
9	54,43	55,30888714	54,23681346	54,21324411	53,47588646	
10	35,62	38,10332285	36,2630381	35,68377946	35,94381691	
11	20,47	20,81026347	21,02167244	21,1931682	21,32796385	
12	31,54	31,81861974	32,36130628	32,11785857	32,20037324	
13	47,76	48,65355879	48,05957447	46,69406712	47,19693547	
14	51,41	51,98957924	51,43780307	50,78745505	51,02416266	
15	21,75	20,96588675	21,7800099	22,17319217	22,2706021	
16	35,81	35,37180495	35,97605146	34,9335797	35,65357038	
17	221,34	220,0755997	219,7691242	219,174191	219,5235242	
18	13,78	10,16515926	11,50262246	12,65471434	12,63480994	
19	12,29	8,776150216	10,52805542	11,25139832	11,57587663	

Tabla B-VIII. Desplazamientos químicos teóricos obtenidos mediante ajuste delCompuesto 6 para todos los niveles de teoría y funciones base, ordenados por carbono.

Carbono	Desplazamientos	Desplazamientos teóricos ajustados (δ,ppm)				
#	experimentales	B3LYP/	MPW1PW91/	BHandHLYP /	BHandHLYP /	
	(δ,ppm)	6-311++G(d,p)	6-311++G(d,p)	6-311G(d,p)	6-311++G(d,p)	
1	35,67	36,48731813	36,61533894	36,64582501	36,65956193	
2	33,94	32,57510814	33,31024245	33,76128646	33,69069836	
3	199,6	194,3534212	195,3365661	195,8076308	196,9059032	
4	123,85	125,1645694	127,0909451	128,7594886	127,1189471	
5	171,35	172,8975619	173,1814943	174,9834199	174,6842157	
6	32,8	33,52261109	34,13003464	33,75978825	33,7329339	
7	31,55	32,16171844	32,32469075	32,02227327	32,21343679	
8	35,73	36,467558	35,38090054	35,45705154	35,37609272	
9	53,93	55,70290995	54,43186541	53,87365162	53,52264021	
10	38,67	40,81193472	39,26412667	38,41060727	38,64207838	
11	20,65	20,49665749	20,66066304	21,17059529	21,13220705	
12	36,44	36,3084939	36,61415141	36,56532161	36,54670465	
13	42,82	43,21057806	41,72023751	42,2248302	41,99597289	
14	50,49	51,22090051	50,60098961	49,69636436	49,94450447	
15	23,34	22,20595753	22,5827808	23,22842589	23,16226304	
16	30,41	32,72591427	32,94992578	32,18298042	32,78371476	
17	81,56	83,37721195	81,8045522	80,71554135	79,76623122	
18	11,06	6,286767597	7,532211776	9,362265282	9,421864257	
19	17,42	14,89942981	16,36833251	16,84039153	17,17984481	

Tabla B-IX. Valores de los desplazamientos químicos teóricos obtenidos mediante ajuste del Compuesto I-a para todos los niveles de teoría y funciones base, ordenados de forma decreciente.

Desplazamientos	Desp	lazamientos teóri	icos ajustados (δ,	ppm)
experimentales	B3LYP/	MPW1PW91/	BHandHLYP /	BHandHLYP /
(δ,ppm)	6-311++G(d,p)	6-311++G(d,p)	6-311G(d,p)	6-311++G(d,p)
221,2	220,604814	220,2307311	218,5815066	219,3384646
130,5	133,9218704	135,5838122	137,1054205	136,3041475
129,8	127,9578771	129,7278581	131,4710044	130,6136876
54,2	54,25106047	53,16792154	52,83738541	52,41513874
51,4	51,76452599	51,09253022	50,6126943	50,70693205
47,8	48,69162474	47,73697246	46,63082902	46,95146583
44,6	46,11916741	45,56597979	44,97090474	44,60045102
35,8	36,92305416	35,711809	34,7145277	35,39494068
35,6	36,81710565	35,66920943	34,67556796	35,08834199
35	35,03748644	34,92322172	34,63192507	34,73732719
33,8	33,63539509	33,80196156	34,35093663	34,03657221
31,5	31,63391536	32,10610264	31,92865684	31,97499755
31,4	31,00503107	31,21131365	31,20834994	31,36699676
28,2	26,29111177	26,59857341	27,38222399	27,25688793
24,8	23,20420243	24,10075292	23,82483061	23,88341994
21,8	20,75209628	21,39518526	21,93473495	21,95862339
20,4	20,44362237	20,68941946	20,85322838	21,01500147
13,8	9,927394693	11,22439073	12,62544839	12,44425924
12,2	8,123014699	9,876956608	10,88959745	11,03117953

Tabla B-X. Valores de los desplazamientos químicos teóricos obtenidos mediante ajuste del Compuesto I-b para todos los niveles de teoría y funciones base, ordenados de forma decreciente.

