TRABAJO ESPECIAL DE GRADO

INFLUENCIA DEL BORDE DE ATAQUE SOBRE LAS CURVAS CARACTERISTICAS AERODINAMICAS DE PERFILES SERIE FX Y SZ2200

Presentado ante la Ilustre Universidad Central de Venezuela Por el Br. Urdaneta P., Jesús H. Para optar al Título De Ingeniero Mecánico.

Caracas, 2008.

TRABAJO ESPECIAL DE GRADO

INFLUENCIA DEL BORDE DE ATAQUE SOBRE LAS CURVAS CARACTERISTICAS AERODINAMICAS DE PERFILES SERIE FX Y SZ2200

TUTOR ACADÉMICO: Prof. Stefan Zarea

Presentado ante la Ilustre Universidad Central de Venezuela Por el Br. Urdaneta P., Jesús H. Para optar al Título De Ingeniero Mecánico.

Caracas, 2008.

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA MECANICA DEPARTAMENTO DE ENERGETICA

Caracas, 17 de julio de 2.008

ACTA

Los abajo firmantes, miembros del jurado por el Consejo de Escuela de Ingeniería Mecánica, para evaluar el Trabajo Especial de Grado presentado por el bachiller:

JESUS URDANETA

Titulado:

"INFLUENCIA DEL BORDE DE ATAQUE SOBRE LAS CURVAS CARACTERISTICAS AERODINAMICAS DE PERFILES SERIE FX Y SZ2200"

Consideran que el mismo cumple con los requisitos exigidos por el plan de estudio conducente al Titulo de Ingeniero Mecánico.

Prof. Cesar Ferrer Jurado

Prof, Eugenio Sansone

of, Eugenio Sansone Jurado

Prof. Stefan Zarea Tutor

"Hacia el 50^ª Aniversario del 21 de noviembre de 1957, Día del Estudiante"

Autor: Urdaneta P. Jesús H.

INFLUENCIA DEL BORDE DE ATAQUE SOBRE LAS CURVAS CARACTERISTICAS AERODINAMICAS DE PERFILES SERIE FX Y SZ2200 Tutor Académico: Prof. Stefan Zarea, Tesis 258 Pág. Caracas, UCV. Facultad de Ingeniería. Escuela de Ingeniería Mecánica

Palabras Claves: Perfiles Aerodinámicos, Método ZAREA, Curvas Polares, Borde de Ataque.

RESUMEN

El objetivo principal del presente trabajo especial de grado se refiere a la modificación del borde de ataque de varios perfiles serie FX y perfiles serie SZ2200 y la evaluación computacional del efecto correspondiente sobre las curvas características aerodinámicas. El procedimiento para la modificación ideado por el Prof. Stefan Zarea, consiste en sustituir el intradós y el extradós del borde de ataque de un perfil conocido por dos arcos de parábolas. El comportamiento aerodinámico, tanto de los perfiles base como de los perfiles modificados, ha sido evaluado calculando los valores de los coeficientes globales CL, CD, Cm y ɛ para un amplio rango del ángulo de ataque y cinco valores del Numero de Reynolds mediante el software VisualFoil 4.1. En todos los casos estudiados las modificaciones del borde de ataque evidenciaron un incremento del coeficiente de sustentación variando, para $\alpha = 10^{\circ}$ y Re = 1 E6, en el rango de 4,87% y 14,79%. La fineza aerodinámica mostró un incremento para 96% de los perfiles estudiados, demostrándose la eficacidad del procedimiento de modificación utilizado. Para todos los perfiles se calcularon las características geométricas principales; área, espesor máximo, abscisa del espesor máximo, flecha máxima, y abscisa de la flecha máxima. También se realizó la simulación digital del flujo alrededor del perfil base FX 66-17A-175 y del perfil modificado utilizando un programa CFD, determinándose el espectro aerodinámico, la distribución de presión y de velocidad para varios valores de ángulos de incidencia. Además se calcularon los valores de los coeficientes C_L y C_D para ángulos de incidencia de 0°, 5°, 8° y 10°. Con la aplicación del método estudiado se pueden obtener nuevos perfiles con buenas características aerodinámicas a partir de otros ya existentes y en un tiempo de diseño relativamente corto en comparación con que el que llevaría la creación convencional de un nuevo.

DEDICATORIA

Dedico este trabajo a: Mis padres, Humberto y Pilar. Mis hermanos Humberto, Cristina, Virginia y Verónica. La memoria de mi madre Nelly.

AGRADECIMIENTOS

Para la realización de este trabajo hemos contado con la ayuda de varias personas a las cuales quiero expresar mi gratitud.

Al profesor Stefan Zarea, por aceptarme como combatiente para el desarrollo del tema de Tesis que me propuso y permitirme colaborar con su línea de investigación. Por enseñarnos que con esfuerzo, orden y mucha dedicación se pueden lograr los objetivos. Además, por haberme ofrecido el programa VisualFoil 4.1 y una permanente, exigente y eficaz tutoría.

Al Prof. Julio Segura, por haberme iniciado en el uso del programa CFX y permitirme disponer de la sala de simulaciones computacionales donde fueron desarrolladas todas las actividades de la tesis relacionadas con la simulación del flujo alrededor de perfiles utilizando el software CFX.

Al Ing. Miguel Baritto, por transmitirnos sus conocimientos y experiencia en el uso del software CFX los cuales fueron sumamente útiles para la solución de los conflictos que se presentaron.

Al Ing. Julio Aparicio por sus oportunas y veraces respuestas ante el surgimiento de cualquier duda.

A Daniel Trujillo, compañero y amigo de labor, por la paciencia, apoyo y voluntad de trabajo transmitida durante los meses que hemos trabajado en desarrollar esta faena.

A Jorge Juzga, por sus aportes en la solución de problemas computacionales y de modelación de los perfiles modificados.

NOMENCLATURA

- Cl, CL: Coeficiente de sustentación
- C_d , C_D : Coeficiente de arrastre
- C_m , C_M : Coeficiente de momento

 $C_{L(max)}$: Coeficiente de sustentación máxima

Cp: Coeficiente de presión

c : Cuerda del perfil

emax : Espesor máximo

 f_{max} : Curvatura máxima

Re : Numero de Reynolds

 x_c : Abscisa de la curvatura máxima del perfil

xemax : Abscisa del espesor máxima del perfil

xf_{max} : Abscisa de la curvatura máxima del perfil

 α : Ángulo de ataque

 α_{max} : Ángulo de ataque para sustentación máximo

 $\varepsilon = C_L / C_D$: Fineza aerodinámica

 $\varepsilon_M = (C_L / C_D)_{max}$: Fineza aerodinámica máxima

A : Área

- C_c : Valor calculado
- C_e : Valor real

 E_R : Error relativo

- q_{∞} : Presión dinámica de la corriente libre
- ρ : Densidad del Fluido
- ρ_{∞} : Densidad de la corriente libre
- V_{∞} : velocidad de la corriente libre
- L : Fuerza de sustentación
- D : Fuerza de arrastre
- M : Momento
- p: presión
- p_{∞} : presión de la corriente libre

LISTA DE FIGURAS

CAPITULO 3

CAPITULO 1

Figura l	N°
3.1.1	Perfiles Serie FX estudiados17
3.2.1	(a) Contorno y (b) Curvas Polares del perfil FX 38-153. (c) Curvas de Cl/Cd y (d) Cl, Cd
	y Cm vs. Ángulo de ataque del perfil FX 38-15319
3.2.2	(a) Contorno y (b) Curvas Polares del perfil FX 60-126. (c) Curvas de Cl/Cd y (d) Cl, Cd
	y Cm vs. Ángulo de ataque del perfil FX 60-12620
3.2.3	(a) Contorno y (b) Curvas Polares del perfil FX 60-157. (c) Curvas de Cl/Cd y (d) Cl, Cd
	y Cm vs. Ángulo de ataque del perfil FX 60-15721
3.2.4	(a) Contorno y (b) Curvas Polares del perfil FX 60-177. (c) Curvas de Cl/Cd y (d) Cl, Cd
	y Cm vs. Ángulo de ataque del perfil FX 60-17722
3.2.5	(a) Contorno y (b) Curvas Polares del perfil FX 61-140. (c) Curvas de Cl/Cd y (d) Cl, Cd
	y Cm vs. Ángulo de ataque del perfil FX 61-14023
3.2.6	(a) Contorno y (b) Curvas Polares del perfil FX 61-147. (c) Curvas de Cl/Cd y (d) Cl, Cd
	y Cm vs. Ángulo de ataque del perfil FX 61-14724
3.2.7	(a) Contorno y (b) Curvas Polares del perfil FX 61-163. (c) Curvas de Cl/Cd y (d) Cl, Cd
	y Cm vs. Ángulo de ataque del perfil FX 61-16325

Pág.

3.2.8	(a) Contorno y (b) Curvas Polares del perfil FX 61-168. (c) Curvas de Cl/Cd y (d) Cl,	Cd
	y Cm vs. Ángulo de ataque del perfil FX 61-168	26
3.2.9	(a) Contorno y (b) Curvas Polares del perfil FX 61-184. (c) Curvas de Cl/Cd y (d) Cl,	Cd
	y Cm vs. Ángulo de ataque del perfil FX 61-184	27
3.2.10	(a) Contorno y (b) Curvas Polares del perfil FX 63-143. (c) Curvas de Cl/Cd y (d) Cl,	Cd
	y Cm vs. Ángulo de ataque del perfil FX 63-143	28
3.2.11	(a) Contorno y (b) Curvas Polares del perfil FX 63-145. (c) Curvas de Cl/Cd y (d) Cl,	Cd
	y Cm vs. Ángulo de ataque del perfil FX 63-145	29
3.2.12	(a) Contorno y (b) Curvas Polares del perfil FX 63-158. (c) Curvas de Cl/Cd y (d) Cl,	Cd
	y Cm vs. Ángulo de ataque del perfil FX 63-158	30
3.2.13	(a) Contorno y (b) Curvas Polares del perfil FX 66-17A-175. (c) Curvas de Cl/Cd y	(d)
	Cl, Cd y Cm vs. Ángulo de ataque del perfil FX 66-17A-175	31
3.2.14	(a) Contorno y (b) Curvas Polares del perfil FX 66-S-161. (c) Curvas de Cl/Cd y (d)	Cl,
	Cd y Cm vs. Ángulo de ataque del perfil FX 66-S-161	32
3.2.15	(a) Contorno y (b) Curvas Polares del perfil FX 66-S-196. (c) Curvas de Cl/Cd y (d)	Cl,
	Cd y Cm vs. Ángulo de ataque del perfil FX 66-S-196	.33
3.2.16	(a) Contorno y (b) Curvas Polares del perfil FX L-V-152. (c) Curvas de Cl/Cd y (d)	Cl,
	Cd y Cm vs. Ángulo de ataque del perfil FX L-V-152	.34
3.2.17	Cd y Cm vs. Ángulo de ataque del perfil FX L-V-152	.34 Cl,
3.2.17	Cd y Cm vs. Ángulo de ataque del perfil FX L-V-152 (a) Contorno y (b) Curvas Polares del perfil FX S 02-196. (c) Curvas de Cl/Cd y (d) Cd y Cm vs. Ángulo de ataque del perfil FX S 02-196	.34 Cl, 35
3.2.17 3.2.18	Cd y Cm vs. Ángulo de ataque del perfil FX L-V-152	.34 Cl, 35 (d)
3.2.17 3.2.18	Cd y Cm vs. Ángulo de ataque del perfil FX L-V-152	.34 Cl, 35 (d) 36
3.2.17 3.2.18 3.2.19	Cd y Cm vs. Ángulo de ataque del perfil FX L-V-152	.34 Cl, 35 (d) 36 Cl,
3.2.17 3.2.18 3.2.19	Cd y Cm vs. Ángulo de ataque del perfil FX L-V-152 (a) Contorno y (b) Curvas Polares del perfil FX S 02-196. (c) Curvas de Cl/Cd y (d) Cd y Cm vs. Ángulo de ataque del perfil FX S 02-196 (a) Contorno y (b) Curvas Polares del perfil FX S 02/1-158. (c) Curvas de Cl/Cd y Cl, Cd y Cm vs. Ángulo de ataque del perfil FX S 02/1-158 (a) Contorno y (b) Curvas Polares del perfil FX S 02/1-158. (c) Curvas de Cl/Cd y Cl, Cd y Cm vs. Ángulo de ataque del perfil FX S 03-182. (c) Curvas de Cl/Cd y (d) Cd y Cm vs. Ángulo de ataque del perfil FX S 03-182. (c) Curvas de Cl/Cd y (d) Cd y Cm vs. Ángulo de ataque del perfil FX S 03-182	.34 Cl, 35 (d) 36 Cl, 37
3.2.17 3.2.18 3.2.19 3.3.1	Cd y Cm vs. Ángulo de ataque del perfil FX L-V-152 (a) Contorno y (b) Curvas Polares del perfil FX S 02-196. (c) Curvas de Cl/Cd y (d) Cd y Cm vs. Ángulo de ataque del perfil FX S 02-196 (a) Contorno y (b) Curvas Polares del perfil FX S 02/1-158. (c) Curvas de Cl/Cd y Cl, Cd y Cm vs. Ángulo de ataque del perfil FX S 02/1-158 (a) Contorno y (b) Curvas Polares del perfil FX S 02/1-158 (a) Contorno y (b) Curvas Polares del perfil FX S 03-182. (c) Curvas de Cl/Cd y (d) Cd y Cm vs. Ángulo de ataque del perfil FX S 03-182. (c) Curvas de Cl/Cd y (d) Cd y Cm vs. Ángulo de ataque del perfil FX S 03-182 (a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y characterization (d) Cd y Cm vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y characterization (d) Cd y Cm vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y characterization (d) Cd y Cm vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y characterization (d) Cd y Cm vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y characterization (d) Cd y Cm vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y characterization (d) Cd y Cm vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y characterization (d) Cd y Cm vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y characterization (d) Cd y Cm vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y characterization (d) Cd y Cm vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y characterization (d) Cd y Cm vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y characterization (d) Cd y Cm vs. X para Re = 1 E6 (leer Cp(α_M) a la derecharacterization (d) Cd y Cm vs. X para Re = 1 E6 (leer Cp(α_M) a la derecharacterization (d) Cd y Cm vs. X para Re = 1 E6 (leer Cp(α_M) a la derecharacterization (d) Cd y Cm vs. X para Re = 1 E6 (leer Cp(α_M) (d) Cd y Cm vs. X para Re = 1 E6 (leer Cp(α_M) (d) Cd y Cm vs. X para Re = 1 E6 (leer Cp(α_M) (d) Cd y Cm vs. X para Re = 1 E6 (leer Cp(α_M) (d) Cd y Cm vs. X para Re = 1 E6 (leer Cp(α_M) (d) Cd y Cm vs. X para Re = 1	.34 Cl, 35 (d) 36 Cl, 37 (b)
3.2.17 3.2.18 3.2.19 3.3.1	Cd y Cm vs. Ángulo de ataque del perfil FX L-V-152 (a) Contorno y (b) Curvas Polares del perfil FX S 02-196. (c) Curvas de Cl/Cd y (d) Cd y Cm vs. Ángulo de ataque del perfil FX S 02-196 (a) Contorno y (b) Curvas Polares del perfil FX S 02/1-158. (c) Curvas de Cl/Cd y Cl, Cd y Cm vs. Ángulo de ataque del perfil FX S 02/1-158 (a) Contorno y (b) Curvas Polares del perfil FX S 02/1-158 (a) Contorno y (b) Curvas Polares del perfil FX S 03-182. (c) Curvas de Cl/Cd y (d) Cd y Cm vs. Ángulo de ataque del perfil FX S 03-182. (c) Curvas de Cl/Cd y (d) Cd y Cm vs. Ángulo de ataque del perfil FX S 03-182 (a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y Curvas Polares del perfil FX 38-153. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas	 .34 .21 .35 .35 .36 .21 .37 .37 .37 .37 .38 .37 .37 .38
3.2.17 3.2.18 3.2.19 3.3.1	Cd y Cm vs. Ángulo de ataque del perfil FX L-V-152 (a) Contorno y (b) Curvas Polares del perfil FX S 02-196. (c) Curvas de Cl/Cd y (d) Cd y Cm vs. Ángulo de ataque del perfil FX S 02-196 (a) Contorno y (b) Curvas Polares del perfil FX S 02/1-158. (c) Curvas de Cl/Cd y Cl, Cd y Cm vs. Ángulo de ataque del perfil FX S 02/1-158 (a) Contorno y (b) Curvas Polares del perfil FX S 02/1-158 (a) Contorno y (b) Curvas Polares del perfil FX S 03-182. (c) Curvas de Cl/Cd y (d) Cd y Cm vs. Ángulo de ataque del perfil FX S 03-182 (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y Curvas Polares del perfil FX 38-153. Met. Panel y Capa Límite. 220 Puntos. (c) Curva de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil FX 38-153	 .34 Cl, 35 (d) 36 Cl, 37 (b) vas 39
3.2.17 3.2.18 3.2.19 3.3.1 3.3.2	Cd y Cm vs. Ángulo de ataque del perfil FX L-V-152 (a) Contorno y (b) Curvas Polares del perfil FX S 02-196. (c) Curvas de Cl/Cd y (d) Cd y Cm vs. Ángulo de ataque del perfil FX S 02-196 (a) Contorno y (b) Curvas Polares del perfil FX S 02/1-158. (c) Curvas de Cl/Cd y Cl, Cd y Cm vs. Ángulo de ataque del perfil FX S 02/1-158 (a) Contorno y (b) Curvas Polares del perfil FX S 02/1-158 (a) Contorno y (b) Curvas Polares del perfil FX S 03-182. (c) Curvas de Cl/Cd y (d) Cd y Cm vs. Ángulo de ataque del perfil FX S 03-182 (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y Curvas Polares del perfil FX 38-153. Met. Panel y Capa Límite. 220 Puntos. (c) Curva de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil FX 38-153 (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y Curvas Polares del perfil FX 38-153. Met. Panel y Capa Límite. 220 Puntos. (c) Curva de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil FX 38-153 (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y for the cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil FX 38-153	 .34 Cl, 35 (d) 36 Cl, 37 (b) vas 39 (b)
3.2.17 3.2.18 3.2.19 3.3.1 3.3.2	Cd y Cm vs. Ángulo de ataque del perfil FX L-V-152 (a) Contorno y (b) Curvas Polares del perfil FX S 02-196. (c) Curvas de Cl/Cd y (d) Cd y Cm vs. Ángulo de ataque del perfil FX S 02-196 (a) Contorno y (b) Curvas Polares del perfil FX S 02/1-158. (c) Curvas de Cl/Cd y Cl, Cd y Cm vs. Ángulo de ataque del perfil FX S 02/1-158 (a) Contorno y (b) Curvas Polares del perfil FX S 02/1-158. (c) Curvas de Cl/Cd y (d) Cd y Cm vs. Ángulo de ataque del perfil FX S 03-182. (c) Curvas de Cl/Cd y (d) Cd y Cm vs. Ángulo de ataque del perfil FX S 03-182. (c) Curvas de Cl/Cd y (d) Cd y Cm vs. Ángulo de ataque del perfil FX S 03-182 (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y Curvas Polares del perfil FX 38-153. Met. Panel y Capa Límite. 220 Puntos. (c) Curva de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil FX 38-153 (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y Curvas Polares del perfil FX 38-153. Met. Panel y Capa Límite. 220 Puntos. (c) Curva de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil FX 38-153 (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y Curvas Polares del perfil FX 60-126 . Met. Panel y Capa Límite. 220 Puntos. (c) Curva	 .34 Cl, 35 (d) 36 Cl, 37 (b) vas 39 (b) vas

