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Double ensemble system for wind energy forecasting based on 
generalized autoregressive conditional heteroskedasticity and 
neural network models with variational mode decomposition
Angel Colmenares and Jianzhou Wang

School of Statistics, Dongbei University of Finance and Economics, Dalian, China

ABSTRACT
With the steady integration of wind energy into electricity networks, precise 
wind speed forecasting is an essential element in the administration and 
management of power systems. However, wind energy forecasting research 
has focused increasingly on short-term forecasting, leaving aside the challen-
ging horizons of medium- and long-term predictions. Therefore, this study 
proposes a wind speed forecasting methodology based on two types of 
ensembles, which addresses the nonlinearity and chaotic behavior of wind 
speed using decomposition-based models. With the results of the first 
ensemble of 90 ARMA-generalized autoregressive conditional heteroskedas-
ticity (ARMA-GARCH) models, the second ensemble is established based on 
three types of neural networks and learning functions. Finally, we propose 
the application of variational mode decomposition (VMD) before or after the 
first ensemble. The experimental outcomes lead us to divide the prediction 
horizons into two broad groups, those where VMD inclusion did and did not 
improve the ensemble results. These horizons are classified as short-term (3, 
4, and 5 steps) and mid- and long-term forecast horizons (6, 12, 24, and 48 
steps), where the best performance arises with the VMD application after the 
first ensemble. The research contributes to the existing literature studying 
a wide variety of innovation distribution and optimization methods that can 
be implemented with GARCH-type models. Simultaneously, the VMD appli-
cation is proposed in a novel way not seen in the literature by applying it to 
the predictions already made by other models, in this case, in ensembles of 
GARCH-type models.
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Introduction

The projected global wind total power volume by the end of 2022 is 840.9 GW (GWEC 2019). 
However, even with ecological benefits, wind power’s intrinsic uncertainty carries challenges in 
administering power systems. Wind speed forecasting is essential to offer system managers convenient 
approximations of available wind power in future lapses.

Many researchers have given much attention to wind energy forecasting research methods during 
the past few years. These approaches can mainly be divided into the following four categories: physical 
models (i), conventional statistical models (ii), artificial intelligence models (iii), and hybrid forecast-
ing models (iv). Physical models, which are suitable for wind energy forecasting, consider historical 
data and use physical parameters. Conventional statistical methods usually apply a linear function to 
predict the upcoming values. Some of the basic linear forecasting models include the classic auto-
regressive moving average (ARMA).
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In contrast, in artificial intelligent techniques, forecast of future wind speed is through a nonlinear 
function for the input data. Nonlinear functions can learn the complex nature of wind speed series 
more precisely. One of the most famous models developed in this category is artificial neural networks 
(ANNs) or neural networks. Under ensemble techniques, also known as hybrid models or combined 
forecasting, the principle of solving a particular forecasting problem is based on “M” different 
decomposition and forecasting models.

In general, the principle of decomposition-based hybrid models is to separate the wind speed time 
series into subseries with more stationary features prior to other techniques’ applications. In the study 
by Qian et al. (2019), a review of decomposition-based hybrid models for wind energy forecasting was 
conducted. In over 101 publications, they found wavelet (WD)-based and empirical mode (EMD)- 
based methods to be the most common decomposition approaches, with the fewer commons being the 
seasonal adjustment method (SAM) or the relatively novel variational mode decomposition (VMD) of 
2014.

In recent publications (all since 2018), Li et al. (2018) proposed a hybrid model for short-term wind 
speed, and Liu et al. (2018) proposed a secondary decomposition, ensemble method, and error 
correction algorithm. Wang and Li (2018) offered multistep ahead wind speed prediction with 
a long short-term memory neural network, Tian, Hao, and Hu (2018) proposed hybrid data pre-
processing and multiobjective optimization, and Liu, Mi, and Li (2018) applied singular spectrum 
analysis with neural networks for multistep wind speed forecasting. Zhang, Wei, and Tan (2019) 
proposed a hybrid model for short-term wind speed forecasting and Zhang et al. (2019) proposed 
a new prediction method considering wind speed characteristics. In all these studies, VMD is generally 
adopted as the first step before additional processing.

On the other hand, hybrid models for wind energy forecasting typically use baseline techniques 
such as ARMA and ARMA-generalized autoregressive conditional heteroskedasticity (ARMA- 
GARCH). In publications from 2010, such as in the study by Lojowska et al. (2010), the advantages 
of ARMA-GARCH wind speed modeling are presented, and in the study by Liu, Erdem, and Shi 
(2011), some approaches for modeling the mean and volatility of wind speed were evaluated. However, 
none of these extensive GARCH-based studies considered the application of decomposition methods. 
In the field of neural network models, the extreme learning machine (ELM), long short-term memory 
(LSTM), radial basis function neural network (RBFNN), or Elman neural network (ENN) are usually 
reported, generally with a preprocess of decomposition.

Regarding the horizon in multistep wind energy forecasting of hybrid models, according to the 
objective, these can be separated into (Yang and Wang 2018) very-long-term, long-term, mid-term, 
short-term, and very-short-term forecasting methods. Very long-term forecasting methods are most 
useful to the viability of wind energy farm projects and evaluate wind farms’ annual power capacity. 
Long-term forecasting methods (1 day to 1 week or more) help create schedules to improve operating 
costs. Mid-term forecasting models (6 h to 1 day ahead) offer a foundation for the management and 
maintenance scheduling of wind energy farms and power plants’ load distribution planning. Short- 
term forecasting methods (30 min to 6 h ahead) are useful for planning the transmission of the power 
grid and guaranteeing the energy supply rationally. Very short-term methods (a few seconds to 30 min 
ahead) are implemented to control wind turbine regulation and improve power generation.