Desplazamientos	Desp	lazamientos teóri	icos ajustados (δ,	ppm)
experimentales	B3LYP/	MPW1PW91/	BHandHLYP /	BHandHLYP /
(δ,ppm)	6-311++G(d,p)	6-311++G(d,p)	6-311G(d,p)	6-311++G(d,p)
221,2	220,7043504	219,9890034	218,6318254	219,1819786
130,5	128,4756831	130,2883891	131,9093264	131,1450142
129,8	127,7069153	129,5426986	131,3443603	130,4213158
54,2	54,90559337	53,94125223	53,62196094	53,12540445
51,4	51,94110684	51,2546067	50,64447987	50,76448671
47,8	48,46384532	47,70824252	46,3643882	46,83263065
44,6	42,35789681	41,2659996	40,78367876	41,00235317
35,8	38,9068758	39,42698633	39,55340773	39,07255613
35,6	36,8070435	35,76302754	34,7299721	35,43710168
35	36,48909934	34,98751734	34,61677959	34,69045985
33,8	35,15477952	34,84792946	34,44988043	34,63790568
31,5	31,6179343	32,10996632	31,91540454	31,95107363
31,4	30,69557068	30,965425	30,96173774	31,12658104
28,2	30,44421426	30,88894393	30,44011558	30,67271301
24,8	28,05208642	28,17624331	28,37106417	28,64918129
21,8	20,7244747	21,48028532	21,92915504	22,0252966
20,4	20,17174707	20,40925302	20,70755281	20,82380626
13,8	9,762848969	11,1487022	12,44998007	12,33120894
12,2	7,810397554	9,271250248	10,37803906	10,68085106

Tabla B-XI. Valores de los desplazamientos químicos teóricos obtenidos mediante ajuste del Compuesto II-a para todos los niveles de teoría y funciones base, ordenados por carbono.

Carbono	Desplazamientos	Desplazamientos teóricos ajustados (δ,ppm)			
#	experimentales	B3LYP/	MPW1PW91 /	BHandHLYP /	BHandHLYP /
	(δ,ppm)	6-311++G(d,p)	6-311++G(d,p)	6-311G(d,p)	6-311++G(d,p)
1	42,4	44,27069153	44,30242694	44,23333665	43,97137255
2	74,1	73,52263983	73,0243685	71,13330676	71,11029412
3	204	204,2430699	205,0129767	203,6658364	204,1252941
4	43,2	42,96024465	43,36136701	42,66384378	42,89735294
5	47,5	48,42793726	47,19336305	46,33466175	46,07852941
6	27,9	27,81789484	28,07726597	28,46149248	28,29833333
7	27,2	31,1927592	31,35403665	31,28893096	31,51656863
8	34,2	35,45881424	34,41614661	34,51559231	34,32107843
9	53,4	55,09164447	53,90896483	53,19647305	52,91
10	37	39,25816316	37,37840515	36,69961144	36,87931373
11	20,9	20,59928973	20,68687469	21,43040749	21,26039216
12	36,4	35,96655815	36,34036652	36,38746637	36,29784314
13	44,5	43,68570583	42,06290243	42,12702999	41,89303922
14	50,1	50,81483674	50,23912828	50,01046129	49,64382353
15	23,2	22,0065108	22,39237246	23,00836903	22,91705882
16	30,8	33,93360955	33,85507677	32,12224768	33,4854902
17	82,5	82,61803295	80,87241209	80,37441467	79,15892157
18	11,2	5,324159021	6,928479445	9,249476935	9,041666667
19	12,4	9,477656111	11,08657751	11,9374315	12,23137255
20	171,1	169,6788004	170,0244676	171,8037262	171,4066667
21	20,5	17,01578376	18,8166419	20,17624788	20,21715686

Tabla B-XII. Valores de los desplazamientos químicos teóricos obtenidos mediante ajuste del Compuesto II-b para todos los niveles de teoría y funciones base, ordenados por carbono.