- 3.3.3.- (a) Cp (0°, 5° y α_M: α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil FX 60-157. Met. Panel y Capa Límite. 200 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil FX 60-157......41
- 3.3.4.- (a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil FX 60-177. Met. Panel y Capa Límite. 200 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil FX 60-177......42
- 3.3.5.- (a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil FX 61-140. Met. Panel y Capa Límite. 100 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil FX 61-140......43
- 3.3.6.- (a) Cp (0°, 5° y α_M: α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil FX 61-147. Met. Panel y Capa Límite. 200 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil FX 61-147......44

- 3.3.9.- (a) Cp (0°, 5° y α_M: α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil FX 61-184. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil FX 61-184......47
- 3.3.10.- (a) Cp (0°, 5° y α_M: α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil FX 63-143. Met. Panel y Capa Límite. 180 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil FX 63-143......48
- 3.3.11.- (a) Cp (0°, 5° y α_M: α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil FX 63-145. Met. Panel y Capa Límite. 180 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil FX 63-145......49
- 3.3.12.- (a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil FX 63-158. Met. Panel y Capa Límite. 200 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil FX 63-158......50

- 3.3.14.- (a) Cp (0°, 5° y α_M: α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b)
 Curvas Polares del perfil FX 66-S-161. Met. Panel y Capa Límite. 220 Puntos. (c)
 Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil FX 66-S-161......52
- 3.3.15.- (a) Cp (0°, 5° y α_M: α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil FX 66-S-196. Met. Panel y Capa Límite. 200 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil FX 66-S-196......53
- 3.3.16.- (a) Cp (0°, 5° y α_M: α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil FX L-V-152. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil FX L-V-152......54
- 3.3.17.- (a) Cp (0°, 5° y α_M: α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil FX S 02-196. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil FX S 02-196.....55
- 3.3.19.- (a) Cp (0°, 5° y α_M: α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil FX S 03-182. Met. Panel y Capa Límite. 180 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil FX S 03-182.....57

CAPITULO 4

Pág.

Figura N°

- 4.1.1.- Contorno de perfiles base y modificados.....104
- 4.2.1.- (a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil FX 60-126 . Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil FX 60-126......110

- 4.2.2.- (a) Cp (0°, 5° y α_M: α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil FX 60-157. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil FX 60-157......111
- 4.2.3.- (a) Cp (0°, 5° y α_M: α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil FX 61-147. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil FX 61-147......112
- 4.2.4.- (a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil FX 61-163. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil FX 61-163......113
- 4.2.5.- (a) Cp (0°, 5° y α_M: α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil FX 61-168. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil FX 61-168......114
- 4.2.6.- (a) Cp (0°, 5° y α_M: α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil FX 61-184. Met. Panel y Capa Límite. 200 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil FX 61-184......115
- 4.2.7.- (a) Cp (0°, 5° y α_M: α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil FX 63-143. Met. Panel y Capa Límite. 180 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil FX 63-143......116
- 4.2.8.- (a) Cp (0°, 5° y α_M: α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil FX 63-145. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil FX 63-145......117

- 4.3.1.- (a) Cp (0°, 5° y α_M: α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil ZAREA 60-126. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil ZAREA 60-126.

- 4.3.5.- (a) Cp (0°, 5° y α_M: α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil ZAREA 61-168. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil ZAREA 61-168.
- 4.3.6.- (a) Cp (0°, 5° y α_M: α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil ZAREA 61-184. Met. Panel y Capa Límite. 200 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil ZAREA 61-184.
- 4.3.8.- (a) Cp (0°, 5° y α_M: α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil ZAREA 63-145. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil ZAREA 63-145.
- 4.3.9.- (a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil ZAREA 63-158. Met. Panel y Capa Límite. 160 Puntos. (c)

- 4.3.10.- (a) Cp (0°, 5° y α_M: α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil ZAREA 66-17A-175. Met. Panel y Capa Límite. 280 Puntos.
 (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil ZAREA 66-17A-175.
- 4.3.12.- (a) Cp (0°, 5° y α_M: α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil ZAREA 66-S-196. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil ZAREA 66-S-196.
 137
- 4.3.13.- (a) Cp (0°, 5° y α_M: α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil ZAREA L-V-152. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil ZAREA L-V-152.
- 4.3.14.- (a) Cp (0°, 5° y α_M: α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil ZAREA S 02-196. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil ZAREA S 02-196.
- 4.3.16.- (a) Cp (0°, 5° y α_M: α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil ZAREA S 03-182. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil ZAREA S 03-182.

- 4.4.1.- (a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil SZ2261. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil SZ2261......142
- 4.4.2.- (a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil SZ2262. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil SZ2262......143
- 4.4.3.- (a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil SZ2263. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil SZ2263......144
- 4.4.4.- (a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil SZ2264. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil SZ2264......145
- 4.4.5.- (a) Cp (0°, 5° y α_M: α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil SZ2265. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil SZ2265......146
- 4.4.6.- (a) Cp (0°, 5° y α_M: α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil SZ2266. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil SZ2266......147
- 4.4.8.- (a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil SZ2268. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil SZ2268......149
- 4.4.9.- (a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil SZ2269. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil SZ2269......150
- 4.4.10.- (a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil SZ2270. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil SZ2270......151

- 4.4.11.- (a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil SZ2271. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil SZ2271......152
- 4.4.12.- (a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil SZ2272. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil SZ2272......153
- 4.4.13.- (a) Cp (0°, 5° y α_M: α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil SZ2273. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil SZ2273......154
- 4.4.14.- (a) Cp (0°, 5° y α_M: α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil SZ2274. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil SZ2274......155
- 4.4.16.- (a) Cp (0°, 5° y α_M: α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil SZ2276. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil SZ2276......157
- 4.4.18.- (a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil SZ2278. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil SZ2278......159
- 4.4.19.- (a) Cp (0°, 5° y α_M: α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil SZ2279. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil SZ2279......160
- 4.4.20.- (a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil SZ2280. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil SZ2280......161

- 4.4.21.- (a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil SZ2281. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil SZ2281......162
- 4.4.22.- (a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil SZ2282. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil SZ2282......163
- 4.4.23.- (a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil SZ2283. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil SZ2283......164
- 4.4.24.- (a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil SZ2284. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil SZ2284......165

- 4.4.28.- (a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil SZ2288. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil SZ2288......169
- 4.4.29.- (a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil SZ2289. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil SZ2289......170
- 4.4.30.- (a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil SZ2290. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil SZ2290......171

- 4.5.1.- (a) Cp (0°, 5° y α_M: α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil SZ2262M. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil SZ2262M......172
- 4.5.2.- (a) Cp (0°, 5° y α_M: α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil SZ2264M. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil SZ2264M......173
- 4.5.3.- (a) Cp (0°, 5° y α_M: α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil SZ2266M. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil SZ2266M......174
- 4.5.4.- (a) Cp (0°, 5° y α_M: α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil SZ2274M. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil SZ2274M......175
- 4.5.5.- (a) Cp (0°, 5° y α_M: α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil SZ2279M. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil SZ2279M......176

- 4.5.8.- (a) Cp (0°, 5° y α_M : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_M) a la derecha) y (b) Curvas Polares del perfil SZ2290M. Met. Panel y Capa Límite. 220 Puntos. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil SZ2290M......179

CAPITULO 5:

Figura N	٧°	U
5.1.1	Estructura del software ANSYS CFX	210
5.2.1	Dibujo de la geometría e identificación de sus regiones	212
5.2.2	Influencia de los puntos de control y expansión sobre la malla de superficie	213

Pág.

5.2.3	Sensibilidad de la malla214
5.3.1	Líneas de corriente sobre el perfil FX 66-17A-175, $\alpha = 0^{\circ}$, Re = 1E6219
5.3.2	Líneas de corriente sobre el perfil FX 66-17A-175, $\alpha = 5^{\circ}$, Re = 1E6219
5.3.3	Líneas de corriente sobre el perfil FX 66-17A-175, $\alpha = 10^{\circ}$, Re = 1E6220
5.3.4	Distribución de presión sobre el perfil FX 66-17A-175, $\alpha = 0^{\circ}$, Re = 1E6221
5.3.5	Distribución de presión sobre el perfil FX 66-17A-175, $\alpha = 5^{\circ}$, Re = 1E6221
5.3.6	Distribución de presión sobre el perfil FX 66-17A-175, $\alpha = 10^{\circ}$, Re = 1E6222
5.3.7	Distribución de velocidad sobre el perfil FX 66-17A-175, $\alpha = 0^{\circ}$, Re = 1E6223
5.3.8	Distribución de velocidad sobre el perfil FX 66-17A-175, $\alpha = 5^{\circ}$, Re = 1E6223
5.3.9	Distribución de velocidad sobre el perfil FX 66-17A-175, $\alpha = 10^{\circ}$, Re = 1E6224
5.3.10	Distribución vectorial de la velocidad del flujo alrededor del perfil FX 66-17A-175.
	$\alpha = 0^{\circ}, \text{ Re} = 1\text{E}6225$
5.3.11	Distribución vectorial de la velocidad del flujo alrededor del perfil FX 66-17A-175.
	$\alpha = 5^{\circ}, \text{Re} = 1\text{E}6226$
5.3.12	Distribución vectorial de la velocidad del flujo alrededor del perfil FX 66-17A-175.
	$\alpha = 10^{\circ}, \text{ Re} = 1\text{E6}226$
5.3.13.	Representación vectorial de la fuerza, proyectada en el eje Y, generada por el fluido
	sobre la superficie del perfil FX 66-17A-175. $\alpha = 0^{\circ}$, Re = 1E6227
5.3.14.	Representación vectorial de la fuerza, proyectada en el eje Y, generada por el fluido
	sobre la superficie del perfil FX 66-17A-175. $\alpha = 5^{\circ}$, Re = 1E6228
5.3.15.	Representación vectorial de la fuerza, proyectada en el eje Y, generada por el fluido
	sobre la superficie del perfil FX 66-17A-175. $\alpha = 10^{\circ}$, Re = 1E6228
5.4.1	Líneas de corriente sobre el perfil ZAREA 66-17A-175, $\alpha = 0^{\circ}$, Re = 1E6231
5.4.2	Líneas de corriente sobre el perfil ZAREA 66-17A-175, $\alpha = 5^{\circ}$, Re = 1E6231
5.4.3	Líneas de corriente sobre el perfil ZAREA 66-17A-175, $\alpha = 10^{\circ}$, Re = 1E6232
5.4.4	Distribución de presión sobre el perfil ZAREA 66-17A-175, $\alpha = 0^{\circ}$, Re = 1E6233
5.4.5	Distribución de presión sobre el perfil ZAREA 66-17A-175, $\alpha = 5^{\circ}$, Re = 1E6233
5.4.6	Distribución de presión sobre el perfil ZAREA 66-17A-175, $\alpha = 10^{\circ}$, Re = 1E6234
5.4.7	Distribución de velocidad sobre el perfil ZAREA 66-17A-175, $\alpha = 0^{\circ}$, Re = 1E6235
5.4.8	Distribución de velocidad sobre el perfil ZAREA 66-17A-175, $\alpha = 5^{\circ}$, Re = 1E6236
5.4.9	Distribución de velocidad sobre el perfil ZAREA 66-17A-175, $\alpha = 10^{\circ}$, Re = 1E6236

- 5.4.16. Representación vectorial de la fuerza, proyectada en el eje Y, generada por el fluido sobre la superficie del perfil ZAREA 66-17A-175. $\alpha = 10^{\circ}$, Re = 1E6.......242

LISTA DE TABLAS

CAPITULO 3

Tabla N	o
3.4.1	Comparación entre las características aerodinámicas experimentales y computacionales
	para el perfil FX 38-153 a diferentes Números de Reynolds59
3.4.2	Comparación entre las características aerodinámicas experimentales y computacionales
	para el perfil FX 60-126 a diferentes Números de Reynolds62
3.4.3	Comparación entre las características aerodinámicas experimentales y computacionales
	para el perfil FX 60-157 a diferentes Números de Reynolds64
3.4.4	Comparación entre las características aerodinámicas experimentales y computacionales
	para el perfil FX 60-177 a diferentes Números de Reynolds
3.4.5	Comparación entre las características aerodinámicas experimentales y computacionales
	para el perfil FX 61-140 a diferentes Números de Reynolds71
3.4.6	Comparación entre las características aerodinámicas experimentales y computacionales
	para el perfil FX 61-147 a diferentes Números de Reynolds73
3.4.7	Comparación entre las características aerodinámicas experimentales y computacionales
	para el perfil FX 61-163 a diferentes Números de Reynolds75
3.4.8	Comparación entre las características aerodinámicas experimentales y computacionales
	para el perfil FX 61-168 a diferentes Números de Reynolds77
3.4.9	Comparación entre las características aerodinámicas experimentales y computacionales
	para el perfil FX 61-184 a diferentes Números de Reynolds
3.4.10	Comparación entre las características aerodinámicas experimentales y computacionales
	para el perfil FX 63-143 a diferentes Números de Reynolds
3.4.11	Comparación entre las características aerodinámicas experimentales y computacionales
	para el perfil FX 63-145 a diferentes Números de Reynolds
3.4.12	Comparación entre las características aerodinámicas experimentales y computacionales
	para el perfil FX 63-158 a diferentes Números de Reynolds
3.4.13	Comparación entre las características aerodinámicas experimentales y computacionales
	para el perfil FX 66-17A-175 a diferentes Números de Reynolds

Pág.