Usually, recent publications about multistep wind energy forecasting like those in the study by Jiang 
and Liu (2019) where a variable weight combined model is used, Luo et al. (2021) that presents 
a system based on decomposition-ensemble and multi-objective optimization, Wu and Lin (2019) that 
proposes forecasting based on Variational Mode Decomposition and Least-Squares Support Vector 
Machine, or Jiang et al. (2020) with a method based on ANNs and deep learning methods and also in 
the study by Tian, Ren, and Wang (2018), with an improved particle swarm optimization algorithm 
for wind speed prediction is presented, all these studies and those detailed before (all since 2018) are 
focused on the horizon of very-short or short-term forecasting models. We found some long-term 
wind speed forecasts in the study by Bilgili and Sahin (2013) of daily, weekly, and monthly wind speed 
predictions, but this research is from 2013. The principal reason for this focus is the chaotic 
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characteristics of the wind speed time series, and a detailed study on this matter is found in Tian 
(2019). However, some of the longer forecast horizons are necessary to address the power plants’ load 
distribution planning.

A review of previous literature shows that studies in multistep wind energy forecasting have some 
inherent drawbacks. The disadvantages of such studies are summarized as follows:

(1) Usually, decomposition methods are applied in the first stage of the modeling process. When 
applied as a middle stage, methods are always introduced after using a previous decomposition 
method.

(2) Despite its extensive application, GARCH-based models are applied without an in-depth 
specification of the conditional distributions and optimization methods. Key elements for the correct 
parametrization of these models, in the same way, do not usually report the construction of ensemble 
GARCH-based models.

(3) A double ensemble approach is not usually presented. With this approach, the benefits of 
GARCH models can be combined with the oscillations of neural networks and the opportunities 
offered by current decomposition methods such as VMD.

(4) Multistep wind energy forecasting research has focused increasingly on short-term forecasting, 
leaving aside the challenging horizons of medium- and long-term predictions; only a few of the 
publications reviewed perform more than six-step predictions. Mid- and long-term horizons represent 
scenarios where a single model could hardly make a better prediction than when considering an 
ensemble-based approach.

We propose a novel double ensemble system for multistep wind energy forecasting with the 
analysis above, grounded on autoregressive conditional heteroskedasticity and neural network models 
with variational mode decomposition. The system creates the first GARCH-ensemble forecast (E-I), 
on which an autoregressive model is adjusted with logarithmic autoregressive conditional hetero-
skedasticity variance AR(1)-log-ARCH(1), considering or not the inclusion of intercept in the mean 
specification. Additionally, 90 ARMA(1,1)-GARCH(1,1) models are taken, which come from the 
combination of nine conditional distributions for the innovations, multiplied by five optimization 
algorithms and 45 models by two versions with and without the inclusion of the mean (9 conditional 
distributions*5 optimization algorithms*2 versions = 90 models). With these 92 predictions, an initial 
forecast from the E-I will be made under the following two schemes: taking the ensemble average 
(EAV) and the mean between the prediction with higher and lower values, or in short, the ensemble 
mid-range (EMR).

In the second ensemble (E-II), based on neural network models, it is considered the original series 
plus the two forecasts (EAV or EMR) of the first ensemble to train three kinds of neural network 
models including the following: Jordan and Elman neural networks and a multilayer perceptron, all 
with three different learning functions that produce a new average forecast. Finally, the system 
introduces the variational mode decomposition (VMD) before or after the first ensemble forecast 
and the average and mid-range of the ensemble GARCH (EAV and EMR). If VMD is applied before 
E-I, the ensemble is constructed based on the original series after the VMD application, which is the 
traditional method. A novelty of this study arises when we apply VMD after E-I since it is applied to 
the forecasting of the previous GARCH ensemble.

The primary contributions and novelties of this study are described below:

(1) An extensive forecasting ensemble is proposed with two AR-log-ARCH and ninety ARMA- 
GARCH different models.

We constructed a first ensemble (E-I) based on an autoregressive model with logarithmic auto-
regressive conditional heteroskedasticity variance AR(1)-log-ARCH(1), considering the inclusion of 
intercept in the mean specification. Including 90 ARMA(1,1)-GARCH(1,1) models: combining nine 
conditional distributions for the innovations, multiplied by five optimization algorithms, and those 45 
models by two versions (with and without the mean’s inclusion). The research contributes to the 
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existing literature filling the current gap in studying a wide variety of innovation distribution and 
optimization methods that can be implemented with GARCH-type models.

(2) A novel double ensemble is proposed based on the first ensemble of ninety-two AR-log-ARCH 
and ARMA-GARCH models with the second ensemble of three different neural networks and 
learning functions.

The first ensemble (E-I) result is used to train the following three kinds of neural network models: 
Jordan and Elman neural networks and multilayer perceptron, all with three different learning 
functions, setting up the second ensemble (E-II). The experimental result shows an improvement in 
the results of short-term multistep horizons of forecast (three to five steps) obtained from the first 
ensemble (E-I) when the second ensemble (E-II) is included.

(3) New uses of variational mode decomposition (VMD) is introduced when applied between the 
double ensemble.

Taking into consideration variational mode decomposition (VMD), another kind of model is 
introduced. The application of this technique is proposed to make it in the following two different 
ways: before the first ensemble (E-I) to denoise the original series, before the application of GARCH- 
type models and between the ensembles to improve the learning process of the neural network models. 
The experimental result shows improvement with VMD application between the ensembles in mid- 
and long-term forecast horizons (6, 12, 24, and 48 steps).