Carbono	Desplazamientos	Desplazamientos teóricos ajustados (δ,ppm)			
#	experimentales	B3LYP/	MPW1PW91 /	BHandHLYP /	BHandHLYP /
	(δ,ppm)	6-311++G(d,p)	6-311++G(d,p)	6-311G(d,p)	6-311++G(d,p)
1	42,4	43,08000395	42,98424963	43,11427717	42,67637255
2	74,1	73,40258459	72,85408618	71,02949088	70,85166667
3	204	207,4815034	208,4241704	207,2239713	207,0581373
4	43,2	41,65995857	42,25368995	41,71834213	41,85098039
5	47,5	41,16740653	39,76334819	39,49417157	39,30098039
6	27,9	27,24504291	27,55829619	28,33914516	28,07431373
7	27,2	30,93084739	31,06032689	31,01155724	31,23107843
8	34,2	35,84472724	35,00544824	35,14147654	34,8872549
9	53,4	56,13574036	55,13214463	54,52774733	54,2845098
10	37	37,97671895	36,14036652	35,63285842	35,65637255
11	20,9	21,20292	21,35136206	21,5228654	21,66970588
12	36,4	37,11028904	37,45894007	36,43887616	36,98833333
13	44,5	43,79609352	42,30787519	42,44166584	42,07901961
14	50,1	51,46611423	50,85349183	50,0149447	50,0095098
15	23,2	22,18881326	22,55086677	23,07203348	23,06578431
16	30,8	32,12962415	32,32392273	31,96861612	32,38715686
17	82,5	83,16543356	81,52253591	80,33346618	79,48215686
18	11,2	6,546216829	8,155324418	9,335757697	9,689019608
19	12,4	10,67870179	12,28479445	13,38507522	13,62392157
20	171,1	169,7557463	170,1558197	171,9371326	171,522549
21	20,5	17,13465522	18,91589896	20,14964631	20,16039216

Tabla B-XIII. Valores de los desplazamientos químicos teóricos obtenidos mediante ajuste del Compuesto II-a para todos los niveles de teoría y funciones base, ordenados de forma decreciente.

Desplazamientos	Desplazamientos teóricos ajustados (δ,ppm)				
experimentales	B3LYP/	MPW1PW91 /	BHandHLYP /	BHandHLYP /	
<i>(δ,ppm)</i>	6-311++G(d,p)	6-311++G(d,p)	6-311G(d,p)	6-311++G(d,p)	
204	204,2332051	205,0233802	203,6861299	204,1355035	
171,1	169,6689356	170,0314048	171,820845	171,413668	
82,5	82,6081681	80,87051714	80,38242328	79,15687813	
74,1	73,51277498	73,02169606	71,14039458	71,10746152	
53,4	55,08177962	53,90439865	53,20177361	52,90538288	
50,1	50,80497189	50,23419853	50,0154444	49,63888617	
47,5	48,41807241	47,18813156	46,3392786	46,07324247	
44,5	44,26082667	44,29690905	44,23774412	43,96587901	
43,2	43,67584098	43,35575589	42,66809486	42,89175409	
42,4	42,9503798	42,05716267	42,13122758	41,8873419	
37	39,24829831	37,37220131	36,70326823	36,87312482	
36,4	35,9566933	36,33405984	36,39109207	36,29159722	
34,2	35,44894939	34,4096493	34,51903149	34,31463869	
30,8	33,9237447	33,84852388	32,12544839	33,47896853	
27,9	31,18289435	31,34723598	31,29204862	31,50985391	
27,2	27,80802999	28,07014068	28,46432842	28,29130307	
23,2	21,99664595	22,38468397	23,01066162	22,90950093	
20,9	20,58942488	20,67901724	21,43254285	21,25267183	
20,5	17,00591891	18,80859917	20,17825827	20,20933425	
12,4	9,46779126	11,07776897	11,93862096	12,22276694	
11,2	5,31429417	6,919258966	9,250398565	9,032748309	

Tabla B-XIV. Valores de los desplazamientos químicos teóricos obtenidos mediante ajuste del Compuesto II-b para todos los niveles de teoría y funciones base, ordenados de forma decreciente.