- 3.4.16.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX L-V-152 a diferentes Números de Reynolds......91
- 3.4.17.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX S 02-196 a diferentes Números de Reynolds......92

CAPITULO 4

Tabla N°

Pág.

4.6.1.- Comparación entre las características aerodinámicas de los perfiles FX 60-126 y la modificación ZAREA 60-126 evaluados a diferentes Números de Reynolds......182 4.6.2.- Comparación entre las características aerodinámicas de los perfiles FX 60-157 y la modificación ZAREA 60-157 evaluados a diferentes Números de Reynolds......184 4.6.3.-Comparación entre las características aerodinámicas de los perfiles FX 61-147 y la modificación ZAREA 61-147 evaluados a diferentes Números de Reynolds......185 4.6.4.-Comparación entre las características aerodinámicas de los perfiles FX 61-163 y la modificación ZAREA 61-163 evaluados a diferentes Números de Reynolds......186 4.6.5.-Comparación entre las características aerodinámicas de los perfiles FX 61-168 y la modificación ZAREA 61-168 evaluados a diferentes Números de Reynolds......187 4.6.6.-Comparación entre las características aerodinámicas de los perfiles FX 61-184 y la modificación ZAREA 61-184 evaluados a diferentes Números de Reynolds......188 4.6.7.-Comparación entre las características aerodinámicas de los perfiles FX 63-143 y la

modificación ZAREA 63-143 evaluados a diferentes Números de Reynolds......189

- 4.6.8.- Comparación entre las características aerodinámicas de los perfiles FX 63-145 y la modificación ZAREA 63-145 evaluados a diferentes Números de Reynolds......190
- 4.6.9.- Comparación entre las características aerodinámicas de los perfiles FX 63-158 y la modificación ZAREA 63-158 evaluados a diferentes Números de Reynolds......191
- 4.6.10.- Comparación entre las características aerodinámicas de los perfiles FX 66-17A-175 y la modificación ZAREA 66-17A-175 evaluados a diferentes Números de Reynolds.....192
- 4.6.11.- Comparación entre las características aerodinámicas de los perfiles FX 66-S-161 y la modificación ZAREA 66-S-161 evaluados a diferentes Números de Reynolds.......193
- 4.6.12.- Comparación entre las características aerodinámicas de los perfiles FX 66-S-196 y la modificación ZAREA 66-S-196 evaluados a diferentes Números de Reynolds......194
- 4.6.13.- Comparación entre las características aerodinámicas de los perfiles FX L-V-152 y la modificación ZAREA L-V-152 evaluados a diferentes Números de Reynolds.......195
- 4.6.14.- Comparación entre las características aerodinámicas de los perfiles FX S 02-196 y la modificación ZAREA S 02-196 evaluados a diferentes Números de Reynolds.......196

CAPITULO 5

Pág.

Tabla N°

5.3.1	Parámetros de simulación para el perfil FX 66-17A-175. Re= 1.000.000218
5.4.1	Parámetros de simulación para el perfil ZAREA 66-17A-175. Re= 1.000.000230
5.5.1	Valores de velocidad de entrada en función del Número de Reynolds243
5.5.2	Comparación entre las características aerodinámicas experimentales y las
	computacionales obtenidas por simulaciones CFD para el perfil FX 66-17A-175 a
	diferentes Números de Reynolds
5.5.3	Comparación entre las características aerodinámicas computacionales obtenidas con el
	software VisualFoil y las obtenidas mediante simulaciones CFD para el perfil FX 66-
	17A-175 a diferentes Números de Reynolds246
5.5.4	Comparación entre las características aerodinámicas computacionales obtenidas con el
	software VisualFoil y las obtenidas mediante simulaciones CFD para el perfil ZAREA
	66-17A-175 a diferentes Números de Reynolds247
5.5.5	Comparación entre las características aerodinámicas de los perfiles FX 66-17A-175 y la
	modificación ZAREA 66-17A-175 obtenidas a partir de las simulaciones CFD248

PORTADA	I
RESUMEN	II
DEDICATORIA	III
AGRADECIMIENTOS	IV
NOMENCLATURA	V
LISTA DE FIGURAS	VI
LISTA DE TABLAS	XX
INDICE	XXIV
0. INTRODUCCIÓN	1
1. CAPITULO 1: FORMULACIÓN DEL PROBLEMA Y METODOLOGÍA DE ESTU	JDIO3
1.1. Planteamiento del tema	3
1.2. Importancia del estudio	3
1.3. Objetivos	4
1.4. Metodología de trabajo	5
1.5. Nociones básicas sobres perfiles aerodinámicos	6
1.5.1 Parámetros geométricos principales	6
1.5.2 Curvas características aerodinámicas	7
2. CAPITULO 2: ANTECEDENTES Y ESTUDIOS PREVIOS	11
3. CAPITULO 3: CARACTERISTICAS AERODINÁMICAS DE PERFILES SERIE F	X15
3.1. Perfiles de referencia	15
3.2. Curvas características aerodinámicas experimentales	18
3.3. Evaluación computacional de 19 perfiles FX	
3.4. Comparación de los resultados computacionales y experimentales	
3.5. Comentarios	
4. CAPITULO 4: EVALUACION COMPUTACIONAL DE PERFILES DE LA S	ERIE FX,
SZ2200 Y MODIFICADOS	101
4.1. Modificación del borde de ataque y codificación de los nuevos perfiles	102
4.2. Evaluación computacional de los perfiles FX base	110
4.3. Evaluación computacional de los perfiles ZAREA (FX modificados)	126
4.4. Evaluación computacional de los perfiles SZ2200	142

INDICE

4.5. Evaluación computacional de los perfiles SZ2200 modificados	172
4.6. Comparación de las características aerodinámicas de los perfiles base y modific	ados180
4.7. Comentarios	
5. CAPITULO 5: SIMULACIÓN DEL FLUJO ALREDEDOR DE DOS	PERFILES
UTILIZANDO EL PROGRAMA ANSYS CFX	
5.1. Nociones Básicas	209
5.1.1. Estructura del software ANSYS CFX	
5.2. Metodología de trabajo y parámetros establecidos	211
5.3. Simulación computacional del flujo alrededor del perfil FX 66-17A-175	218
5.4. Simulación computacional del flujo alrededor del perfil ZAREA 66-17A-175	230
5.5. Tablas Comparativas	243
5.6. Comentarios	249
6. CONCLUSIONES Y RECOMENDACIONES	251
7. REFERENCIAS BIBLIOGRAFICAS	254
ANEXOS	258

INTRODUCCIÓN

La necesidad de incrementar la eficiencia de las turbomáquinas industriales, hélices, aviones, etc., conlleva al desarrollo de nuevos perfiles hidro-aerodinámicos.

Los especialistas en esta área aplican diferentes métodos para desarrollar perfiles aerodinámicos adecuados a requerimientos específicos.

En la escuela de Ingeniería Mecánica de la UCV, el Prof. Stefan Zarea ha ideado métodos propios para el trazado de nuevos perfiles, que en distintos trabajos de investigación y tesis de pregrado y postgrado han sido evaluados computacionalmente e inclusive experimentalmente.

Una de las líneas de acción cosiste en aprovechar los perfiles existentes a los cuales se modificarían adecuadamente bien sea el borde de ataque, el borde de fuga, o los dos bordes a fin de mejorar el desempeño aerodinámico, luego evaluando el comportamiento a través de los coeficientes aerodinámicos globales: C_L , C_D , C_m y fineza aerodinámicas, ε . Para tal fin se dispone de programas de computación. De esta manera se pueden evaluar fácilmente los nuevos perfiles, se logra trazar las curvas características aerodinámicas y se accede a la comparación con las curvas características de los perfiles existentes. De esta manera, en un periodo de tiempo limitado se pueden desarrollar un número relativamente grande de perfiles acercándose a una optimización.

Para esta investigación el Prof. Tutor ha escogido varios perfiles de la serie FX y SZ2200, que se estudiaron sistemáticamente con la metodología ya implementada en trabajos previos (Aparicio, G. J. A., 2006, Ferrer, C., 2007).

El informe esta organizado según los requerimientos definidos por las normativas de la EIM-UCV. y está dividido en cinco capítulos acompañados de las conclusiones y recomendaciones, la referencias bibliografiítas y un anexo que contiene información sobre los modelos matemáticos utilizados por el código CFX.

El primer capitulo se dedicó al planteamiento del tema, objetivos propuestos, metodología de trabajo y una breve información teórica referente a perfiles aerodinámicos.

En el segundo capitulo se expone de manera muy resumida una reseña histórica de numerosos trabajos previos relacionados al tema de tesis. Entre ellos se incluyeron investigaciones en el área, tutoradas anteriormente por el Prof. Zarea en la escuela de Ingeniería Mecánica de la UCV y de la USB.

1

El tercer capitulo muestra algunos contornos de los perfiles de la serie FX estudiados junto a las curvas características obtenidas experimentalmente (obtenidas de la bibliografía) y de forma computacional (generadas por la evaluación en el programa VisualFoil 4.1) en un formato adecuado para la comparación, todo esto con el fin de evaluar el comportamiento de la herramienta computacional en la predicción de los coeficientes aerodinámicos para las geometrías estudiadas, que son diferentes a las de los perfiles NACA para los cuales ha sido elaborado el código VisualFoil 4.1.

En el cuarto capitulo se explica el procedimiento de las modificaciones realizadas en el borde de ataque de los perfiles, y se plantea la codificación de los nuevos perfiles generados. Se incluyeron curvas características aerodinámicas computacionales obtenidas con el programa VisualFoil 4.1. de los perfiles de la serie FX, ZAREA (FX modificados), SZ2200 y SZ2200 modificados. La parte final muestra una comparación entre las características aerodinámicas de los perfiles base y modificados y comentarios referentes a estos resultados.

El quinto capitulo está dedicado a la simulación del flujo alrededor de un perfil base (FX 66-17A-175) y su modificación (ZAREA 66-17A-175) a través de un software CFD. Se explica la metodología de trabajo utilizada y las condiciones elegidas para la simulación. Se muestran algunas imágenes y resultados obtenidos del experimento computacional. Este tipo de simulaciones se realiza por la primera vez en la EIM-UCV.

En las conclusiones se sintetiza el cumplimiento de los objetivos, se resaltan aspectos importantes de los resultados. También se formulan algunas recomendaciones para la realización de trabajos futuros relacionados con este.

En las referencias bibliográficas se muestra el material utilizado para la realización de este proyecto.

En la parte de Anexos se adjunta información adicional sobre el código CFX.

1. CAPITULO 1: FORMULACIÓN DEL PROBLEMA Y METODOLOGIA DE ESTUDIO

1.1. PLANTEAMIENTO DEL TEMA

En este Trabajo Especial se estudiará de forma computacional la influencia de la modificación geométrica del borde de ataque en perfiles de serie FX y SZ-2200 sobre las curvas características aerodinámicas con el fin de incrementar los valores del coeficiente de sustentación y la fineza aerodinámica obtenidos de los perfiles base.

Para ello se sustituirá el borde de ataque extendido sobre un aproximado de 20% de la cuerda por curvas similares a parábolas asimétricas que modifiquen la capa límite y eliminen el peligro de aparición de burbujas, las cuales conducen a la disminución del coeficiente de sustentación y de la fineza aerodinámica para ciertos números de Reynolds.

Para evaluar tanto los perfiles base como los modificados se utilizará el Software de computación disponible VisualFoil 4.1. Estos resultados computacionales se compararán con experimentales obtenidos de la bibliografía con el fin de evaluar la confiabilidad del mismo.

Se simulará el flujo alrededor de un perfil base de la serie FX y el modificado con ayuda del software CFD, ANSYS CFX, y se compararán los resultados de los mismos a fin de examinar los beneficios de la modificación. También se realizará la comparación con los datos experimentales y con los valores arrojados por el código VisualFoil 4.1.

1.2. IMPORTANCIA DEL ESTUDIO

La necesidad de mejorar el rendimiento de diferentes turbomáquinas, aeronaves, entre otros, involucra un incremento en la eficacia de cada uno de sus componentes. En todos estos casos anteriores es necesaria la utilización de perfiles aerodinámicos, y por lo tanto una mejora en su eficiencia se verá reflejada en el provecho de los dispositivos en que sean aplicados.

Es por ello que desde ya hace varios años el Prof. Dr. Ing. Stefan Zarea ha realizado numerosos trabajos enfocados en el estudio de perfiles clásicos, modificación en la geometría de estos perfiles, y desarrollo de nuevos perfiles con el objeto de incrementar los valores de los coeficientes de sustentación y la fineza aerodinámica.

El problema estudiado reviste tanto importancia teórica como aplicativa. Desde punto de vista teórico, el procedimiento utilizado permite la obtención con facilidad de nuevos perfiles a

partir de perfiles conocidos. Al mejorar el desempeño aerodinámico de los perfiles se incrementara la eficiencia de las aspas o alas construidas utilizando estos perfiles.

1.3. OBJETIVOS

OBJETIVO PRINCIPAL

Estudiar computacionalmente la influencia de la modificación del borde de ataque de algunos perfiles serie FX y SZ2200 con el método ZAREA sobre las curvas características aerodinámicas de perfiles de serie FX y SZ 2200.

OBJETIVOS ESPECIFICOS

El objetivo principal se logrará con el cumplimiento de los objetivos específicos y alcances mencionados a continuación:

- Seleccionar 20 perfiles de la serie FX y SZ 2200, los cuales serán considerados como perfiles base, que serán estudiados y luego modificados.
- Trazar las curvas características de los perfiles base seleccionados.
- Modificar los bordes de ataque según las indicaciones del Prof. guía.
- Calcular las características geométricas de los perfiles base y modificados, (área, espesor máximo, abscisa del espesor máximo, flecha máxima, y abscisa de la flecha máxima).
- Trazar las curvas características de los perfiles modificados.
- Interpretar los resultados mediante la comparación de las curvas características aerodinámicas de los perfiles base y modificados.
- Simular el flujo alrededor de un perfil serie FX y el modificado utilizando el programa ANSYS CFX.

1.4. METODOLOGÍA DE TRABAJO

El cumplimiento del objetivo principal y los alcances previstos requieren la realización de las siguientes actividades (A_i):

- A₁- Recopilación y estudio de la bibliografía especifica.
- A₂- Adquirir destreza en el manejo de los programas computacionales VisualFoil 4.1, Grapher y CFX.
- A₃- Seleccionar los perfiles base FX y SZ 2200, en común acuerdo con el Prof. tutor.
- A₄- Trazar computacionalmente las curvas características aerodinámicas de los perfiles base.
- A₅- Modificar los bordes de ataque de los perfiles base utilizando las curvas sugeridas por el Prof. tutor o de su propia selección.
- A₆- Cálculo de los parámetros aerodinámicos y trazado de las curvas características de las mejores versiones de los perfiles modificados.
- A7- Cálculo de los parámetros geométricos de los perfiles estudiados.
- A8- Comparar las curvas características de los perfiles modificados y de los perfiles base.
- A₉- Calcular y graficar el espectro aerodinámico y la distribución de presión y de velocidad sobre un perfil FX y el modificado.
- A₁₀- Formular las conclusiones sobre el procedimiento de modificación del borde de ataque implementado.
- A₁₁- Redacción del informe final.
- A₁₂- Defensa pública.

1.5. NOCIONES BÁSICAS SOBRE PERFILES AERODINÁMICOS

Siguiendo la terminología aceptada en la actualidad (Anderson, 2006) se presentan las nociones geométricas y dinámicas principales referentes a perfiles aerodinámicos.

1.5.1. PARÁMETROS GEOMÉTRICOS PRINCIPALES

Un perfil es la forma bidimensional que se obtiene de la sección transversal de un ala o del alabe de cualquier turbomáquina y consiste de un contorno cerrado alargado en la dirección del flujo delimitando un dominio de ancho variable.

De acuerdo con las condiciones bajo las cuales va a funcionar el perfil, la forma del perfil puede variar ampliamente. Los perfiles bajo régimen subsónico, tienen el borde de ataque redondeado y el borde de fuga termina de espesor pequeño.

Fig. 1.5.1.1- Características geométricas principales de un perfil aerodinámico.

En la figura superior se observa la nomenclatura establecida por NACA para la identificación de cada uno de los parámetros geométricos principales de un perfil aerodinámico.

El esqueleto es la curva conformada por los puntos equidistantes entre el extradós e intradós medidos convencionalmente en la dirección perpendicular a la cuerda del perfil.

El borde de ataque es el punto más adelantado del esqueleto, aunque, en la práctica se considera la zona del perfil correspondiente al 10% de la cuerda.