(4) Extensive test of the ensemble accuracy with rolling forecasting in sixty-three scenarios, 
considering seven multistep horizons of the forecast, three weather stations, and three different 
months.

The three very short and short-term multistep horizons of the forecast are selected from 3 to 5 steps 
or 30 min to 50 min (the time series comes in 10 min frequency), with four from short- to long-term 
horizons of 6, 12, 24, and 48 steps or 1, 2, 4 and 8 h of prediction. The method applied in all the 
experiments is a rolling forecast, where the period to train the models will always be 7 days or 1008 
points, and it is proposed to take the first 15 days or 2160 points of March, June, and September over 
three different stations to train and verify the models, giving a total of 63 different scenarios

Framework of the double ensemble system

Autoregressive moving average

This is a standard baseline forecasting model used widely in time-series prediction, proposed in 1976 
by Box and Jenkins (Box and Jenkins 1976). The ARMA process comprises an autoregressive (AR) 
model and a movil average (MA) model. The AR process and MA process orders are represented as 
p and q, respectively, and the ARMA process with the AR process order p and MA process order q is 
denoted as ARMA(p,q). The autoregressive representation (AR) of order p, denoted by AR (p), can be 
expressed as follows: 

XðtÞ ¼ a0 þ a1Xðt � 1Þ þ a2Xðt � 2Þ þ � � � þ apXðt � pÞ þ eðtÞ (1) 

where XðtÞ is the value at time t, t is the time index, a0; a1; a2; . . . ; ap
� �

are the parameters of the AR 
(p) model, and eðtÞ is the stochastic disturbance term at time t. At any point, the random shocks term 
is supposed to have identical characteristics: a zero mean with the identical XðtÞ variance σ2 and an iid 
(independently and identically distributed) form. On the other hand, MA representation of order q, 
denoted by MA (q), can be expressed as follows: 
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XðtÞ ¼ μþ eðtÞ � θ1eðt � 1Þ � θ2eðt � 2Þ � � � � � θpeðt � qÞ (2) 

where μ is the expectation value of XðtÞ; θ0; θ1; θ2; . . . ; θp
� �

are the parameters of the MA (q) model; 
eðtÞ; eðt � 1Þ; eðt � 2Þ; . . . ; eðt � qÞf g are the stochastic disturbance terms as iid variables. With the 

aggregation of these two processes, we can express the observation XðtÞ of the ARMA(p,q) model as 
follows: 

XðtÞ ¼ a0 þ a1Xðt � 1Þ þ � � � þ apXðt � pÞ þ eðtÞ � θ1eðt � 1Þ � � � � � θpeðt � qÞ (3) 

Generalized autoregressive conditional heteroskedasticity

Autoregressive conditional heteroskedasticity (ARCH) (Engle 1982) is a statistical method for time- 
series data that defines the variance of the present error or innovation as a function of the current 
magnitude of the preceding periods’ error terms; typically, the variance is associated with the squares 
of the preceding innovations. The ARCH model is suitable when the error variance in a time series can 
be described as an autoregressive (AR) model. When an ARMA model is presumed for the error 
variance, the model is a GARCH model (Bollerslev 1986). The autoregressive conditional hetero-
skedasticity has the following form: 

yt ¼ εtht
1=2 (4) 

ht ¼ α0 þ α1y2
t� 1 (5) 

where ε is white noise with VðεtÞ ¼ 1. Including normality’s supposition, it can be straightforwardly 
stated in terms of ψt the data set accessible at time t. Through conditional densities, 

ytjψt,Nð0; htÞ; (6) 

ht ¼ α0 þ α1y2
t� 1 (7) 

the variance function can be stated generally as 

ht ¼ hðyt� 1; yt� 2; . . . ; yt� p; αÞ (8) 

where p is the order of the ARCH process, and α is a vector of unknown parameters.
The ARCH model is obtained by supposing that the mean ytis specified as xtβ, a linear combination 

of lagged endogenous and exogenous variables involved in the data set ψt� 1 with β a vector of 
unknown parameters. Formally, 

ytjψt,Nðxtβ; htÞ; (9) 

ht ¼ hðεt� 1; εt� 2; . . . ; εt� p; αÞ (10) 

εt ¼ yt � xtβ (11) 

The extension of the ARCH process to the GARCH process with orders (p, q) is given by 

εtjψt� 1,Nð0; htÞ; (12) 

ht ¼ α0 þ
Xq

i¼1
αiε2

t� i þ
Xp

i¼1
βiht� i ¼ α0 þ AðLÞε2

t þ BðLÞht; (13) 

where p � 0, q> 0, α0 > 0, αi � 0, i ¼ 1; . . . ; q βi � 0, i ¼ 1; . . . ; p.

ENERGY SOURCES, PART A: RECOVERY, UTILIZATION, AND ENVIRONMENTAL EFFECTS 5



In GARCH models, the density function is typically expressed in terms of the location and scale 
parameters, normalized to give zero mean and unit variance, so we can also write it in the following 
form: 

αt ¼ ðμt; σt;ωÞ (14) 

Where the conditional mean is given by 

μt ¼ μðθ; xtÞ ¼ E ytjxtð Þ; (15) 

The conditional variance is, 

σ2
t ¼ σ2ðθ; xtÞ ¼ E ðyt � μtÞ

2
jxt

� �
; (16) 

where ω ¼ ωðθ; xtÞ represents the other parameters of the distribution, such as the shape and skew. 
The conditional mean and variance are implemented to scale the innovations, 

ztðθÞ ¼
yt � μðθ; xtÞ

σðθ; xtÞ
; (17) 

having a conditional density, which may be specified as 

g zjωð Þ ¼
d
dz

P zt < zjωð Þ; (18) 