Desplazamientos	Desplazamientos teóricos ajustados (δ,ppm)				
experimentales	B3LYP/	MPW1PW91 /	BHandHLYP /	BHandHLYP /	
(δ,ppm)	6-311++G(d,p)	6-311++G(d,p)	6-311G(d,p)	6-311++G(d,p)	
204	207,4716386	208,4349118	207,2446194	207,0686342	
171,1	169,7458814	170,16277	171,9542646	171,5295617	
82,5	83,15556871	81,52070537	80,34147071	79,48014511	
74,1	73,39271974	72,85139687	71,03656835	70,84880871	
53,4	56,12587551	55,12769962	54,53318055	54,28002745	
50,1	51,45624938	50,84862294	50,01992826	50,00460829	
47,5	43,78622867	42,97860115	43,11857314	42,67075203	
44,5	43,07013909	42,3021597	42,44589478	42,07334052	
43,2	41,65009372	42,24796909	41,722499	41,84527895	
42,4	41,15754168	39,75738062	39,49810682	39,29502892	
37	37,9668541	37,4527442	36,44250697	36,98215511	
36,4	37,10042419	36,13404002	35,63640893	35,65006373	
34,2	35,83486239	34,99900931	35,14497808	34,88087067	
30,8	32,1197593	32,31721815	31,97180151	32,3805275	
27,9	30,92098254	31,05349713	31,01464727	31,22433572	
27,2	27,23517806	27,55111948	28,34196891	28,0672615	
23,2	22,17894841	22,54319398	23,0743324	23,058241	
20,9	21,19305514	21,34357044	21,52500996	21,66202569	
20,5	17,12479037	18,90786606	20,15165405	20,15256398	
12,4	10,66883693	12,27610462	13,38640893	13,6154525	
11,2	6,536351978	8,14622548	9,336687923	9,680164722	

Tabla B-XV. Valores de los desplazamientos químicos teóricos obtenidos mediante ajuste del Compuesto III para todos los niveles de teoría y funciones base, ordenados por carbono.

Carbono	Desplazamientos	Desplazamientos teóricos ajustados (δ,ppm)			
#	experimentales	B3LYP/	MPW1PW91 /	BHandHLYP /	BHandHLYP /
	<i>(δ,ppm)</i>	6-311++G(d,p)	6-311++G(d,p)	6-311G(d,p)	6-311++G(d,p)
1	29,53	40,05534182	36,88152551	35,39234831	35,81421569
2	26,06	28,45891289	24,85537395	25,54966623	25,44509804
3	71,65	72,39054947	69,2482417	67,8500548	67,3354902
4	46,48	44,87491368	40,9068846	41,47006078	41,36333333
5	86,71	94,14580251	102,5544329	102,3930457	102,0347059
6	59,14	62,89641906	65,78464586	66,60336754	66,03852941
7	41,3	40,27562395	35,70668648	35,73448242	35,91882353
8	36,2	30,47489395	29,95255077	28,93962339	29,38362745
9	46,63	48,55075466	46,68142645	45,76148251	45,76107843
10	42,03	39,20400513	42,85052006	42,57407592	42,68372549
11	20,13	24,44973858	20,81812779	20,7976487	21,07401961
12	32,44	36,82006511	32,81208519	32,30517087	32,55186275
13	47,8	49,05356614	48,23803863	46,82903258	47,25558824
14	54,64	50,34142251	45,88875681	45,44963635	45,40107843
15	36,41	39,14609845	33,6393264	34,22038458	34,24803922
16	47,31	51,39913189	55,2598316	54,66324599	55,01872549
17	205,75	223,5039953	214,584943	213,4495367	213,4586275
18	16,36	17,09677419	12,47102526	13,38188702	13,53019608
19	20,04	24,10545526	20,7623576	20,44316031	20,65941176
20	170,35	176,9604419	170,0852897	171,7843977	171,3354902
21	21,3	19,96626221	19,50728083	20,6693235	20,78813725

Tabla B-XVI. Valores de los desplazamientos químicos teóricos obtenidos mediante ajuste del Compuesto III para todos los niveles de teoría y funciones base, ordenados de forma decreciente.