El borde de fuga es el punto mas retrasado del esqueleto. De la misma manera que en el caso anterior, el borde de fuga, en la practica, representa la zona posterior del perfil correspondiente al 5% ó 10% de la cuerda.

La línea de la cuerda es el segmento de recta ficticio que une el borde de ataque con el borde de fuga.

La cuerda (c) es la distancia entre el borde de ataque y el de fuga medida a lo largo de la línea de la cuerda. Generalmente las otras dimensiones del perfil se encuentran referidas al valor de la cuerda.

La flecha del esqueleto es la distancia medida en dirección perpendicular a la línea de la cuerda entre el esqueleto y la línea de la cuerda.

El espesor es la distancia medida en dirección perpendicular a la línea de la cuerda entre el extradós y el intradós.

El espesor máximo representa el valor más alto del espesor del perfil.

1.5.2. CURVAS CARACTERÍSTICAS AERODINÁMICAS

Los únicos mecanismos de los que provee la naturaleza para transmitir la fuerza a un cuerpo dentro de un fluido en movimientos son la distribución de presión y de esfuerzos cortantes sobre la superficie del mismo. El efecto de las distribuciones de presión y esfuerzo cortante integrados sobre la superficie completa del cuerpo son representados como una fuerza aerodinámica resultante y un momento aplicado sobre la entidad como se observa en la figura 1.5.2.1.

Fig. 1.5.2.1.- Fuerza y momento aerodinámico resultante sobre un perfil.

La fuerza resultante puede ser descompuesta en dos componentes relativas a la dirección del vector de velocidad de la corriente libre (V_{∞}) tal y como se muestra en la figura 1.5.2.2.

Fig. 1.5.2.2.- Fuerza aerodinámica resultante y sus componentes.

A la componente de la fuerza aerodinámica resultante en dirección perpendicular al vector de velocidad de corriente libre se le denomina fuerza de de sustentación (*L*). Mientras que la otra componente de la fuerza aerodinámica resultante, paralela al vector de velocidad de corriente libre, se le llama fuerza de arrastre (*D*). En función de esta descomposición de la fuerza resultante y el momento generado por el fluido en movimiento se han definido los siguientes parámetros adimensionales fundamentales para la evaluación de los perfiles:

Coefficiente de sustentación: $C_L \equiv L / (q_{\infty}S)$,

Coefficiente de arrastre: $C_D \equiv D / (q_{\infty} S)$,

Coeficiente de momento: $C_M \equiv M / (q_\infty Sl)$,

donde $q_{\infty} \equiv \frac{1}{2} \rho_{\infty} V_{\infty}$, es definida como la presión dinámica de la corriente libre, y *S* y l representan el área y una longitud características del cuerpo (cuerda) sometido a la corriente libre. Estas expresiones fueron utilizadas para conseguir los valores de dichos coeficientes en los cálculos realizados son el código VisualFoil 4.1. y durante las simulaciones CFD.

Para un cuerpo en dos dimensiones las fuerzas y momentos sobre la forma están definidos por unidad de longitud. Por esta razón los coeficientes aerodinámicos para cuerpos bidimensionales, por convención, se denotan con letras mayúsculas, y están definidos por:

$$C_1 \equiv L' / (q_{\infty} c)$$
; $C_d \equiv D' / (q_{\infty} c)$; $C_m \equiv M' / (q_{\infty} c^2)$

donde el área característica esta dada por S = c.1 = c.

Para estos casos también se define como parámetro adimensional el:

Coeficiente de Presión:

 $C_p \equiv (p - p_{\infty}) / q_{\infty}$; donde p_{∞} es la presión de la corriente libre.

Una vez determinados estos parámetros, el comportamiento de los perfiles aerodinámicos es evaluado calculando cada uno de estos coeficientes a diferentes ángulos de ataque para una misma velocidad de corriente libre y a partir de los datos obtenidos se construyen cuatro tipos de graficas diferentes: coeficiente de sustentación C_L vs. ángulo de ataque α , coeficiente de arrastre C_D vs. ángulo de ataque α , coeficiente de momento C_m vs. ángulo de ataque α , la fineza aerodinámica (C_L/C_D) vs. ángulo de ataque α y coeficiente de sustentación C_L vs. coeficiente de arrastre de arrastre C_D (curva polar). Estas gráficas son consideradas las curvas características aerodinámicas.

En la figura 1.5.3.1 se observan las curvas características aerodinámicas del perfil FX 72-MS-150A, la primera gráfica se denomina curva de sustentación, gráfico muy importante debido a que se puede observar los diferentes valores del coeficientes sustentación para un cierto rango de ángulos de ataque, del cual, es importante destacar el punto de sustentación máxima. En el mismo gráfico se encuentra representada la curva de arrastre, la cual muestra los valores de coeficiente de arrastre multiplicados por 20 en función del ángulo de ataque a fin de utilizar la misma escala vertical. La segunda gráfica mostrada es la del momento la cual muestra los valores del coeficiente de momento para distintos ángulos de ataque. La tercera grafica ilustra la variación de la fineza aerodinámica con respecto al ángulo de ataque. La cuarta gráfica se denomina curva polar la cual relaciona el coeficiente de sustentación con el coeficiente de arrastre; esta curva junto con la curva C_L vs. α son las mas utilizadas en los catálogos de perfiles.

Fig. 1.5.3.1.- Curvas características aerodinámicas; (a) coeficiente de sustentación vs. ángulo de ataque, coeficiente de arrastre multiplicado por 20 vs. ángulo de ataque; (b) coeficiente de momento vs. ángulo de ataque; (c) fineza aerodinámica (C_L/C_D) vs. ángulo de ataque; y (d) curva polar, para el perfil FX 72-MS-150A, Re = 1 E6.

2. CAPITULO 2: ANTECEDENTES Y ESTUDIOS PREVIOS

Desde hace más de 100 años los aerodinamistas han modelado perfiles y los han estudiado en túneles de viento de bajo Numero de Reynolds. Un desarrollo significativo en la generación de perfiles aerodinámicos se debe a los métodos teóricos ideados por (N.E. Joucowski, 1902, Kutta, A. I., 1902, Betz, W., 1905, Keune, R. 1906, Carafoli, E., 1928, Fuchs, W., 1935, Chaplyguin, 1936, C. Jacob, 1950), que utilizaron los métodos de las transformaciones conformes. Otros métodos basados en el uso de las series de Fourier se deben a (Birnbaum, K., 1924, Scholz, 1930, Hesse, 1950).

Las mediciones que se pueden obtener de los túneles de viento permiten determinar los coeficientes de sustentación, arrastre y momento en función del ángulo de ataque. Estos experimentos ofrecen una vía rápida hacia la obtención y el entendimiento del comportamiento aerodinámico de un perfil (Anderson 2006).

A principios de siglo 20 el interés de los profesionales aerodinámicos se centró en la predicción teórica de los coeficientes de sustentación y momento de los perfiles. De este modo surgieron teorías basadas en el flujo potencial, que permitieron obtener soluciones analíticas para la sustentación y momento sobre un perfil. El problema con esta teoría es que solo ofrece buenos resultados aplicada únicamente a perfiles delgados y para ángulos de ataque pequeños (Anderson 2006).

Desde los años 1960s los desarrollos de las computadoras digitales de alta velocidad promovieron la aplicación de soluciones numéricas basadas en la teoría del flujo potencial con la cual se logro predecir la sustentación de perfiles con la mas variada gama de formas, espesores y para cualquier valor de ángulos de ataque, asumiendo flujo no viscoso. El método Panel está inspirado en la teoría de las singularidades, y permite evaluar prácticamente cualquier forma de perfil, a cualquier ángulo de ataque (Anderson 2006). También se han desarrollado métodos para el estudio de la capa límite para calcular el coeficiente de arrastre. En la actualidad se han desarrollado códigos de dinámica de fluidos computacional (CFD) basados en el método de volúmenes finitos que permiten simular el flujo turbulento alrededor de un perfil y calcular fuerzas de sustentación, arrastre, y momentos que se generan sobre el mismo. Mediante estos métodos matemáticos, se pueden simular los efectos de viscosidad del fluido y se pueden aplicar modelos de turbulencia tales como el K- ε , K- ω , entre otros. Estos procedimientos computacionales han abierto otra perspectiva para el estudio y la optimización de perfiles aerodinámicos.

Simulaciones basadas en el modelo de vórtices de gran magnitud en dos y tres dimensiones pueden ser llevadas a cabo de forma computacional. Se pueden predecir con exactitud el tiempo, y la longitud de la burbuja de separación para casos de flujo de transición alrededor de un perfil (Wilson, P., Pauley, L. 1998). Con la ayuda del código RANS, por ejemplo, se han realizado simulaciones de flujo con bajo Numero de Reynolds (Re= 6 E4) alrededor de un perfil SD7003 donde la transición tiene lugar a través de una burbuja de separación en régimen laminar (Windte, J., Scholz, U., 2006).

Todos estos avances en la técnica computacional permiten predecir de manera confiable las características aerodinámicas de los perfiles bajo cualquier condición de flujo. También se han reducido los costos de investigación lo que ha motivado la generación en masa de nuevos perfiles, y el desarrollo de modificaciones de perfiles ya existentes con la finalidad de mejorar sus características aerodinámicas.

Las modificaciones en los perfiles son comunes y todas tienen como misión, incrementar los coeficientes de sustentación, disminuir el arrastre y atrasar el ángulo de ataque en el cual se produce el fenómeno de desprendimiento de la corriente (stall). Un ala en un flujo completamente turbulento puede tener más del doble de arrastre que un ala cuya capa limite permanece laminar, al menos parcialmente. Si la capa limite se mantiene laminar, se mejora la disminución del arrastre por fricción (Wortmann, F. X., 1978).

Las modificaciones no controladas del borde de ataque, por ejemplo debido a las capas de hielo, y la rugosidad que introducen, influyen sobre la formación de burbujas y el incremento de las mismas, ocasionando un aumento de la separación del flujo, de la fuerza de arrastre y la disminución importante de la fuerza de sustentación (Bragg, M. B. y Klodadoust, A. 1992, Huebsch, W. W., y Rothmayer 2002).

Para controlar la separación del flujo, condiciones de stall, el borde de ataque del perfil (en cada una de las secciones transversales del ala) se inclina hacia abajo en comparación con la posición normal, original, del perfil (Anderson, J. y Barlow, J. B.1979).

Para un cierto ángulo de ataque superior al crítico, el flujo alrededor de una superficie sustentadora cae dentro de un fenómeno llamado Stall. En un perfil oscilando cuya incidencia es incrementada rápidamente, el comienzo del stall puede ser retardado a incidencias muy grandes en comparación con el ángulo de stall estático (McCroskey, W. J., 1981). Resultados, experimentales y computacionales, mostraron que un perfil con borde de ataque con inclinación variable (Variable Droop Leading Edge, VDLE) es un concepto viable para la aplicación en un rotor de alta sustentación (Chandrasekhara, M. S., et al, 2003). La frecuencia de oscilación del ángulo de volteo de un perfil simétrico bajo condiciones de Stall dinámico ha sido estudiada con el fin de medir su influencia en la magnitud y frecuencia de generación de vórtices en el borde de ataque (Sarkar, S., Venkatraman, K., 2005).

El control de flujo sobre los perfiles esta principalmente dirigido al incremento de la sustentación y la disminución del arrastre producido en el perfil. Esto es conseguido usualmente manipulando la capa límite y los esfuerzos cortantes del flujo con el fin de minimizar la separación en el extradós del perfil. El control de flujo activo se refiere al proceso de gasto de energía para modificar el flujo. Esto es distinto a las técnicas pasivas donde el control de flujo es proporcionado sin gasto de energía como por ejemplo la forma geométrica de la sección. Uno de los principales avances de control activo de flujo, es que el dispositivo de control puede ser encendido o apagado cuando sea requerido (Tuck, J.Soria, 2004).

Un sistema neumático para control del stall ha sido instalado en la nariz del borde de un perfil. Con los actuadores bien posicionados delante de la línea de separación, la influencia del sistema de control cambia completamente el comportamiento del perfil con respecto al fenómeno de stall, evitando con esta configuración la separación en el borde de ataque (Scholz, P. et al, 2006).

Se han llevado a cabo simulaciones numéricas con el código RANS de sistemas de control de flujo activo formados por actuadores jet aplicados sobre perfiles y alas en condiciones de baja velocidad, flujo turbulento de elevado Numero de Reynolds a diferentes ángulos de incidencia (Ekaterinaris, J.A., 2004).

La remoción de porciones del borde de fuga de perfiles subsónicos de la serie NACA utilizando una línea se sección perpendicular a la cuerda ha sido estudiada de forma computacional con el software CFD, ANSYS CFX 10. El resultado encontrado incluye un incremento en el coeficiente de sustentación máximo, un retraso del stall, y un incremento en el arrastre del perfil (Gomez, A., Pinilla, A., 2006).

Distintas clase de nuevos perfiles han sido trazadas y se ha realizado la evaluación experimental o computacional por el Prof. Zarea y sus colaboradores (Rodriguez, R. J. E., 1978,

Pantin, A. M. y Rojas, H., 1978, Figueira, N. J. y Vilaseca, U. M., 1981, Getan, E., 1981, Rodríguez, I., 1983, Pelaez, U. F. A., 1985, Martins, F. y Montoya, L. J. L., 1991, ZAREA, S., 1995, Zarea, S., Irausquin. 2002, Zarea, S., Irausquin, Leañes, E., 2003, Aparicio, G. J. A., 2006, Ferrer, C., 2007) a fin de mejorar el desempeño aerodinámico.

Una de las líneas de investigación del Profesor Stefan Zarea se enfoca en las modificaciones progresivas de parámetros geométricos locales sobre perfiles existentes. De esta manera se obtienen nuevos perfiles con características aerodinámicas mejores que las de los perfiles base, con resultados que se aproximan a los que se pueden obtener con métodos de optimización, y con la ventaja de ser desarrollados en un intervalo de tiempo mucho mas reducido.

La evaluación computacional de la influencia del borde de fuga de los perfiles ZAREA ha sido realizada por Aparicio, G. J. A., 2006. La influencia de la rugosidad sobre perfiles ZAREA ha sido estudiada analíticamente (Zarea, S. 2001) y la evaluación experimental de la influencia de la modificación del borde de ataque de 3 perfiles SZ 1500 ha sido documentada en las memorias del V Congreso Iberoamericano de Ingeniería (Zarea, S., Irausquin. 2002).

Las curvas características aerodinámicas de la mayoría de los perfiles mencionados en la literatura especializada se encuentran en las publicaciones periódicas y en forma sistemática en los catálogos de perfiles: Abbott, H., Von Doenhof, 1950. Riegels , W. R., 1959, Miley, S. J. 1982.

3. CAPITULO 3: CARACTERISTICAS AERODINÁMICAS DE PERFILES SERIE FX.

En este capitulo se presentaran las características aerodinámicas, de 19 perfiles de la serie FX, obtenidas por dos medios distintos. El primero corresponde a datos experimentales de ensayos realizados en túneles de viento de Alemania y Estados Unidos entre los años 1962 y 1980 extraídos del catalogo de S. J. Miley, (1982). El segundo medio es el de las evaluaciones computacionales a través del código VisualFoil 4.1.

Los datos obtenidos por las dos vías distintas fueron graficados en un formato diseñado por el profesor tutor y acomodados en tablas de resultados de manera tal que permitiesen la comparación entre resultados (experimentales y computacionales) con la finalidad de evaluar la confiabilidad del software utilizado para la evaluación computacional de perfiles de la serie FX seleccionados. En el trabajo especial de grado de J. Aparicio (2006) se ha comprobado que para 10 perfiles FX que el estudió, el programa VisualFoil 4.1 ofreció buenos resultados.

Al final del capitulo se presentan una serie de tablas comparativas entre datos experimentales y computacionales obtenidos de las fuentes citadas.

3.1. PERFILES DE REFERENCIA

En la literatura especializada la información acerca de los perfiles FX y su creador Wortmann es sumamente limitada. Varios de sus perfiles han sido estudiados para amplio rango de números de Reynolds.

S. J. Miley (1982) incluye más de 30 perfiles de esta serie en su catalogo de perfiles para turbinas eólicas.

M. S. Selig, realizó un estudio aerodinámico experimental de dos de los perfiles más representativos para aplicaciones de baja velocidad, FX 63-137 y FX 74-CL5-140. Este clasifica estos dos perfiles como útiles para aplicaciones donde se requiere elevada sustentación a bajo Número de Reynolds tales como aviones cargueros (M., S., Selig, 1995).