And connected to f yjαð Þ by, 

f ytjμt; σ
2
t ;ω

� �
¼

1
σt

g ztjωð Þ: (19) 

Conditional distributions

The conditional distribution in the GARCH model must be self-decomposable. While having the 
linear conversion characteristic is essential to center ðxt � μtÞ and scale εt=σtð Þ the innovations, 
afterward, the modeling is performed with the zero-mean, unit variance, distribution of the 
standardized variable, zt is a scaled version of the equivalent conditional distribution of xt , as 
described in Equations 17, 18 and 19. Now, some of the distributions can be used in the GARCH 
models. Some of the distributions that can be used in the GARCH models are as follows: The 
Normal Distribution (N), Student Distribution (T) (Bollerslev 1986), Generalized Error Distribution 
(GE), Normal Inverse Gaussian Distribution (NIG), Johnson’s SU Distribution (JSU) (Johnson 
1949), and the Generalized Hyperbolic Distribution (GH) (DeMarco and Basu 2018). We can also 
include skewness into unimodal and symmetric distributions by inserting inverse scale coefficients 
in the positive and negative real half-lines, which was proposed by Fernández and Steel (1998), the 
Normal, Student, and Generalized Error distributions have skewed modifications that have been 
standardized to zero mean unit variance.

Artificial neural network

An ANN computes the inputs’ function by propagating the estimated observation from the input 
neurons to the output neurons and the weights as middle limitations. The learning procedure 
occurs by varying the weights linking the neurons with the training data, which comprise samples of 
input-output couples of the situation to be learned (Acikgoz, Yildiz, and Sekkeli 2020). A neuron is 
a data-processing unit that is central to the action of a neural network. The three essentials of the 
neural model are (i) a group of synapses, or connecting links, each one with weight or strength of 
its own.
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Recurrent neural networks (RNN)
This neural network comprises hidden states spread over time; this permits the network to stock many 
data about the historical competently. In this kind of system, the input signal xjðnÞ, internal signal 
x0jðnÞ, and output signal ykðnÞ are functions of the discrete-time variable n; here, a linear system 
involving a forward path and a feedback path is characterized by “operators” A and B, respectively, so 
we readily note the input-output relationships as follows: 

ykðnÞ ¼ A x0jðnÞ
h i

(20) 

x0jðnÞ ¼ xjðnÞ þ B ykðnÞ½ � (21) 

where the square brackets emphasize that A and B act as operators. For example, in single-loop 
feedback where A is a fixed weight w and B is a delay operator z� t xjðnÞ

� �
¼ xjðn � tÞ, rewriting the 

previous formulas and using the binomial expansion for ð1 � wz� 1Þ
� 1, we have, 

ykðnÞ ¼
A

1 � AB
xjðnÞ
� �

¼
w

1 � wz� 1 xjðnÞ
� �

¼ w
X1

t¼0
wtz� t xjðnÞ

� �
(22) 

Finally, we can rewrite the exit signal ykðnÞ as an infinite weighted summation of current and past 
samples of the input signal xjðnÞ, as shown by 

ykðnÞ ¼
X1

t¼0
wtþ1xjðn � tÞ (23) 

Two variations of RNN are listed below.

Elman and Jordan neural networks (ENN, JNN)

ENN was proposed by Elman in 1990 (Elman 1990). They are made of an input layer, a delay layer, 
a hidden layer, and an output layer. In the input layer and the relating layer, if xit i ¼ 1; 2; 3; . . . ; nð Þ

represents the i-th input values of neurons at time t in the input layer, the relating layer neurons 
ujkðj ¼ 1; 2; 3; . . . ;mÞ and njkðj ¼ 1; 2; 3; . . . ;mÞ at time t can be modeled as follows: 

ujkðkÞ ¼ Zjtðk � 1Þ; i ¼ 1; 2; 3; . . . ; n; j ¼ 1; 2; 3; . . . ;m (24) 

njtðkÞ ¼
Xn

i¼1
wijxitðk � 1Þ þ

Xm

j¼1
cjujtðkÞ (25) 

In the last two formulas, ytþ1 denotes the output value in the recurrent layer at time t þ 1. In the 
hidden layer, the neurons Zjtðj ¼ 1; . . . ;mÞ are 

VjtðkÞ ¼
1

ð1þ e� xÞ

Xn

i¼1
wijxitðkÞ þ

Xm

j¼1
cjujtðkÞ

 !

(26) 

where wij and cij are the connected weights between the input layer and hidden layer, the hidden 
layer, and the relating layer, respectively. Finally, in the output layer, 

Ztþ1ðkÞ ¼ fT
Xm

j¼1
vjVjtðkÞ

 !

(27) 
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where vj are the linked weights among the hidden layer and output layer and fTð � Þ is the activation 
function that has an identity plan. The JNN was proposed in 1997 by Jordan (Jordan 1997). Similar to 
the ENN, the delay neurons are connected from the output layer as a substitute for the hidden layer. 
The plan and state units were collected to establish the input units for the network.

Neural network learning functions
The objective of these functions is to discover a synaptic changing rule that will permit a randomly linked 
neural network to construct an appropriate internal architecture for a specific task (Rumelhart, Hinton, 
and Williams 1986). Among the basic methods used for this function, we have the backpropagation (B) 
proposed in 1986 by Rumelhart et al. (Elman 1990) and the following two variants: the backpropagation 
with momentum term (M) created in 1993 by Yu et al. (Yu, Loh, and Miller 1993) and the resilient 
backpropagation (R) proposed by Riedmiller and Braun in 1993 (Riedmiller and Braun 1993).