Desplazamientos	Desplazamientos teóricos ajustados (δ,ppm)				
experimentales	B3LYP/	MPW1PW91 /	BHandHLYP /	BHandHLYP /	
(δ,ppm)	6-311++G(d,p)	6-311++G(d,p)	6-311G(d,p)	6-311++G(d,p)	
205,75	223,5039953	214,584943	213,4495367	213,4586275	
170,35	176,9604419	170,0852897	171,7843977	171,3354902	
86,71	94,14580251	102,5544329	102,3930457	102,0347059	
71,65	72,39054947	69,2482417	67,8500548	67,3354902	
59,14	62,89641906	65,78464586	66,60336754	66,03852941	
54,64	51,39913189	55,2598316	54,66324599	55,01872549	
47,8	50,34142251	48,23803863	46,82903258	47,25558824	
47,31	49,05356614	46,68142645	45,76148251	45,76107843	
46,63	48,55075466	45,88875681	45,44963635	45,40107843	
46,48	44,87491368	42,85052006	42,57407592	42,68372549	
42,03	40,27562395	40,9068846	41,47006078	41,36333333	
41,3	40,05534182	36,88152551	35,73448242	35,91882353	
36,41	39,20400513	35,70668648	35,39234831	35,81421569	
36,2	39,14609845	33,6393264	34,22038458	34,24803922	
32,44	36,82006511	32,81208519	32,30517087	32,55186275	
29,53	30,47489395	29,95255077	28,93962339	29,38362745	
26,06	28,45891289	24,85537395	25,54966623	25,44509804	
21,3	24,44973858	20,81812779	20,7976487	21,07401961	
20,13	24,10545526	20,7623576	20,6693235	20,78813725	
20,04	19,96626221	19,50728083	20,44316031	20,65941176	
16,36	17,09677419	12,47102526	13,38188702	13,53019608	

BIBLIOGRAFÍA

1. Nieto, L. I. (2008). Determinación de las propiedades espectroscópicas y estudio de reacciones en fase heterogénea de nuevos compuestos orgánicos oxigenados presentes en la troposfera. Tesis doctoral, Universidad Nacional de La Plata, La Plata, Argentina.

2. Cimino, P., Gomez-Paloma, L., Duca, D., Riccio, R. y Bifulco, G. (2004). Comparison of different theory models and basis sets in the calculation of ¹³C NMR chemical shifts of natural products. *Magn. Reson. Chem.*, (42): S26–S33.

3. Lednicer, D. (2011). *Steroid Chemistry at a Glance*. Reino Unido: John Wiley & Sons Ltd.

4. Levine, I. N. (2001). Química Cuántica. Madrid, España: McGraw-Hill.

5. Jensen, Frank. (2007). Introduction to computational chemistry. New York: Wiley.

6. Ramachandran, K.; Deepa, G.; Namboori, K. (2008). *Computational Chemistry and Molecular Modeling, Principles and Applications.* Coimbatore, India: Springer.

7. Foresmas, J. B.; Frisch, A. (1996). *Exploring chemistry with electronic structure methods.* Pittsburgh, Pennsylvania: Gaussian, Inc.

8. Errol, L. (2016). Computational Chemistry, Introduction to the Theory and Applications of Molecular and Quantum Mechanics. Peterborough, Canada: Springer.

9. Bachrach, Steve. (2007). *Computational Organic Chemistry*. New Jersey: John Wiley & sons Inc.

10. Miller, J. y Miller, J. (2002). *Estadística y quimiometría para química analítica*. Madrid, España: Pearson Educación, S.A.

11. Cortés, F., Cuevas, G., Tenorio, J., y Rochín, A. (2000). Asignación inequívoca de las señales del espectro de resonancia magnética nuclear de ¹H y ¹³C de monoterpenos empleando métodos computacionales. *Rev. Soc. Quím. Méx. 44*(1), 7-10.

12. Wiberg, K. (1999). Comparison of Density Functional Theory Model's Ability to Reproduce Experimental ¹³C-NMR Shielding Values. *Journal of Computational Chemistry, Vol. 20, No. 12.* 1299-1303.

13. Blicharska, B. & Kupka, T. (2002). Theoretical DFT and experimental NMR studies on uracil and 5-fluorouracil. *Journal of Molecular Structure 613.* 153–166.

14. Barone G., Gomez-Paloma, L., Duca, D., Silvestri, A., Riccio, R. & Bifulco, G. (2002). Structure Validation of Natural Products by Quantum-Mechanical GIAO Calculations of ¹³C NMR Chemical Shifts. *Chem. Eur. J., 8, No. 14.* 3233-3239.