En publicaciones propias de Wortmann F. X. tales como "The quest for high lift" el investigador presenta 4 perfiles sin identificación con curvatura pronunciada, diseñados para elevada sustentación y grandes coeficientes de fineza obteniendo resultados en túneles

de viento de C_{lmax} entre 2.0 y 2.4, fineza entre 150 y 200, y con características de stall consideradas como aceptables para Números de Reynolds entre 1.000.000 y 3.000.000 (Wortmann, F. X., 1974).

Otra de sus publicaciones "Drag reduction for gliders", realizada en conjunto con la NASA, discute las causas de las fuerzas de arrastre en planeadores. Enfatiza la importancia de mantener el flujo laminar y enumera los problemas de suavidad de las superficies (Wortmann, F. X., 1978).

Se puede inferir que el interés de Wortmann F. X. fue el de diseñar perfiles para condiciones de bajo numero de Reynolds y elevada sustentación. Incluso alguno de sus perfiles han sido utilizados para el diseño de prototipos de aviones de aeromodelismo, o como secciones fundamentales en algunos rotores de helicóptero.

Los 19 perfiles de referencia s extraídos de la bibliografía citada (Miley, 1982) para ser estudiados computacionalmente y posteriormente ser comparados con los resultados experimentales son los siguientes: FX 38-153, FX 60-126, FX 60-157, FX 60-177, FX 61-140, FX 61-147, FX 61-163, FX 61-168, FX 61-184, FX 63-143, FX 63-145, FX 63-158, FX 66-17A-175, FX 66-S-161, FX 66-S-196, FX L-V-152, FX S 02-196, FX S 02/1-158, y FX S 03-182.

En la figura 3.1.1 se muestran los contornos de estos perfiles, en coordenadas adimensionales. Se puede observar que la geometría de estos perfiles difiere mucho de la de los perfiles NACA.

Los contornos de estos perfiles se pueden apreciar a continuación:

Fig. 3.1.1.- Perfiles de la serie FX estudiados.

Fig. 3.1.1.- Perfiles de la serie FX estudiados (continuación).

3.2. CURVAS CARACTERÍSTICAS AERODINÁMICAS EXPERIMENTALES

Las curvas características aerodinámicas mostradas a continuación son el resultado del procesamiento de la información presentadas en el catalogo de S. J. Miley, 1982, con el fin de llevarlos a un formato diseñado por el profesor tutor, que facilita la observación del comportamiento de todos los coeficientes aerodinámicos de los perfiles seleccionados y permite su comparación con los obtenidos a partir de las evaluaciones computacionales.

Curvas aerodinámicas experimentales del perfil FX 38-153 Superficie: Lisa Turbulencia: 0.02%.

Curvas aerodinámicas experimentales del perfil FX 60-126 Superficie: Lisa Turbulencia: 0.02%.

Curvas aerodinámicas experimentales del perfil FX 60-157 Superficie: Lisa Turbulencia: 0.02%.

Curvas aerodinámicas experimentales del perfil FX 60-177 Superficie: Lisa Turbulencia: 0.02%.

Curvas aerodinámicas experimentales del perfil FX 61-140 Superficie: Lisa Turbulencia: 0.02%.

Curvas aerodinámicas experimentales del perfil FX 61-147 Superficie: Lisa Turbulencia: 0.02%.

Curvas aerodinámicas experimentales del perfil FX 61-163 Superficie: Lisa Turbulencia: 0.02%.

Curvas aerodinámicas experimentales del perfil FX 61-168 Superficie: Lisa Turbulencia: 0.02%.

Curvas aerodinámicas experimentales del perfil FX 61-184 Superficie: Lisa Turbulencia: 0.02%.

Curvas aerodinámicas experimentales del perfil FX 63-143 Superficie: Lisa Turbulencia: 0.02%.

Curvas aerodinámicas experimentales del perfil FX 63-145 Superficie: Lisa Turbulencia: 0.02%.

Curvas aerodinámicas experimentales del perfil FX 63-158 Superficie: Lisa Turbulencia: 0.02%.

Curvas aerodinámicas experimentales del perfil FX 66-17A-175 Superficie: Lisa Turbulencia: 0.02%.

Curvas aerodinámicas experimentales del perfil FX 66-S-161 Superficie: Lisa Turbulencia: 0.02%.

Curvas aerodinámicas experimentales del perfil FX 66-S-196 Superficie: Lisa Turbulencia: 0.02%.

Curvas aerodinámicas experimentales del perfil FX L-V-152 Superficie: Lisa Turbulencia: 0.02%.

Curvas aerodinámicas experimentales del perfil FX S 02-196 Superficie: Lisa Turbulencia: 0.02%.

Curvas aerodinámicas experimentales del perfil FX S 02/1-158 Superficie: Lisa Turbulencia: 0.02%.

Curvas aerodinámicas experimentales del perfil FX S 03-182 Superficie: Lisa Turbulencia: 0.02%.

3.3 EVALUACIÓN COMPUTACIONAL DE 19 PERFILES FX

El calculo de los valores de los parámetros C_L , C_D , C_M y C_L/C_D vs. α , y Cp vs. x en el presente trabajo, se ha realizado utilizando el programa VisualFoil 4.1. de Hanley [1997].

"VisualFoil es una herramienta numérica de base MS Windows 95 que calcula los coeficientes de sustentación de arrastre y momento para perfiles NACA o de otra clase. El análisis del perfil esta basado en el método Vortex Panel para flujo incompresible ideal. Un nuevo cálculo se hace cada vez que un perfil es escogido o el ángulo de ataque, la localización y deflexión del flap son modificados. VisualFoil incluye efectos viscosos corrigiendo la solución no viscosa con el análisis de la capa límite. Las ecuaciones de la capa limite son resueltas usando un método de diferencias finitas de segundo orden en la dirección de la corriente y un método seudoespectral en la dirección normal a la superficie. La turbulencia es calculada con el uso del modelo de turbulencia de Baldwin Lomax. La aproximación semi-empírica de Squire-Young es usada para computar el coeficiente de arrastre del perfil. VisualFoil puede ser usado para calcular el comportamiento teórico de perfiles NACA de 4 y 5 dígitos para varias posiciones del flap y el ángulo de ataque. El programa es una excelente herramienta para la investigación de las características de perfiles NACA de 4 y 5 dígitos para el diseño y análisis de aeroplanos o para la evaluación de la respuesta de un perfil a los cambios en el ángulo de ataque, localización y deflexión del flap"

Los valores obtenidos con este software se presentan a continuación en un formato similar al mostrado en las graficas anteriores, agregando la curva de Cp vs. x.

Fig. 3.3.1. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil FX 38-153

Fig. 3.3.2. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil FX 60-126. Met. Panel y Capa Límite. 220 Puntos.

Fig. 3.3.3. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil FX 60-157. Met. Panel y Capa Límite. 200 Puntos.

Fig. 3.3.4. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil FX 60-177. Met. Panel y Capa Límite. 200 Puntos.

Fig. 3.3.5. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil FX 61-140. Met. Panel y Capa Límite. 180 Puntos.

(d) CI, Cd y Cm Vs. Ángulo de ataque

Fig. 3.3.6. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil FX 61-147. Met. Panel y Capa Límite. 200 Puntos.

Fig. 3.3.7. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil FX 61-163. Met. Panel y Capa Límite. 200 Puntos.

Fig. 3.3.9. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil FX 61-184. Met. Panel y Capa Límite. 220 Puntos.

Fig. 3.3.10. (a) Cp (0° , 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil FX 63-143. Met. Panel y Capa Límite. 180 Puntos.

Fig. 3.3.11. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil FX 63-145. Met. Panel y Capa Límite. 180 Puntos.

Fig. 3.3.12. (a) Cp (0° , 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil FX 63-158. Met. Panel y Capa Límite. 200 Puntos.

Fig. 3.3.13. (a) Cp (0° , 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil FX 66-17A-175. Met. Panel y Capa Límite. 220 Puntos.

Fig. 3.3.14. (a) Cp (0° , 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil FX 66-S-161. Met. Panel y Capa Límite. 220 Puntos.

Fig. 3.3.15. (a) Cp (0°, 5° yα_M :α para Clmax) vs.
X para Re = 1 E6 (leer Cp(α_M) a la derecha) y
(b) Curvas Polares del perfil FX 66-S-196.
Met. Panel y Capa Límite. 200 Puntos.

Fig. 3.3.17. (a) Cp (0°, 5° yα_M :α para Clmax) vs.
X para Re = 1 E6 (leer Cp(α_M) a la derecha) y
(b) Curvas Polares del perfil FX S 02-196.
Met. Panel y Capa Límite. 220 Puntos.

Fig. 3.3.18. (a) Cp (0° , 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil FX S 02/1-158. Met. Panel y Capa Límite. 180 Puntos.

Fig. 3.3.19. (a) Cp (0°, 5° yα_M :α para Clmax) vs.
X para Re = 1 E6 (leer Cp(α_M) a la derecha) y
(b) Curvas Polares del perfil FX S 03-182.
Met. Panel y Capa Límite. 180 Puntos.

3.4. COMPARACIÓN DE LOS RESULTADOS COMPUTACIONALES Y EXPERIMENTALES

Con el fin de evaluar la capacidad de predicción de los valores de los coeficientes aerodinámicos obtenidos de forma computacional con el software VisualFoil 4.1. para los 19 perfiles de la serie FX, se ha diseñado un formato de tabla que permite cuantificar las diferencias con los resultados experimentales (Miley S. J., 1982).

Las expresiones empleadas para la comparación son las siguientes:

 Error absoluto: es una medida del ajuste del cálculo de una magnitud con respecto al valor real o teórico que dicha magnitud tiene. La siguiente expresión fue utilizada para el calculo del error absoluto de los coeficientes de sustentación, arrastre, momento y la fineza aerodinámica tomando como valor real el dato experimental:

$$\Delta C = C_c - C_{e_s}$$

donde: C_c-valor calculado, C_e-valor real.

Error relativo (%): es el error relativo dividido entre el valor real. En este trabajo fue calculado de dos formas; E_{R1} toma como valor real el computacional; mientras que, E_{R2} toma como valor real el dato experimental. Las siguientes expresiones fueron utilizadas para calcular los errores relativos a todos lo coeficientes aerodinámicos de los perfiles estudiados en este capitulo:

$$E_{R1}(\%) = (1 - C_e/C_e)x \ 100$$
$$E_{R2}(\%) = (1 - C_c/C_e)x \ 100$$

A continuación se muestra para cada perfil una tabla comparativa, en la cual se identifica claramente, la fuente de los datos experimentales y computacionales, las condiciones de evaluación, y el Número de Reynolds para el cual son cuantificados los errores definidos previamente:

Tabla 3.4.1.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX 38-153 a diferentes Números de Reynolds.

	00	E _{£2}	-115,1	-87,8	-40,8	-17,7	-14,0	-8,4	-4,3	-16,6	-26,9
	C _c /C _e)x .	E _{CM2}									
	-1) =(%)	E _{CD2}	7,9	3,8	-18,7	-25,7	-27,8	-33,2	-35,6	-20,7	-11,4
	E _{R2}	E _{CL2}	-98,1	-80,8	-67,1	-48,0	-45,6	-44,4	-41,4	-40,7	-41,4
	100	E_{ϵ_1}	53,5	46,7	29,0	15,1	12,3	7,8	4,1	14,2	21,2
	· C _e /C _c)x	E _{CM1}									
	-1) =(%)	E _{CD1}	-8,6	-3,9	15,8	20,4	21,7	24,9	26,2	17,1	10,3
	ER1	E _{CL1}	49,5	44,7	40,2	32,4	31,3	30,7	29,3	28,9	29,3
		Δε	64,95	60,36	31,66	14,42	11,22	6,40	3,08	10,72	15,83
.000.000	soluto	ΔC_M									
iley), Re: 1	Error Ab	ΔC_D	-0,0005	-0,0002	0,0013	0,0019	0,0024	0,0033	0,0042	0,0029	0,0019
3-153 (M		ΔC_L	0,34	0,36	0,35	0,29	0,31	0,34	0,35	0,37	0,40
FX 38		ε _e	56,45	68,75	77,61	81,33	80,23	76,00	71,79	64,54	58,79
	ĥ	C _{Me}									
	Mile	C _{De}	0,0062	0,0064	0,0067	0,0075	0,0086	0,0100	0,0117	0,0141	0,0165
		C _{Le}	0,35	0,44	0,52	0,61	0,69	0,76	0,84	0,91	0,97
		εc	121,41	129,11	109,27	95,76	91,45	82,40	74,88	75,26	74,62
	:0pts.	C _{Mc}	-0,12	-0,13	-0,14	-0,16	-0,17	-0,18	-0,19	-0,19	-0,20
	Vfoil 22	c_{Dc}	0,0057	0,0062	0,0080	0,0094	0,0110	0,0133	0,0159	0,0170	0,0184
		C _{Lc}	0,69	0,80	0,87	0,90	1,00	1,10	1,19	1,28	1,37
		α (deg)	0'0	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0

100	E _{£2}	-80,7	-28,7	-16,1	-18,4	-21,8	-17,4	-14,3	-29,4									
C _c /C _e)x	E _{CM2}																	
-1) =(%)₂	E _{CD2}	5,1	-15,9	-21,8	-16,5	-12,5	-13,6	-15,3	-2,0									
Е _К	E _{CL2}	-71,5	-49,2	-41,5	-37,9	-37,0	-33,4	-31,8	-32,0	-32,0	-33,2	-34,0	-34,3	-35,6	-37,8	-38,6	-38,7	-40.5
¢ 100	E_{ϵ_1}	44,7	22,3	13,9	15,5	17,9	14,8	12,5	22,7									
- C _e /C _c)	E _{CM1}																	
(%)= (1	E _{CD1}	-5,3	13,7	17,9	14,2	11,1	12,0	13,2	1,9									
E _{R1}	E _{CL1}	41,7	33,0	29,3	27,5	27,0	25,0	24,1	24,2	24,2	24,9	25,4	25,5	26,3	27,4	27,8	27,9	28.8
	Ζε	58,98	24,55	14,37	15,77	17,37	13,50	10,26	18,72	81,75	77,29	74,04	70,56	66,22	61,29	55,82	50,54	45.00
osoluto	ΔC_M																	
Error Al	ΔC_D	-0,0003	0,0009	0,0014	0,0013	0,0012	0,0015	0,0019	0,0003	0,0170	0,0191	0,0212	0,0232	0,0260	0,0294	0,0338	0,0384	0.0443
	ΔC_L	0,27	0,23	0,24	0,25	0,27	0,28	0,29	0,31	0,34	0,37	0,40	0,42	0,45	0,49	0,52	0,54	0.57
	ε _e	73,08	85,45	89,06	85,71	79,57	77,57	71,65	63,64									
y	C _{Me}																	
Mile	CDe	0,0052	0,0055	0,0064	0,0077	0,0093	0,0107	0,0127	0,0154									
	C _{Le}	0,38	0,47	0,57	0,66	0,74	0,83	0,91	0,98	1,05	1,11	1,17	1,22	1,27	1,31	1,36	1,40	1.42
	ε _c	132,06	110,01	103,43	101,48	96,94	91,07	81,92	82,36	81,75	77,29	74,04	70,56	66,22	61,29	55,82	50,54	45.00
Opts.	C _{Mc}	-0,13	-0,15	-0,16	-0,16	-0,17	-0,18	-0,18	-0,19	-0,20	-0,21	-0,21	-0,22	-0,23	-0,24	-0,25	-0,26	-0.27
Vfoil 22	C_{Dc}	0,0049	0,0064	0,0078	0,0090	0,0105	0,0122	0,0146	0,0157	0,0170	0,0191	0,0212	0,0232	0,0260	0,0294	0,0338	0,0384	0.0443
	CLc	0,65	0,70	0,81	0,91	1,01	1,11	1,20	1,29	1,39	1,48	1,57	1,64	1,72	1,80	1,88	1,94	1.99
	a (deg)	0'0	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0	9,0	10,0	11,0	12,0	13,0	14,0	15,0	16.0
	Vfoil 220pts. Miley Error Absoluto E _{R1} (%)= (1- C _e /C _c)x 100 E _{R2} (%)= (1- C _o /C _e)x 100 E		$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	v VroitV VroitV VroitV VroitErrorMileyErrorAbsolutoError $E_{F1}(%) = (1 - C_{a}/C_{a}) \times (100)$ $E_{F2}(%) = (1 - C_{a}/C_{a}) \times (100)$ a (deg) C_{Lc} C_{Dc} C_{Dc} C_{Dc} C_{Dc} C_{Dc} C_{C} $C_{C}(x) \times (100)$ $E_{E2}(%) = (1 - C_{a}/C_{a}) \times (100)$ 0.00.6650.0049-0.13132.060.380.005273.080.27-0.000358.9841.7-5.344.7-71.65.1 -80.7 1.00.700.0064-0.1610.010.470.005585.450.230.000324.5533.013.722.349.2-15.9-28.72.00.810.0016-0.1796.940.07785.710.250.001315.7727.514.217.521.8-16.13.00.9110.0105-0.1796.940.740.009379.570.001315.7727.514.217.521.8-16.14.01.010.0105-0.1196.940.740.009379.570.001315.7727.514.217.59-14.35.01.120.01145-0.11881.920.001777.570.220.001311.7727.5-14.216.5-14.36.01.120.011450.120.012777.5717.3727.011.327.56-14.314.46.01.120.012777.5720.916.5	VfoiVfoiZoptsMileyError AbsolutoError AbsolutoError (%)= (1- C_o/C_0)X 100Erro(%)= (1- C_o/C_0)X 100 α (deg) C_{tc} C_{to} C_{tb} E_{td} <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td></td>	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	