Optimization method

Optimization of a function is a broad term and refers to either minimization or maximization. The 
following two comprehensive types of algorithms exist: (1) those that take evidence regarding the slope 
or shape of the output of the objective function and (2) those whose search guidelines are autonomous 
of the shape of the response surface.

Nelder–Mead simplex (N-M S)
The Nelder-Mead simplex is a simplex-based method and can be classified as autonomous of the shape 
of the output form. A simplexS R nis defined as the convex hull of nþ 1verticesx0; � � � ; xn 2 R n. The 
technique starts with a group of nþ 1 values x0; � � � ; xn 2 R nestablished as the vertices of a working 
simplex S and the equivalent group of function values at the vertices fj :¼ f ðxjÞ; forj ¼ 0; . . . ; n. The 
primary working simplex S has to be nondegenerate, i.e., the values x0; � � � ; xn must not be in the same 
hyperplane. The technique then makes a series of changes to the working simplex S to reduce the 
function values at its vertices. The changes are resolved at each stage by calculating one or more test 
points, organized with their function values, and contrasting the resultant values with those at the 
vertices. This procedure ended when the working simplex S converted satisfactorily insignificant in 
some sense or when the function values fj were near sufficient in some sense (provided f is 
continuous), as proposed by Nelder and Mead (1965).

Constrained by linear approximations (CLA)
CLA is an algorithm for derivative-free optimization with nonlinear inequality and equality con-
straints (Powell 1994). The algorithm builds consecutive linear estimates of the objective function and 
restraints via a simplex of nþ 1 points (in n dimensions) and improves these estimates in a trust 
region at each stage.

Principal axis (PA)
The PA is a gradient-free local optimization via the “principal-axis method” proposed by Brent (1973). 
For an n-variable task, take a group of exploration directions u1; u2; . . . ; un and a value x0. xi is taken as 
the value that minimizes f over the direction ui from xi (i.e., perform a “line search” fromxi� 1), then ui 
is substituted with uiþ1. At the termination, un is substituted withxn � x0. Preferably, the novel ui must 
be linearly independent so that a new repetition can be undertaken, but in practice, they are not. 
Brent’s algorithm applies singular value decomposition (SVD) on the matrix U ¼ ðu1; u2; . . . ; unÞ to 
readjust them to the local quadratic model’s principal directions. With the new group of ui obtained, 
additional repetition can be done.
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Bound by quadratic approximation (BQA)
BQA was proposed by Powell (2009) as an iterative algorithm for finding the minimum of a function 
Fð� xÞ; � x 2 R n, subject to bounds � a � � x � � bon the variables. F is specified by a “black box” that 
returns the value Fð� xÞ for any feasible � x. Each repetition uses a quadratic approximation Q to F that 
satisfies QðyjÞ ¼ FðyjÞ; j ¼ 1; 2; . . . ;m; the interpolation values yj being selected and changed auto-
matically, but m is arranged constant, the value m ¼ 2nþ 1 being typical.

Subspace-searching simplex (Sub S)
Sub S is a subspace-searching simplex technique for the unconstrained optimization of broad multi-
variate functions developed by Thomas Harvey Rowan (1990). The subplex technique is appropriate 
for optimizing noisy objective functions. The number of function valuations demands for convergence 
typically only grows linearly with the problem magnitude, so the subplex technique is more effective 
than the simplex technique.

Variational mode decomposition

VMD separates a signal into meaningful modes according to their frequency information based on 
discrete Fourier transform. Through VMD, the original signal is separated into k mode series, where 
each mode uk is asked to be densest over a central pulsation ωk calculated together with the 
decomposition (Dragomiretskiy and Zosso 2014). For a one-dimensional signal s, the stages to 
evaluate a mode’s bandwidth ukcan be summarized in the following three steps:

(1) Calculate the signal related to uk through the Hilbert transform to find a one-sided frequency 
spectrum.

δðtÞ þ
j

πt

� �

� ukðtÞ (28) 

(1) Change the mode’s frequency spectrum to the baseband by combining it with an exponential 
tuned to the corresponding projected core frequency.

δðtÞ þ
j

πt

� �

� ukðtÞ
� �

e� jωkt (29) 

(3) Evaluate the bandwidth with the H1 Gaussian smoothness of the demodulated signal, such as the 
squared L2-norm of the gradient. Then, the constrained variational task of finding all the modes is 
defined by the following: 

min
uk;ωk
¼

X

k
@t δðtÞ þ

j
πt

� �

� ukðtÞ
� �

e� jωkt
�
�
�
�

�
�
�
�

2

2

( )

; s:t:
X

k
uk ¼ s (30) 

where ukf g ¼ u1; u2; � � � ; ukf g are the nodes, and ωkf g ¼ ω1;ω2; � � � ;ωkf g are the center frequencies 
of the nodes. δðtÞ is the Dirac function, and * is the convolution operation. s is the original series. The 
alternative direction method of multipliers (ADMM) is used to solve formula’s optimization problem 
(Rehman, Naveed, and Aftab 2019).

Experiments proposed

To prove the forecasting effectiveness of each of the models previously discussed, we present some 
experiments based on wind speed data from March, June, and September from three different weather 
stations. Furthermore, the performance metrics and a detailed explanation of the proposed ensemble 
system are presented.
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Dataset

The information comes from three different weather stations, but it cannot inform the location due to 
the confidentiality of the information. Since the data is only available for the first 9 months of the year, 
we select the last month of each of the three quarters, which are March, June, and September. The 
frequency at which the wind speed was collected was 10 min (144 points per day). In some cases, the 
measurements are not counted consecutively during all months. The period during which it was 
possible to obtain the data without omissions for the selected months was the first 15 days each month. 
With this limitation, we choose the first fifteen days of March, June, and September.