15. Aliev, A., Courtier-Murias, D. & Shen Zhou, S. (2009). Scaling factors for carbon NMR chemical shifts obtained from DFT B3LYP calculations. *Journal of Molecular Structure: THEOCHEM* 893. 1–5.

16. Bally, T. & Rablen, P. (2011). Quantum-Chemical Simulation of ¹H NMR Spectra. 2. Comparison of DFT-Based Procedures for Computing Proton-Proton Coupling Constants in Organic Molecules. *J. Org. Chem., 76.* 4818–4830.

17. Falcón, G. & Cabrera, G. (2016). Comparación de dos modelos de teoría para el cálculo de los desplazamientos químicos en espectros RMN¹³C, en moléculas del tipo androstano. Trabajo especial de grado, Facultad de Ciencias, UCV.

18. Neacato, P. (2007). Síntesis de Derivados de Androstanos como posibles agentes antivirales. Trabajo especial de grado, Facultad de Ciencias, UCV.

19. Neacato, P. (2015). *Hemisíntesis de androstanos. Estudio de modelaje computacional*. Trabajo de ascenso, Facultad de Ciencias, UCV. (Trabajo no publicado).

20. Paz, D. (2012). Estudio de catalizadores en reacciones de esterificación de androstanos como intermediarios clave en la incorporación de cadenas laterales. Trabajo especial de grado, Facultad de Ciencias, UCV.

21. Breitmaier, E. y Voelter, W. (1987). *Carbon-13 NMR Spectroscopy: High-Resolution Methods and Applications in Organic Chemistry and Biochemistry*. Weinheim, Alemania: VCH.

22. Ricco, C., Revial, G., Ferroud, C., Hennebert, R. y Morfin, R. (2010). *Synthesis of 7β-hydroxy-epiandrosterone*. Elsevier Journal. 76, 28-30.

23. Yamaji, T., Saito, T., Hayamizu, K., Yanagisawa, M. y Yamamoto, O. (2016). *AIST: Spectral Database for Organic Compounds, SDBS.* [en línea] Disponible en: <u>http://sdbs.db.aist.go.jp/sdbs/cgi-bin/cre_index.cgi</u> [Fecha de consulta: 9 de septiembre de 2019].

24. Marcano, D., Rojas, A., Mendez, B., y Mendez, J. (1981). *Carbon-13 Nuclear Magnetic Resonance Spectra of D-Homoandrostane Derivatives*. Organic Magnetic Resonance Journal. 16(3), 205.

25. Alvarado, R. (2013). Estudio de reacciones de hidroboración sobre sistemas Δ^4 - Δ^5 en androstanos. Trabajo especial de grado, Facultad de Ciencias, UCV.

26. Antunez, D. (2014). Aproximación a la síntesis de la androst-5-en-3,17-diona, síntesis de la androst-4-en-3,6,17-triona y su posterior reducción. Trabajo especial de grado, Facultad de Ciencias, UCV.

27. Montilla, E. (2015). Oxidación del anillo B de 17β -hidroxi- Δ 4-androsten-3-ona (*Testosterona*). Trabajo especial de grado, Facultad de Ciencias, UCV.

28. Tantillo, D. (2017). CHESHIRE CCAT, the Chemical Shift Repository for computed NMR scaling factors, with Coupling Constants Added Too. [En línea] Disponible en: http://cheshirenmr.info [Fecha de consulta: 12 de agosto de 2019].

29. Martínez, E. (2005). *Errores frecuentes en la interpretación del coeficiente de determinación lineal*. Anuario Jurídico y Económico Escurialense, XXXVIII. Real Centro Universitario «Escorial-María Cristina», San Lorenzo del Escoria.

30. Kaupp, M., Malkina, O., Malkin, V. y Pyykkö, P. (1998). *How Do Spin – Orbit - Induced Heavy - Atom Effects on NMR Chemical Shifts Function? Validation of a Simple Analogy to Spin - Spin Coupling by Density Functional Theory (DFT) Calculations on Some Iodo Compounds*. Chem. Eur. J. (4), 118-119.

31. Kidd, R. (1980). *Nuclear Shielding of the Transition Metals*. Ann. Rep. NMR Spectrosc. (10A), 2.