								FX 38	-153 (M	iley), Re: 2	.000.000									
		Vfoil 2	20pts.			Mil	ey			Error At	osoluto		E _{R1} (⁹	%)=(1- (C _e /C _c)x ;	100	E _{R2} (-1) =(%)	C _c /C _e)x 1	00
a (deg)	C_{Lc}	c_{Dc}	C _{Mc}	εc	CLe	CDe	C _{Me}	ε _e	ΔC_L	ΔC_D	ΔC_M	Δε	E _{CL1}	E _{cD1}	E _{CM1}	E_{ϵ_1}	E _{CL2}	E _{CD2}	E _{CM2}	E _{ε2}
0'0	0,60	0,0048	-0,14	125,50	0,37	0,0051	-0,09	72,55	0,23	-0,0003	-0,05	52,95	38,3	-6,8	36,9	42,2	-62,0	6,4	-58,6	-73,0
1,0	0,70	0,0063	-0,15	111,32	0,47	0,0054	-0,08	87,04	0,23	0,0009	-0'01	24,29	32,8	14,1	46,7	21,8	-48,9	-16,4	-87,5	-27,9
2,0	0,81	0,0077	-0,16	104,92	0,56	0,0064	-0,08	87,50	0,25	0,0013	-0,08	17,42	30,5	16,7	48,6	16,6	-43,9	-20,0	-94,5	-19,9
3,0	0,91	0,0088	-0,16	103,25	0,66	0,0078	-0,08	84,62	0,25	0,0010	-0,08	18,64	27,5	11,5	50,5	18,1	-37,9	-13,0	-101,9	-22,0
4,0	1,01	0,0099	-0,17	102,67	0,75	0,0092	-0,08	81,52	0,26	0,0007	-0,09	21,15	26,0	6,8	52,2	20,6	-35,2	-7,3	-109,3	-25,9
5,0	1,12	0,0114	-0,17	97,58	0,84	0,0107	-0,08	78,50	0,28	0,0007	-0,09	19,07	24,8	6,5	53,8	19,5	-32,9	-6,9	-116,6	-24,3
6,0	1,21	0,0139	-0,18	87,21	0,93	0,0124	-0,08	75,00	0,28	0,0015	-0,10	12,21	23,1	10,6	55,8	14,0	-30,1	-11,9	-126,3	-16,3
7,0	1,31	0,0149	-0,19	87,64	1,01	0,0146	-0,08	69,18	0,30	0,0003	-0,11	18,47	22,6	2,0	57,5	21,1	-29,3	-2,0	-135,0	-26,7
8,0	1,40	0,0161	-0,19	86,99	1,08	0,0160	-0,07	67,50	0,32	0,0001	-0,12	19,49	22,8	0,6	64,1	22,4	-29,6	-0,6	-178,5	-28,9
9,0	1,48	0,0180	-0,21	82,32	1,15		-0,07		0,33		-0,14		22,3		65,9		-28,6		-193,1	
10,0	1,57	0,0198	-0,21	79,12	1,22		-0,07		0,35		-0,14		22,2		67,0		-28,6		-203,5	
11,0	1,66	0,0221	-0,22	75,07	1,28		-0,07		0,38		-0,15		22,7		68,1		-29,4		-213,8	
12,0	1,74	0,0247	-0,23	70,45	1,34		-0,06		0,40		-0,17		23,1		73,6		-30,0		-278,1	
13,0	1,81	0,0273	-0,24	66,19	1,40		-0,06		0,41		-0,18		22,5		74,9		-29,0		-297,8	
14,0	1,89	0,0311	-0,25	60,69	1,46		-0,05		0,43		-0,20		22,6		79,7		-29,3		-392,0	
15,0	1,97	0,0359	-0,25	54,82	1,50		-0,05		0,47		-0,20		23,7		80,3		-31,1		-406,4	
16,0	2,02	0,0410	-0,27	49,22	1,51		-0,05		0,51		-0,22		25,2		81,2		-33,8		-431,6	

Tabla 3.4.1.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX 38-153 a diferentes Números de Reynolds (continuación I).

								FX 38	153 (M	iley), Re: 3	000.000.	_								
		Vfoil 2	20pts.			Mi	ley			Error At	osoluto		E _{R1} (9	%)= (1- (C _e /C _c)x 1	00	E _{R2} ((%)= (1- C	c/C _e)x 10	0
a (deg)	CLc	c_{Dc}	C _{Mc}	εc	CLe	C _{De}	C _{Me}	ε _e	ΔC_L	ΔC_D	ΔC_M	Δε	E _{CL1}	E _{CD1}	E _{CM1}	E _{ε1}	E _{CL2}	E _{CD2}	E _{CM2}	$E_{\epsilon 2}$
0'0	0,59	0,0048	-0,14	123,17	0,40	0,0045		88,89	0,19	0,0003		34,28	32,3	6,2		27,8	-47,8	-6,6		-38,6
1,0	0,70	0,0062	-0,15	114,14	0,50	0,0051		98,04	0,20	0,0011		16,10	29,0	17,3		14,1	-40,9	-21,0		-16,4
2,0	0,81	0,0074	-0,15	109,65	0,60	0,0060		100,00	0,21	0,0014		9,65	26,1	19,0		8,8	-35,3	-23,4		-9,7
3,0	0,92	0,0083	-0,16	111,05	0,70	0,0073		95,89	0,22	0,0010		15,16	23,7	11,7		13,6	-31,1	-13,2		-15,8
4,0	1,02	0,0095	-0,17	107,70	0,79	0,0088		89,77	0,23	0,0007		17,92	22,8	7,3		16,6	-29,5	-7,9		-20,0
5,0	1,13	0,0105	-0,17	107,05	0,88	0,0101		87,13	0,25	0,0004		19,92	21,8	3,9		18,6	-27,9	4,1		-22,9
6,0	1,22	0,0129	-0,18	94,97	0,97	0,0116		83,62	0,25	0,0013		11,35	20,5	9,8		11,9	-25,9	-10,8		-13,6
7,0	1,32	0,0138	-0,18	95,49	1,06	0,0137		77,37	0,26	0,0001		18,12	19,6	0,7		19,0	-24,3	-0,7		-23,4
8,0	1,41	0,0149	-0,19	94,81	1,14	0,0153		74,51	0,27	-0,0004		20,30	19,3	-2,6		21,4	-24,0	2,6		-27,2
9,0	1,49	0,0167	-0,20	89,46	1,23				0,26				17,7				-21,5			
10,0	1,59	0,0184	-0,21	86,18	1,31				0,28				17,4				-21,0			
11,0	1,67	0,0204	-0,22	81,96	1,39				0,28				17,0				-20,5			
12,0	1,74	0,0224	-0,23	77,75	1,45				0,29				16,9				-20,3			
13,0	1,83	0,0252	-0,23	72,62	1,51				0,32				17,4				-21,1			
14,0	1,91	0,0285	-0,24	67,06	1,55				0,36				18,9				-23,3			
15,0	1,99	0,0326	-0,25	61,07	1,61				0,38				19,1				-23,6			
16.0	2.05	0.0369	-0.26	55.46	1.65				0.40				19.4				-24.0			

Tabla 3.4.1.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX 38-153 a diferentes Números de Reynolds (continuación II).

Tabla 3.4.2.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX 60-126 a diferentes Números de Reynolds.

								FX 6	0-126 (N	(iley), Re:	700.000									
		Vfoil 2	20pts.			Mile	Аź			Error At	osoluto		E _{R1} (5	%)= (1- (C _e /C _c)x 1	100	E _{R2} (-1) =(%)	C _c /C _e)x 1	00
a (deg)	C _{Lc}	c_{Dc}	C _{Mc}	εc	CLe	C _{De}	C _{Me}	ε _e	ΔC_L	ΔC_D	ΔC_M	Δε	E _{CL1}	E _{CD1}	E _{CM1}	E _{E1}	E _{CL2}	E _{CD2}	E _{CM2}	E _{£2}
0'0	0,53	0,0083	-0,12	63,93	0,55	0,0084	-0,12	65,48	-0,02	-0,0001	0,00	-1,55	-3,1	-0,6	0,8	-2,4	3,0	0,6	-0,8	2,4
1,0	0,63	0,0084	-0,12	75,05	0,66	0,0088	-0,12	75,00	-0,03	-0,0004	0,00	0,05	-4,2	4,2	3,7	0,1	4,0	4,1	-3,8	-0,1
2,0	0,74	0,0091	-0,13	81,44	0,77	0,0093	-0,12	82,80	-0,03	-0,0002	-0,01	-1,35	-4,4	-2,6	5,6	-1,7	4,2	2,6	-5,9	1,6
3,0	0,84	0,0094	-0,13	89,46	0,87	0,0099	-0,12	87,88	-0,03	-0,0005	-0,01	1,59	-3,4	-5,3	7,4	1,8	3,3	5,0	-8,0	-1,8
4,0	0,94	0,0107	-0,13	87,66	0,97	0,0106	-0,12	91,51	-0,03	0,0001	-0,01	-3,85	-3,3	1,1	10,1	4,4	3,2	-1,1	-11,2	4,2
5,0	1,03	0,0118	-0,14	87,19	1,06	0,0114	-0,11	92,98	-0,03	0,0004	-0,03	-5,80	-3,0	3,5	20,8	-6,6	2,9	-3,6	-26,3	6,2
6,0	1,11	0,0145	-0,15	76,56	1,14	0,0125	-0,11	91,20	-0,03	0,0020	-0,04	-14,64	-2,6	13,8	24,9	-19,1	2,6	-16,1	-33,1	16,0
7,0	1,17	0,0236	-0,16	49,67	1,22	0,0138	-0,11	88,41	-0,05	0,0098	-0,05	-38,74	-4,2	41,5	30,8	-78,0	4,0	-70,9	-44,4	43,8
8,0	1,26	0,0247	-0,17	50,85	1,29	0,0154	-0,10	83,77	-0,03	0,0093	-0,07	-32,92	-2,7	37,6	39,4	-64,7	2,7	-60,3	-65,0	39,3
9,0	1,33	0,0265	-0,17	50,35	1,35	0,0172	-0'00	78,49	-0,02	0,0093	-0,08	-28,14	-1,2	35,1	47,7	-55,9	1,2	-54,1	-91,4	35,9
10,0	1,39	0,0288	-0,19	48,19	1,41	0,0188	-0,09	75,00	-0,02	0,0100	-0,10	-26,81	-1,7	34,7	51,5	-55,6	1,6	-53,1	-106,3	35,8

1	_															
		100	E _{£2}	0,8	-3,5	-2,4	-3,9	-0,6	0'0	12,6	41,2	39,3	33,9	47,0	34,6	
		C _c /C _e)x	E _{CM2}													
		-1) =(%)ª	E _{CD2}	3,9	7,4	7,4	8,8	5,1	3,5	-9,5	-62,2	-57,1	-46,9	-83,2	-47,4	
		Ere	E _{CL2}	4,7	4,2	5,3	5,3	4,5	3,5	4,2	4,6	4,6	2,8	2,9	3,7	3.5
		100	E_{ϵ_1}	-0,8	3,4	2,3	3,7	0,6	0'0	-14,4	-70,1	-64,7	-51,2	-88,7	-53,0	
		· C _e /C _c)x	E _{CM1}													
		-1) =(%)	E _{CD1}	4,0	-8,0	-8,0	-9,7	-5,4	-3,6	8,7	38,4	36,3	31,9	45,4	32,2	
		E _{R1}	E _{CL1}	-4,9	-4,4	-5,5	-5,6	-4,7	-3,6	-4,4	-4,9	-4,8	-2,9	-3,0	-3,8	-3.6
	(Δε	-0,58	2,85	2,07	3,63	0,58	0,02	-12,08	-38,45	-35,30	-28,55	-37,30	-25,07	
	.000.000	soluto	ΔC_M													
	ey), Re: 1	Error Ab	ΔC_D	-0,0003	-0,0006	-0,0007	-0,0008	-0,0005	-0,0004	0,0012	0,0083	0,0085	0,0078	0,0153	0,0100	
	-126 (Mil		ΔCL	-0,03	-0,03	-0,04	-0,05	-0,04	-0,04	-0,05	-0,06	-0,06	-0,04	-0,04	-0,06	-0.05
	FX 60		ε _e	70,89	80,72	87,64	93,68	96,12	96,43	95,90	93,28	89,86	84,34	79,35	72,38	
		y	C _{Me}													
		Mile	C _{De}	0,0079	0,0083	0,0089	0,0095	0,0103	0,0112	0,0122	0,0134	0,0148	0,0166	0,0184	0,0210	
			C _{Le}	0,56	0,67	0,78	0,89	0,99	1,08	1,17	1,25	1,33	1,40	1,46	1,52	1.57
			ε _c	70,31	83,58	89,71	97,32	96,69	96,45	83,83	54,83	54,57	55,79	42,05	47,31	44.85
		Opts.	C _{Mc}	-0,12	-0,12	-0,13	-0,13	-0,13	-0,14	-0,14	-0,15	-0,16	-0,17	-0,18	-0,19	-0.21
		Vfoil 22	c_{Dc}	0,0076	0,0077	0,0082	0,0087	0,0098	0,0108	0,0134	0,0217	0,0233	0,0244	0,0337	0,0310	0.0338
			CLc	0,53	0,64	0,74	0,84	0,95	1,04	1,12	1,19	1,27	1,36	1,42	1,46	1.52
			a (deg)	0'0	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0	9,0	10,0	11,0	12.0
			-													

Tabla 3.4.2.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX 60-126 a diferentes Números de Reynolds (continuación I).