Performance metrics

For model evaluation, four metric rules were applied, as shown in Table 1.

Different experiments established

In the present research, we proposed seven experiments, which are conducted to calculate each 
method’s forecasting precision. The experimental parameters of the experiments are in Table 2. The 
method applied in all the experiments is a rolling forecast, where the period to train the models will 
always be 7 days or 144 × 7 = 1008 points. It is proposed to take the first 15 days or 15 × 144 = 2160 
points of March, June, and March over three different stations to train and verify the models. These 
seven horizons of the forecast, multiplied by three stations and multiplied by 3 months, giving 63 
different scenarios.

The repetition of each experiment in Table 2 is calculated by dividing the rest of the 8 days or 144 × 
8 = 1152 points (the total of 15 days minus the 7 days to train) by the forecast horizon (H). In this way, 

Table 1. Statistical indicators of the data for each year and day of the week.

Metric Definition Equation

MAE The average absolute forecast error of n times forecast
MAE ¼ 1

N

PN

n¼1
yn � y

^

n

�
�
�
�

�
�
�
�

MSE The average of the prediction error squares
MSE ¼ 1

N

PN

n¼1
yn � y

^

n

� �2

MAPE The mean of absolute percentage error
MAPE ¼ 1

N

PN

n¼1
yn � yn

^
� �

=yn

�
�
�

�
�
�� 100%

sMAPE The symmetric MAPE
sMAPE ¼ 2

N

PN

n¼1
yn � yn

^
�
�
�

�
�
�= ynj j þ yn

^
�
�
�

�
�
�

� �
� 100%

Notes: due to the small values that the series takes in some points, the result of the MAPE metric can be affected. This happens when 
the percent error in small values is more considerable than in larger values with the same absolute error. i.e., Case 1: real wind 
speed = 10, forecast = 9 which gives MAPE ¼ 10 � 9ð Þ=10j j � 100% ¼ 10%, Case 2: real wind speed = 1, forecast = 2 which 
gives MAPE ¼ 1 � 2ð Þ=1j j � 100% ¼ 100%, in both cases, the absolute error is 1, but the percent error increase from 10% to 
100% because we are in the presence of values closer to zero in the last scenario.

Table 2. Parameters of the seven experiments.

Dimension Interval for verifying the model Repetition of the experiment Train to verify ratio

Experiment Time Points Times Ratio
3-step 30 min 3 384 336:1
4-step 40 min 4 288 252:1
5-step 50 min 5 230 1008:5
6-step 1 h 6 192 168:1
12-step 2 h 12 96 84:1
24-step 4 h 24 48 42:1
48-step 8 h 48 24 21:1

Notes: In all the experiments, it is used 7 days of information to train the models, which means 144 × 7 = 1008 points.
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the window to train the models (1008 points) advances H points each time, i.e., in the case of the 
forecast horizon of H = 48 or 8 h, the times we repeat the experiment are calculated as 1152/48 = 24, so 
the time window of 7 days to train the models advances 48 points 24 times over the next 8 days, 
wherein each of these 24 repetitions a forecast of H = 48 points is made.

Proposed ensemble system

The base of the proposed system comes from a first ensemble, denoted by “E-I,” where it is taken as an 
autoregressive model with logarithmic autoregressive conditional heteroskedasticity variance AR(1)- 
log-ARCH(1), considering the inclusion of intercept in the mean specification. With 90 ARMA(1,1)- 
GARCH(1,1) models, from the combination of nine conditional distributions for the innovations, 
multiplied by five optimizations algorithms, and those 45 models by two versions, with or without the 
inclusion of the mean. Table 3 shows a summary of all the ARMA-GARCH models.

According to these models, we have a wide range of wind speed predictions with a total of 92 
estimations. Then, an initial forecast from this first ensemble will be made under the following two 
schemes: taking the ensemble average (EAV) of the predictions and the mean between the prediction 
with higher and lower values or ensemble mid-range (EMR). The original series plus these two 
forecasts (EAV or EMR) is used to train three kinds of neural network models: Jordan and Elman 
neural networks and multilayer perceptrons, all with three different learning functions. We can 
consider the combination of estimations from the different neural networks and learning functions 
as the second ensemble or Ensemble-II (E-II) and produce a new average forecast. For example, the 
mean can be determined by each neural network and the three learning functions. A summary of the 
steps followed in this prototype of models from the system is shown in Table 4

The stages from Table 4 produce different combinations of models; a summary of the notation used 
is in Table 5.

Table 3. ARMA-GARCH Models of the Ensemble I (E-I).

Base models (2) Innovation distribution (9) Optimization method (5)

ARMA (1,1) - GARCH (1,1)a Normalb 

T-student’sb 

Generalized errorb 

Normal Inverse Gaussian 
Generalized Hyperbolic 
Johnson’s SU

Constrained by Linear Approximations 
Bound by Quadratic Approximation 
Principal Axis 
Nelder-Mead Simplex 
Subspace-searching Simplex

aTwo versions: ARMA part of the model with and without zero mean. 
bTwo versions: Original and skew-version of the distribution.

Table 4. Summary of stages when the VMD is not applied.