_		-													
100	E _{£2}	-6,3	-11,1	-11,2	-11,2	-10,8	-10,5	4,8	47,2	-3,0	44,8	44,9	45,8		
C _c /C _e)x	E _{CM2}														
-1) =(%)	E _{CD2}	8,6	12,3	12,3	12,4	11,5	10,0	-3,8	-84,1	5,0	-78,1	-79,9	-79,3		
E _{R2}	E _{CL2}	2,9	2,6	2,5	2,6	1,9	0,6	1,2	2,9	2,1	1,7	0,8	2,7	3,0	4,3
100	E_{ϵ_1}	5,9	10,0	10,1	10,0	9,7	9,5	-5,1	-89,5	2,9	-81,2	-81,4	-84,4		
$C_e/C_c)x$	E _{CM1}														
-1) =(%)	E _{CD1}	-9,4	-14,1	-14,0	-14,1	-13,0	-11,1	3,7	45,7	-5,2	43,9	44,4	44,2		
E _{R1} (E _{CL1}	-3,0	-2,7	-2,5	-2,6	-2,0	-0,6	-1,2	-3,0	-2,2	-1,7	-0,8	-2,8	-3,1	-4,5
	Δε	4,60	9,29	10,18	10,56	10,45	10,20	-4,71	-45,76	2,81	-40,22	-38,13	-34,54		
soluto	ΔC_M														
Error Ab	ΔC_D	-0,0006	-0,0010	-0,0010	-0,0011	-0,0011	-0,0011	0,0005	0,0108	-0,0007	0,0122	0,0138	0,0162		
	ΔC_L	-0,02	-0,02	-0,02	-0,02	-0,02	-0,01	-0,01	-0,04	-0,03	-0,02	-0,01	-0,04	-0,05	-0,07
	ε _e	73,33	83,54	90,59	94,57	97,00	97,25	97,46	96,88	93,62	89,74	84,97	75,49		
~	C _{Me}														
Miley	C _{De}	0,0075	0,0079	0,0085	0,0092	0,0100	0,0109	0,0118	0,0128	0,0141	0,0156	0,0173	0,0204		
	CLe	0,55	0,66	0,77	0,87	0,97	1,06	1,15	1,24	1,32	1,40	1,47	1,54	1,60	1,63
	ε	77,94	92,83	100,77	105,13	107,45	107,45	92,75	51,11	96,43	49,53	46,84	40,95	48,87	44,54
Opts.	C _{Mc}	-0,12	-0,12	-0,12	-0,13	-0,13	-0,13	-0,14	-0,15	-0,16	-0,16	-0,17	-0,18	-0,20	-0,22
Vfoil 22	c_{Dc}	0,0069	0,0069	0,0075	0,0081	0,0089	0,0098	0,0123	0,0236	0,0134	0,0278	0,0311	0,0366	0,0318	0,0350
	C _{Lc}	0,53	0,64	0,75	0,85	0,95	1,05	1,14	1,20	1,29	1,38	1,46	1,50	1,55	1,56
	a (deg)	0'0	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0	9,0	10,0	11,0	12,0	13,0
	Vfoil 220pts. Miley Error Absoluto E _{R1} (%)= (1- C ₆ /C ₆)x 100 E _{R2} (%)= (1- C ₆ /C ₆)x 100	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Vfoil 220pts.MileyError AbsolutoError AbsolutoError AbsolutoError AbsolutoError AbsolutoError (%)= (1- C_o/C_o)x 100Error (%)= (1- C_o/C_o)x 100 α (deg) C_{L_c} C_{D_c} C_{M_c} E_c C_{L_o} C_{D_o} C_{L_o} E_{C_o} <td< td=""><td>v/foil Vfoil Error Absoluto Error Absoluto Error Error $(\phi_0) = (1 - C_{\phi}/C_{\phi}) \times 100$ Error $(\phi_0) = (1 - C_{\phi}/C_{\phi}) \times 100$ 2.0 0.005 -0.12 10.2 0.0075 -0.0010 9.29 -2.7 -14.1 10.0 2.6 11.1 2.0 0.005 -0.12 10.745 0.0092 94.57 -0.02 -0.0011 10.18 2.7 -14.1 10.0 2.6 11.2 3.0 0.85 0.0079 93.54 -0.02 -0.0011 10.18 2.7 -11.1 2.0 0.0745 0.77 0.0092 94.57 -0.02</td><td>Vfoi Vfoi Zopts Miley Error Absoluto Error Absoluto Error (%)= (1- C_o/C_o)x 100 Error (%)= (1-1/1) Error (%)= (1-1/1)<!--</td--></td></td<>	v/foil Vfoil Error Absoluto Error Absoluto Error Error $(\phi_0) = (1 - C_{\phi}/C_{\phi}) \times 100$ 2.0 0.005 -0.12 10.2 0.0075 -0.0010 9.29 -2.7 -14.1 10.0 2.6 11.1 2.0 0.005 -0.12 10.745 0.0092 94.57 -0.02 -0.0011 10.18 2.7 -14.1 10.0 2.6 11.2 3.0 0.85 0.0079 93.54 -0.02 -0.0011 10.18 2.7 -11.1 2.0 0.0745 0.77 0.0092 94.57 -0.02	Vfoi Vfoi Zopts Miley Error Absoluto Error Absoluto Error (%)= (1- C _o /C _o)x 100 Error (%)= (1-1/1) Error (%)= (1-1/1) </td

100	E _{£2}	-13,0	-16,3	-12,0	-9,3	-8,3	-7,7-	3,3	46,9	46,2	44,5	44,7	48,8	3,3	
Cc/Ce)x	E _{CM2}														
₂ (%)= (1-	E _{CD2}	12,4	14,9	12,8	10,8	10,3	9,2	-1,1	-80,1	-79,6	-75,2	-76,4	-87,4	1,0	
Er	E _{CL2}	1,0	1,0	2,3	2,4	2,8	2,2	2,2	4,3	3,4	2,8	2,4	4,1	4,2	2,6
100	E_{ϵ_1}	11,5	14,0	10,7	8,5	7,7	7,1	-3,4	-88,2	-85,9	-80,3	-80,8	-95,4		
· C _e /C _c)x	E _{CM1}														
-1) =(%)	E _{cD1}	-14,2	-17,5	-14,6	-12,1	-11,4	-10,1	1,1	44,5	44,3	42,9	43,3	46,6	-1,0	
E _{R1}	E _{CL1}	-1,1	-1,0	-2,4	-2,5	-2,9	-2,3	-2,2	4,5	-3,5	-2,9	-2,5	4,3	-4,4	-2,7
	Ζε	9,62	13,77	11,36	9,34	8,61	7,96	-3,37	-48,01	-45,86	-42,47	-40,42	-41,70	-2,44	
soluto	ΔC_M														
Error Ab	ΔC_D	-0,0009	-0,0011	-0,0010	-0,0009	-0,0010	-0,0010	0,0001	0,0099	0,0108	0,0113	0,0128	0,0162	-0,0002	
	ΔC_L	-0,01	-0,01	-0,02	-0,02	-0,03	-0,02	-0,03	-0,06	-0,05	-0,04	-0,04	-0,06	-0,07	-0,04
	ε _e	73,97	84,42	95,06	100,00	103,16	103,85	102,63	102,42	99,26	95,33	90,42	85,41	74,89	
ĥ	C _{Me}														
Mile	CDe	0,0073	0,0077	0,0081	0,0087	0,0095	0,0104	0,0114	0,0124	0,0136	0,0150	0,0167	0,0185	0,0219	
	C _{Le}	0,54	0,65	0,77	0,87	0,98	1,08	1,17	1,27	1,35	1,43	1,51	1,58	1,64	1,68
	ε _c	83,59	98,19	106,42	109,34	111,76	111,80	99,26	54,41	53,40	52,87	50,00	43,70	72,45	49,63
:0pts.	C _{Mc}	-0,12	-0,12	-0,12	-0,13	-0,13	-0,13	-0,14	-0,15	-0,15	-0,16	-0,16	-0,18	-0,19	-0,20
Vfoil 22	c_{Dc}	0,0064	0,0066	0,0071	0,0078	0,0085	0,0094	0,0115	0,0223	0,0244	0,0263	0,0295	0,0347	0,0217	0,0330
	C _{Lc}	0,53	0,64	0,75	0,85	0,95	1,06	1,14	1,21	1,30	1,39	1,47	1,52	1,57	1,64
	a (deg)	0'0	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0	9,0	10,0	11,0	12,0	13,0
	Vfoil 220pts. Miley Error Absoluto E _{R1} (%)= (1- C ₆ /C ₆)x 100 E _{R2} (%)= (1- C ₆ /C ₆)x 100	$ \begin{array}{ c c c c c c c c } \hline \hline & Vfoil 220pts. \\ \hline & Vfoil 220pts. \\ \hline & C_{Dc} & C_{Dc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c } \hline \hline Vfoil 220 pts. \\ \hline & Vfoil 220 pts. \\ \hline & Vfoil 220 pts. \\ \hline & C_{Dc} & C_{Mc} & \epsilon_c & C_{Le} & C_{De} & C_{Me} & \epsilon_e & \Delta C_L & \Delta C_D & \Delta E & E_{CL1} & E_{CD1} & E_{C1} & E_{C12} & E_{C22} &$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		v/foil V/foil Error Error Absoluto Error Error Co. Co. Error Error Co. Co. Co. Co. Co. Error Error Error Absoluto Error Erro	Vfoi Zooptis Miley Error Absoluto Error Absoluto Error Absoluto Error ($^{\circ}$)= (1- C_{ϕ}/C_{c})x 100 Error ($^{\circ}$)= (1- C_{ϕ}/C_{c})x 100 α (deg) C_{c} C_{p}

								FX 60-	157 (Mil	ley), Re: 1.	000.000									
		Vfoil 2	00pts.			Miley				Error Ab	soluto		E _{R1} (9	%)= (1- (C _e /C _c)x 1	00	E _{R2} ((%)= (1- C	c/C _e)x 10	0
a (deg)	CLc	C_{Dc}	C _{Mc}	ε _c	C _{Le}	C _{De} C	Me	ε _e	ΔC_L	ΔC_D	ΔC_M	$\Delta \epsilon$	E _{CL1}	E _{cD1}	E _{CM1}	E _{ε1}	E _{CL2}	E _{CD2}	E _{CM2}	$E_{\epsilon 2}$
0'0	0,72	0,0067	-0,16	106,67	0,51	0,0066	7	7,27	0,21	0,0001		29,40	29,1	2,1		27,6	-41,1	-2,2		-38,0
1,0	0,82	0,0075	-0,17	109,44	0,60	0,0071	ŵ	4,51	0,22	0,0004		24,94	26,6	4,9		22,8	-36,2	-5,2		-29,5
2,0	0,92	0,0087	-0,17	105,76	0,70	0,0080	ò	7,50	0,22	0,0007		18,26	24,1	8,2		17,3	-31,7	-8,9		-20,9
3,0	1,02	0,0099	-0,18	103,19	0,79	0,0091	ŝ	6,81	0,23	0,0008		16,38	22,3	7,6		15,9	-28,7	-8,3		-18,9
4,0	1,12	0,0113	-0,18	98,52	0,87	0,0103	ŵ	4,47	0,25	0,0010		14,06	22,2	9,2		14,3	-28,5	-10,2		-16,6
5,0	1,22	0,0132	-0,19	92,26	0,95	0,0115	õ	2,61	0,27	0,0017		9,65	22,0	12,9		10,5	-28,2	-14,8		-11,7
6,0	1,30	0,0153	-0,20	85,47	1,02	0,0125	ò	1,60	0,28	0,0028		3,87	21,7	18,0		4,5	-27,8	-22,0		-4,7
7,0	1,40	0,0170	-0,21	82,34	1,09	0,0135	8	0,74	0,31	0,0035		1,60	22,0	20,4		1,9	-28,2	-25,7		-2,0
8,0	1,48	0,0196	-0,22	75,22	1,15	0,0148	7.	7,70	0,33	0,0048		-2,49	22,0	24,5		-3,3	-28,3	-32,5		3,2
9,0	1,54	0,0211	-0,23	72,96	1,21	0,0163	7.	4,23	0,33	0,0048		-1,27	21,6	22,9		-1,7	-27,5	-29,7		1,7
10,0	1,60	0,0230	-0,24	69,79	1,27	0,0181	7	0,17	0,33	0,0049		-0,38	20,9	21,3		-0,5	-26,4	-27,0		0,5
11,0	1,66	0,0250	-0,26	66,40	1,32	0,0222	ũ	9,46	0,34	0,0028		6,94	20,5	11,2		10,5	-25,8	-12,7		-11,7
12,0	1,74	0,0277	-0,27	62,61	1,37				0,37				21,1				-26,8			
13,0	1,76	0,0329	-0,29	53,40	1,42				0,34				19,3				-23,9			
14,0	1,80	0,0371	-0,31	48,46	1,47				0,33				18,3				-22,3			
15.0	1.81	0.0425	-0.33	42.64	1.49				0.32				17.7				-21.5			

Tablas 3.4.3.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX 60-157 a diferentes Números de Reynolds.

sy), Re: 1.500.000 Frror Absoluto		$\Delta C_D = \Delta C_M = \Delta \epsilon$ ECL1 ECD1 ECM1 Ee1 ECL2 ECD2 ECM2 Ee2	-0,0001 -0,02 37,17 30,5 -1,1 11,3 31,2 -43,8 1,1 -12,7 -45,3	0,0006 -0,02 23,38 26,9 7,8 14,8 20,7 -36,7 -8,4 -17,4 -26,1	0,0009 -0,04 16,98 25,0 11,3 24,0 15,4 -33,3 -12,8 -31,6 -18,2	0,0010 -0,05 16,94 24,8 11,1 26,3 15,4 -33,0 -12,5 -35,7 -18,3	0,0012 -0,06 16,40 24,6 11,0 34,1 15,2 -32,6 -12,4 -51,7 -17,9	0,0019 -0,07 10,97 25,1 16,0 36,1 10,7 -33,4 -19,1 -56,5 -12,0	0,0031 -0,09 3,39 24,7 21,9 44,0 3,6 -32,9 -28,1 -78,6 -3,7	0,0038 -0,09 0,87 24,9 24,2 45,8 1,0 -33,1 -31,9 -84,4 -1,0	0,0051 -0,11 -4,94 24,2 28,5 53,0 -6,0 -32,0 -39,8 -112,7 5,6	0,0052 -0,12 -3,47 23,8 26,9 55,5 -4,3 -31,2 -36,9 -124,6 4,1	0,0052 -0,14 -0,83 23,5 24,3 61,3 -1,1 -30,6 -32,0 -158,2 1,1	0,0046 -0,16 2,41 22,7 20,1 63,4 3,3 -29,3 -25,1 -173,0 -3,4	0,0037 -0,17 5,76 21,7 14,7 65,4 8,2 -27,7 -17,2 -188,7 -9,0	-0,18 20,6 67,2 -26,0 -204,8	-0,20 19,3 69,0 -23,8 -222,4	-0.22 18.3 70.7 -22.3 -240.8
1.500.000		$\Delta C_M \Delta \epsilon = E_{CL1}$	-0,02 37,17 30,5	-0,02 23,38 26,9	-0,04 16,98 25,0	-0,05 16,94 24,8	-0,06 16,40 24,6	-0,07 10,97 25,1	-0,09 3,39 24,7	-0,09 0,87 24,9	-0,11 -4,94 24,2	-0,12 -3,47 23,8	-0,14 -0,83 23,5	-0,16 2,41 22,7	-0,17 5,76 21,7	-0,18 20,6	-0,20 19,3	-0.22
:X 60-157 (Miley), Re:		e AG AG	97 0,22 -0,0001	55 0,22 0,0006	24 0,23 0,0009	77 0,25 0,0010	40 0,28 0,0012	09 0,31 0,0019	83 0,33 0,0031	83 0,35 0,0038	60 0,36 0,0051	80 0,37 0,0052	26 0,39 0,0052	35 0,39 0,0046	19 0,38 0,0037	0,37	0,36	035
Milev		CLe CDe CMe E),50 0,0061 -0,14 81,),60 0,0067 -0,14 89,),69 0,0074 -0,13 93,),77 0,0083 -0,13 92,),85 0,0093 -0,12 91,),92 0,0101 -0,12 91,),99 0,0109 -0,11 90,	,06 0,0118 -0,11 89,	,13 0,0129 -0,10 87,	,19 0,0142 -0,10 83,	,26 0,0161 -0,09 78,	,32 0,0185 -0,09 71,	,38 0,0215 -0,09 64,	,44 -0,09	,50 -0,09	- 55 -0 00
ts		JMc Ec),16 119,14 0),16 112,93 0	0,17 110,22 0),18 109,71 0	0,18 107,79 0	0,19 102,05 0),20 94,21 0	0,20 90,70 1),21 82,66 1),22 80,33 1),23 77,43 1),25 73,77 1),26 69,95 1),27 59,58 1),29 54,36 1	1 4010 1
Vfnil 200r		c _{Le} c _{De} (,72 0,0060 -(,82 0,0073 -(,92 0,0083 -(,02 0,0093 -(,13 0,0105 -(,23 0,0120 -(,32 0,0140 -(,41 0,0156 -(,49 0,0180 -(,56 0,0194 -(,65 0,0213 -(,71 0,0231 -(,76 0,0252 -(,81 0,0304 -(,86 0,0342 -(
_	(2017) 2	a (deg)	0,0	1,0	2,0	3,0	4,0	5,0 1	6,0	7,0 1	8,0	9,0	10,0	11,0	12,0 1	13,0 1	14,0 1	15.0 1

Tablas 3.4.3.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX 60-157 a diferentes Números de Reynolds (continuación I).