Stage Description of stage Models/Algorithm/Formula

1 Application of Ensemble I (E-I) to the original series E-I = AR(1)-log-ARCH(1) (2 models) + 
ARMA(1,1)-GARCH(1,1) (90 models)

2 Calculation of Ensemble I Average (EAV) EAV = mean (E-I)
3 Calculation of Ensemble I Mid-Range (EMR) EMR = (max (E-I) – min(E-I))/2
4 Application of NN models to the original series + EAV or original series + EMR 

and calculation of average over these Ensemble-II (E-II) with each NN model
NN: ENN, JNN, and MLP all with three 

learning functions NN-(B, M, R) 
EAV-NN = mean (E-II-NN-(B, M, R)) 
EMR-NN = (max (E-II-NN-(B, M, R)) – min 

(E-II-NN-(B, M, R)))/2
5 Computing of performance metrics between the forecasts and real wind speed 

values
MAE, MSE, MAPE, sMAPE (Table 1)

Notes: The Notation of the NN’s learning function are B: Backpropagation, M: Backpropagation with Momentum, and R: Resilient 
backpropagation.
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Another type of model is introduced when variational mode decomposition (VMD) is introduced. 
The application of this technique is made before or after Ensemble-I. If the VMD is applied before the 
Ensemble-I means, the ensemble is made based on the original time series of wind speed after VMD 
application, but the rest of the stages will be the same in Table 4. A summary of the stages followed in 
this second prototype of models with VMD before Ensemble-I is shown in Table 6.

Table 5. Summary of basic notation when the VMD is not applied.

Type of ensemble By type of NN By NN and learning function

EAV: Ensemble I Average EAV-(ENN, JNN, MLP) EAV-NN-(B, M, R)
EMR: Ensemble I Mid-Range EMR -(ENN, JNN, MLP) EMR-NN-(B, M, R)

Notes: when the notation only expresses the type of NN (i.e., EAV-ENN), the average among the 
forecast of the different learning functions (B, M, R) was calculated.

Table 6. Summary of stages when the VMD is applied before the Ensemble-I.

Stage Description of stage Models/Algorithm/Formula

1 Application of VMD to the original series VMD
2–5 Application of stages 1–4 from Table 4 but to the series after applied VMD see Table 4

Notes: the notation of the models, in this case, is the same as the Table 5, but with VMD at the beginning (i.e., VMD-EAV-ENN-B, which 
means that first was applied the VMD to the original series, with this result, the EAV it is calculated and finally, to the series (after VMD) 
plus the forecast it was applied an ENN with Backpropagation).

Table 7. Summary of stages when the VMD is applied after the Ensemble-I.

Stage Description of stage
Models/Algorithm/ 

Formula

1–3 Application of stages 1–3 from Table 4 E-I, EAV, EMR
4 After the Ensemble-I it is applied the VMD to the original series + EAV and the original series + 

EMR
VMD

5–6 Application of stages 4–5 from Table 4 see Table 4

Notes: the notation of the models, in this case, is the same as the Table 5, but with VMD just before the NN models (i.e., EAV-VMD-ENN 
-B means that was calculated the Ensemble-I to the original series, the VMD was applied to the original series plus the EAV, and 
finally, to series plus the forecast with VMD it was applied an ENN with Backpropagation).

Figure 1. Proposed ensemble system with the application of VMD after the Ensemble-I, following the stages from .Table 7
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In the third type of model, VMD is applied after Ensemble-I or just before Ensemble-II. A summary 
of the steps followed in this third prototype of the models, with VMD after the ensemble, is shown in 
Table 7. A graphical explanation of this third kind of model is shown in Figure 1, in which a real 
forecast of 12-steps is shown.

Experimental results

To show the model’s performance constructed by the proposed ensemble system, Table 8 shows the 
MAE metric results from Table 1 per horizon of forecast specified in Table 2 and month. The results 
with non-VMD arise when applying stages of Table 4, the values with the VMD before Ensemble-I 
following stages of Table 6, and the VMD after Ensemble-I, according to Table 7. The model notation 
can be seen in Table 5. The inclusion of the means of EAV-None and EMR-None models was not 
applied to any NN model after Ensemble-I. The forecast is made based only on two estimations (EAV 
or EMR), excluding the VMD method or considered before and after the ensemble.

Experimental and metaheuristic analysis

The following section discusses the best models for each horizon of the forecast, analysis of the 
metaheuristic, and the learning function results in each neural network model and innovation 
distribution by the optimization method.

Best models per horizon of the forecast

Summarizing the results indicated in Table 8, which followed Figure 1, but with all the metrics and 
each horizon of the forecast, we have the values in Table 9. This summary shows some exciting 
findings; in general, the ensemble mid-range is positioned as the best model in five of the seven 
prediction horizons, leading from 1 h or six steps. This outcome also leads us to divide the prediction 
horizons into two broad groups, those where VMD’s inclusion did not improve the ensemble results, 
which are the forecasts of 3-, 4-, and 5-step horizons that could be classified as short-term.

In these cases, in the short-term forecast, the second ensemble (E-II) improved the results of 
Ensemble-I, specifically with the Elman neural network (ENN). It should be noted that the results of 
the first ensemble do not contain oscillations, which means that the inclusion of the neural networks 
adds noise to the predictions that the ARCH and GARCH models do not express.

On the other hand, in the forecast with 6, 12, 24, and 48 steps, which we can classify as mid- and 
long-term forecast horizons, the inclusion of the oscillations or noises coming from the neural 
network models does not benefit the predictions; it is enough that the application of VMD allows 
the improvement in the results.

Finally, the application of the VMD before Ensemble-I did not result in any improvement; only in 
the case of March in the prediction horizon of 48 steps (see Table 8) was a notable improvement 
obtained, telling us that in general, the ARCH and GARCH models of Ensemble-I lose their predictive 
capacity with this previous decomposition.

Metaheuristics

Although the results are the average overall learning functions, it is crucial to analyze each result at 
each time horizon, which could be considered in future investigations. Figure 2 shows for each 
prediction horizon (each line) the mean of the absolute error (MAE) for the mid-range ensemble 
(EMR). This metric and model are selected, and the results are given in Table 8.

In general, the values of the three learning functions are relatively homogeneous. The only scenario 
where this is not fulfilled is in Jordan’s neural network with resilient backpropagation. The MAE was 
increased in all experiments with less than 48 forecasting steps and was most evident when VMD is 
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applied after Ensemble-I. Based on these results, it is not recommended using this type of learning 
function for these neural networks.

Table 10 shows how the Elman (E) neural network shows the best result in all ensemble scenarios 
and VMD applications among the learning functions and neural network models. The lowest value 
occurs with the ensemble mid-range (EMR) with an MAE of 1.01552, and the lowest value of all the 
models is shown in Table 10. This result confirms the analysis results shown in Table 9 by the horizon 
of the forecast. Over the ensemble and VMD application variation, the ensemble average (EAV) 
without VMD application shows the best result in 12 of the 18 scenarios, followed by VMD application 

Table 9. Best model per horizon of forecast (H).

H Application of VMD E-I E-II MAE MSE MAPE sMAPE

3 None EAV ENN 0.6722 0.8593 13.957% 13.231%
4 EMR 0.7235 0.9951 15.192% 14.180%
5 EAV 0.7790 1.1360 16.421% 15.175%
6 After Ensemble-I EMR None 0.8389 1.3117 17.567% 16.365%
12 1.0386 1.9666 22.461% 19.977%
24 1.3495 3.2686 29.016% 25.159%
48 1.6829 4.7951 37.357% 30.775%

Notes: The values are the average over March, June, and September. The bold font indicates the lowest values for the corresponding 
horizon of prediction.

Figure 2. The figure’s notation is defined as follows: LF: Learning Function; B: Backpropagation, M: Backpropagation with 
Momentum, and R: Resilient backpropagation. NN: Neural Network model, where E: Elman NN, J: Jordan NN, and M: Multilayer 
perceptron. VMD: Variational Mode Decomposition; for After ensemble, see .Table 7, Before ensemble, see Table 6, and for None, 
see Table 4.

Table 10. MAE model of the seven time-horizons of the forecast by type of learning function and neural network model (horizontal 
combinations), and by type of ensemble and application of VMD (vertical combination).

Learning Function NN

Ensemble Average (EAV) Ensemble Mid-Range (EMR)

VMD After 
Ensemble

VMD Before 
Ensemble

None 
VMD

VMD After 
Ensemble

VMD Before 
Ensemble

None 
VMD

Backpropagation E 1.03139* 1.05543 1.03253 1.02461* 1.04008 1.02735
J 1.25843 1.07563 1.04644* 1.24829 1.05187 1.04107*
M 1.03677 1.04794 1.0309* 1.02785 1.03177 1.02108*

Backpropagation with 
Momentum

E 1.03419* 1.06436 1.04015 1.02245* 1.04422 1.02616
J 1.26148 1.07154 1.0499* 1.22411 1.05594 1.03979*
M 1.03873 1.04894 1.03152* 1.02889 1.03115 1.02402*

Resilient 
backpropagation

E 1.02752 1.04382 1.02601* 1.01821 1.02552 1.01552*
J 1.59799 1.30438 1.25174* 1.64766 1.22997* 1.26907
M 1.04449 1.05932 1.04116* 1.03039* 1.04264 1.03043

Notes: bold font indicates the lowest MAE by type of ensemble, and the asterisk (*) the lowest values MAE by learning function.
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after the ensemble in only five cases. In general, the ensemble mid-range (EMR) without VMD 
application can be considered the overall best model.

Conclusion

Accurately forecasting wind speed is a crucial stage in the scheduling and management of wind energy 
generation in power systems, and its relevance increases with the growing incorporation of wind power 
into the electricity market. This research proposes an innovative double ensemble hybrid approach for 
wind energy prediction. The approach includes a first ensemble with the average and mid-range of 
a wide variety of 92 ARCH and GARCH models, as a result of combining nine conditional distributions 
for the innovations, five optimization algorithms and two versions of the models considering the 
inclusion of intercept in the mean specification. Taking the original wind speed time series and the 
two forecasts from the first ensemble (average and mid-range), we construct the second ensemble with 
a multilayer perceptron, a JNN, and an ENN, all with three different learning functions. This second 
process gives nine new forecasts for each prediction from the first ensemble.

The inclusion of the variational mode decomposition (VMD) is done in the following two ways: in 
the first step of the modeling process, as in most previous research, and in a new stage of the ensemble 
system, which is between the two ensembles. We could summarize three of the essential aspects seen 
with the results of the experiment as follows:

● The experimental outcomes lead us to divide the prediction horizons into two groups including 
those where VMD inclusion did not improve the ensemble results; these horizons could be 
classified as short-term (3, 4, and 5 steps), and mid- and long-term forecast horizons (6, 12, 24, 
and 48 steps), where the best performance arises with the VMD application after the first ensemble.

● Among the neural network models applied, the Elman neural network shows the best result in all 
the scenarios of ensemble type and application of VMD, without noticeable differences among 
the learning functions.

● Over the GARCH models, the principal-axis optimization method can be considered the best 
overall optimization method for all distributions. We found the normal inverse Gaussian as the 
most suitable for the experiment proposed regarding the innovation distributions.

The research contributes to the existing literature filling the current gap in studying a wide variety 
of innovation distribution and optimization methods that can be implemented with GARCH-type 
models; the present study serves as a guide for selecting the best combinations for forecasting wind 
speed. Similarly, a variational mode decomposition (VMD) application is proposed in a novel way not 
seen in the literature: by applying it to the predictions already made by other models, in this case, in 
ensembles of GARCH-type models.
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