	Vfoil 2	00pts.			Mile	Ae	FX 6()-157 (M	iley), Re: 2 Error Al	.:000.000 0soluto		E _{R1} (%)= (1-	C _e /C _c)x .	100	ERS	(%)= (1- (C _c /C _e)x 1(00
C _{Dc}	0	Mc	ω	0 C	c_{De}	C Me	ε _e	ΔCL	ΔC_D	ΔC_M	SΔ	E _{CL1}	E CD 1	E _{CM1}	п "1	E _{CL2}	E _{CD2}	E _{CM2}	Е 52
0,0059 -(Ť	0,16	121,70	0,50	0,0061		81,97	0,22	-0,0002		39,73	30,2	-3,6		32,6	-43,3	3,5		-48,5
0,0071		-0,16	116,26	0,60	0,0067		89,55	0,23	0,0004		26,71	27,5	5,9		23,0	-38,0	-6,3		-29,8
0,0079		-0,17	117,04	0,70	0,0074		94,59	0,23	0,0005		22,45	24,4	6,4		19,2	-32,2	-6,9		-23,7
0,0091		-0,18	112,11	0,79	0,0082		96,34	0,23	0,0009		15,77	22,8	10,2		14,1	-29,6	-11,4		-16,4
0,0101		-0,18	111,88	0,87	0,0090		96,67	0,26	0,0011		15,21	22,8	10,6		13,6	-29,5	-11,9		-15,7
0,0112		-0,19	109,09	0,96	0,0099		96,97	0,27	0,0013		12,12	21,8	12,0		11,1	-27,8	-13,6		-12,5
0,0132		-0,19	100,78	1,03	0,0109		94,50	0,30	0,0023		6,28	22,4	17,2		6,2	-28,9	-20,8		-6,6
0,0146		-0,20	96,75	1,10	0,0121		90,91	0,31	0,0025		5,84	22,0	17,0		6,0	-28,3	-20,5		-6,4
0,0171		-0,21	88,17	1,17	0,0135		86,67	0,34	0,0036		1,50	22,4	21,0		1,7	-28,8	-26,6		-1,7
0,0184		-0,22	85,82	1,24	0,0155		80,00	0,34	0,0029		5,82	21,5	15,8		6,8	-27,4	-18,7		-7,3
0,0201		-0,23	82,82	1,30	0,0183		71,04	0,37	0,0018		11,78	22,0	9,0		14,2	-28,1	-9,9		-16,6
0,0218		-0,24	79,31	1,36	0,0210		64,76	0,37	0,0008		14,55	21,3	3,7		18,3	-27,1	-3,8		-22,5
0,0238		-0,25	75,18	1,42				0,37				20,5				-25,8			
0,0287		-0,27	64,18	1,48				0,36				19,6				-24,4			
0,0321		-0,28	58,74	1,54				0,35				18,4				-22,5			
0,0362		-0,30	53,30	1,59				0,34				17,5				-21,2			

Tablas 3.4.3.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX 60-157 a diferentes Números de Reynolds (continuación II).

							FX 6	0-157 (N	lilev). Re: 2	000.000									
		Vfoil 2	00pts.			Miley			Error Ab	soluto		E _{R1} (9	6)= (1- C	_e /C _c)x 10	0	E _{R2} ('	%)= (1- C _c /	C _e)x 10(
α (deg)	C C	C C	C Mc	ω	C	C _{De} C _{Me}	εe	ΔCL	ΔC_D	ΔC_M	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Е,	E _{CL2}	E _{CD2} E	CM2	E ²²
0,0	0,71	0,0057	-0,16	124,60	0,50	0,0064	78,13	0,21	-0,0007		46,48	30,0	-11,7	က	57,3	-42,8	10,5	T	59,5
1,0	0,83	0,0068	-0,16	121,37	0,60	0,0071	84,51	0,23	-0,0003		36,87	27,4	4,3	m	\$0,4	-37,7	4,1	T	43,6
2,0	0,93	0,0076	-0,17	122,88	0,71	0,0080	88,75	0,22	-0,0004		34,13	23,7	-5,7	N	1,8	-31,0	5,4	Ŷ	38,5
3,0	1,03	0,0085	-0,17	121,58	0,80	0,0087	91,95	0,23	-0,0002		29,63	22,4	-2,6	N	4,4	-28,8	2,6	Ŷ	32,2
4,0	1,13	0,0094	-0,18	121,17	06'0	0,0093	96,77	0,23	0,0001		24,40	20,7	0,7	N	:0,1	-26,1	-0,7	т.	25,2
5,0	1,24	0,0103	-0,19	119,63	0,99	0,0100	99,00	0,25	0,0003		20,63	19,9	3,3	-	7,2	-24,9	-3,4	ч,	20,8
6,0	1,34	0,0121	-0,19	110,23	1,07	0,0110	97,27	0,27	0,0011		12,96	20,1	9,4	-	1,8	-25,1	-10,4	'	13,3
7,0	1,42	0,0135	-0,20	105,81	1,15	0,0124	92,74	0,27	0,0011		13,07	19,3	7,9	-	2,4	-23,9	-8,6	'	14,1
8,0	1,51	0,0157	-0,21	96,05	1,22	0,0141	86,52	0,29	0,0016		9,53	19,0	10,1		9,9	-23,5	-11,3	'	11,0
9,0	1,60	0,0170	-0,22	93,90	1,29	0,0165	78,18	0,31	0,0005		15,72	19,2	3,0	-	6,7	-23,8	-3,1	ч.	20,1
10,0	1,69	0,0186	-0,22	90,79	1,35	0,0190	71,05	0,34	-0,0004		19,74	19,9	-2,4	N	1,7	-24,8	2,3	ч г	27,8
11,0	1,75	0,0201	-0,23	87,30	1,42	0,0211	67,30	0,33	-0,0010		20,00	18,9	-5,2	N	2,9	-23,3	4,9	ч,	29,7
12,0	1,83	0,0221	-0,24	83,07	1,48			0,35				19,3				-23,9			
13,0	1,87	0,0264	-0,26	70,82	1,53			0,34				18,1				-22,1			
14,0	1,92	0,0294	-0,28	65,27	1,58			0,34				17,5				-21,3			
15,0	1,96	0,0329	-0,29	59,51	1,63			0,33				16,8				-20,2			
16,0	2,00	0,0371	-0,31	53,84	1,66			0,34				16,8				-20,3			

Tablas 3.4.3.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX 60-157 a diferentes Números de Reynolds (continuación III).

Tabla 3.4.4.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX 60-177 a diferentes Números de Reynolds.

								FX 60	-177 (M	liley), Re: 1	1.000.000									
		Vfoil 2	00pts.			Mile	ey			Error At	osoluto		E _{R1} (5	%)=(1-(C _e /C _c)x 1	00	E _{R2} (%)=(1-(C _c /C _e)x 10	00
α (deg)	о _{го}	C C	C _{Mc}	ε	0 Le	C _{De}	C Me	ε _e	ΔC	ΔC_D	ΔC_M	ЗΔ	E _{CL1}	E _{CD1}	E _{CM1}	Щ Г	E _{CL2}	E _{CD2}	E _{CM2}	Е ²²
0,0	1,03	0,0071	-0,12	145,25	0,52	0,0071		73,24	0,51	0,0000		72,01	49,3	-0,6		49,6	-97,1	0,6		-98,3
1,0	1,12	0,0083	-0,13	134,99	0,61	0,0076		80,26	0,51	0,0007		54,72	45,3	8,1		40,5	-82,9	8,8-		-68,2
2,0	1,19	0,0093	-0,14	128,23	0,71	0,0086		82,56	0,48	0,0007		45,68	40,2	7,1		35,6	-67,2	-7,6		-55,3
3,0	1,11	0,0108	-0,19	102,82	0,80	0,0098		81,63	0,31	0,0010		21,19	28,0	9,3		20,6	-38,8	-10,2		-26,0
4,0	1,21	0,0122	-0,20	99,02	0,88	0,0113		77,88	0,33	0,0009		21,15	27,4	7,6		21,4	-37,7	-8,3		-27,2
5,0	1,31	0,0143	-0,20	91,78	0,96	0,0127		75,59	0,35	0,0016		16,19	26,8	11,1		17,6	-36,6	-12,5		-21,4
6,0	1,40	0,0149	-0,21	94,02	1,04	0,0140		74,29	0,36	0,0009		19,74	26,0	6,3		21,0	-35,1	-6,7		-26,6
7,0	1,48	0,0165	-0,22	89,61	1,11	0,0153		72,55	0,37	0,0012		17,06	25,1	7,5		19,0	-33,5	-8,1		-23,5
8,0	1,57	0,0185	-0,23	84,71	1,18	0,0169		69,82	0,39	0,0016		14,89	24,9	8,9		17,6	-33,2	-9,8		-21,3
9,0	1,64	0,0207	-0,24	79,20	1,24	0,0188		65,96	0,40	0,0019		13,24	24,3	9,1		16,7	-32,1	-10,0		-20,1

	-																	
	100	Е ²²	-85,3	-61,6	-38,2	-42,1	-35,5	-23,6	-28,5	-25,1	-27,9	-29,3	-14,2					
	$C_c/C_e)x$	E _{CM2}	-3,0	-12,3	-55,2	-59,6	-64,0	-68,4	-73,8	-98,8	-104,8	-115,4	-126,1	-145,1	-152,3	-193,9	-211,1	-2293
	-1) =(%)	E _{CD2}	1,0	-3,2	-0,6	4,0	1,0	-7,0	-3,1	-4,1	-2,7	-1,0	-13,6					
	E _{R2}	E _{CL2}	-83,5	-66,7	-39,1	-36,4	-34,2	-32,2	-32,5	-30,2	-31,3	-30,5	-29,7	-27,1	-27,3	-25,8	-24,1	-24 4
	100	п 51	46,0	38,1	27,6	29,6	26,2	19,1	22,2	20,0	21,8	22,7	12,5					
	C _e /C _c)x	E _{CM1}	2,9	11,0	35,6	37,3	39,0	40,6	42,5	49,7	51,2	53,6	55,8	59,2	60,4	66,0	61,9	69.6
	··-1) =(%	E _{CD1}	-1,0	3,1	0,6	4,2	-1,0	6,5	3,0	3,9	2,6	0,9	11,9					
	E _{R1} ('	E _{CL1}	45,5	40,0	28,1	26,7	25,5	24,4	24,5	23,2	23,8	23,4	22,9	21,3	21,4	20,5	19,4	19 G
		3Δ	66,51	50,38	30,96	32,89	28,34	19,37	23,08	19,88	20,43	19,80	9,07					
500.000	soluto	ΔC_M	0,00	-0,02	-0,07	-0,07	-0,08	-0,08	-0,09	-0,11	-0,12	-0,13	-0,14	-0,16	-0,17	-0,19	-0,21	-0.23
ey), Re: 1.	Error Ab:	ΔC_D	-0,0001	0,0002	0,0001	-0,0004	-0,0001	0,0008	0,0004	0,0006	0,0004	0,0002	0,0028					
177 (Mil		ΔCL	0,44	0,42	0,29	0,30	0,31	0,32	0,35	0,35	0,38	0,39	0,40	0,37	0,39	0,38	0,37	0.38
FX 60-		εe	77,94	81,82	81,11	78,10	79,82	81,97	81,06	79,31	73,33	67,55	63,64					
	y	C _{Me}	-0,13	-0,13	-0,12	-0,12	-0,12	-0,12	-0,12	-0,11	-0,11	-0,11	-0,11	-0,11	-0,11	-0,10	-0,10	-0.10
	Mile	C _{De}	0,0068	0,0077	0,0090	0,0105	0,0114	0,0122	0,0132	0,0145	0,0165	0,0188	0,0209					
		CLe	0,53	0,63	0,73	0,82	0,91	1,00	1,07	1,15	1,21	1,27	1,33	1,38	1,44	1,49	1,54	1 56
		ω	144,46	132,20	112,07	110,99	108,17	101,34	104,14	99,19	93,76	87,35	72,70	67,82	63,62	59,04	54,12	49.16
	0pts.	C _{Mc}	-0,13	-0,15	-0,19	-0,19	-0,20	-0,20	-0,21	-0,22	-0,23	-0,24	-0,25	-0,27	-0,28	-0,29	-0,31	-0.33
	Vfoil 20	C _{Dc}	0,0067	0,0079	0,0091	0,0101	0,0113	0,0130	0,0136	0,0151	0,0169	0,0190	0,0237	0,0259	0,0288	0,0318	0,0353	0 0395
		C C	0,97	1,05	1,02	1,12	1,22	1,32	1,42	1,50	1,59	1,66	1,73	1,75	1,83	1,87	1,91	1 94
		α (deg)	0,0	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0	9,0	10,0	11,0	12,0	13,0	14,0	15.0

		53	14,6	.7,3	38,3	37,1	33,2	29,1		й, 1	3,1 2,2	83,1 82,2 81,7	83,1 82,2 81,7 80,9	3,1 5,0 5,0	3,1 5,0 5,0	5,0 5,0	5,0 5,0	5,0 5,0
	C _e)x 100	EM2	ဝု	4	ę	ę	ę	Ņ		'n	տ տ	יי יי יי	ຕຸ ຕຸ ຕຸ	ሳሳሳሳ <u>ተ</u>	ϙϙϙϙ <i>Ϛ</i>	տ՝ տ՝ տ՝ տ՝ '	ၯၯၯ <u></u>	ო υ, η, η, η, Γ ,
	= (1- C _c /	CD2	8,	,7	œ	9,6	,7	°,3	4	Ū,	v, o,	v`o`−`	čā, –, ζ	6, 0, 1, 2, 0, 2, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	6, 6, 7, 6, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	6, 6 1, 2, 0 2, 0	6, 6, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	5,0 2,0
	E _{R2} (%);	Щ	4 6	2	8, -1	o, O	, L	4, ů	2		5	و م 0	, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	2 9 7 7 0 0 7 7 0 0		007700	000770000	00977 00977
		Ш	-81,	-46,	-40	-38	-34	-33	-31,		-31,	, 91, 1,	, b, b, b, b, b, b	, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31	, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31	-31, -31, -28, -26, -26,	-31, -31, -26, -26, -26,	-31, -31, -28, -26, -26, -24,
	x 100	Щ	48,6	32,1	27,7	27,1	24,9	22,5	24,9		24,4	24,4 24,1	24,4 24,1 23,6	24,4 24,1 23,6 13,0	24,4 24,1 23,6 13,0	24,4 24,1 23,6 13,0	24,4 24,1 23,6 13,0	24,4 24,1 23,6 13,0
	- C _e /C _c)	E _{CM1}																
	(%)= (1-	E _{CD1}	-7,3	-0,7	1,8	0,6	0,7	3,2	-1,5		-0,6	-0,6 -0,1	-0,6 -0,1 0,2	-0,6 -0,1 0,2 10,7	-0,6 -0,1 0,2 10,7	-0,6 -0,1 0,2 10,7	-0,6 -0,1 0,2 10,7	-0,6 -0,1 0,2 10,7
	ER	E _{CL1}	44,9	31,6	29,0	27,5	25,4	25,0	23,8		24,0	24,0 24,0	24,0 24,0 23,7	24,0 24,0 23,7 22,3	24,0 24,0 23,7 22,3 22,5	24,0 24,0 22,3 22,5 22,5 20,7	24,0 24,0 22,3 22,5 20,7 20,6	24,0 24,0 22,3 22,5 20,6 20,6 19,7
		3Δ	72,36	38,05	31,69	30,70	27,95	24,40	27,72		25,92	25,92 24,20	25,92 24,20 22,06	25,92 24,20 22,06 10,08	25,92 24,20 22,06 10,08	25,92 24,20 22,06 10,08	25,92 24,20 22,06 10,08	25,92 24,20 22,06 10,08
000.000	oluto	ΔC _M																
, Re: 2.(rror Abs	° 2	2005	2001	002	1001	1000	004	2002		2001	0000 0000	1000 0000 0000	0001 0000 0024)000 0000 0024)000 0000 0024	0001 0000 0024 0024)000 0000 0024
(Miley),	ш	<	2 -0,0	9'-0'(0,0	0,0	0,0	3 0,0	1 -0,0		- - -	0,0,0	0,0,0			2,000	2000	
30-177		ΔC	0,42	0,29	0,29	0,31	0,31	0,33	0,34	0.36		0,39	0,39 0,40	0,39 0,40 0,38	0,39 0,40 0,36 0,36 0,41	0,39 0,40 0,38 0,38 0,38	0,39 0,40 0,38 0,38 0,38 0,38	0,39 0,40 0,38 0,38 0,38 0,38 0,38
FX 6		β	76,47	80,52	82,76	82,65	84,26	83,90	83,72	80,42		76,25	76,25 71,51	76,25 71,51 67,34	76,25 71,51 67,34	76,25 71,51 67,34	76,25 71,51 67,34	76,25 71,51 67,34
	Λŧ	C _{Me}																
	Mile	C C	0,0068	0,0077	0,0087	0,0098	0,0108	0,0118	0,0129	0,0143		0,0160	0,0160 0,0179	0,0160 0,0179 0,0199	0,0160 0,0179 0,0199	0,0160 0,0179 0,0199	0,0160 0,0179 0,0199	0,0160 0,0179 0,0199
		C C	0,52	0,62	0,72	0,81	0,91	0,99	1,08	1,15		1,22	1,22 1,28	1,22 1,28 1,34	1,22 1,28 1,34 1,40	1,22 1,28 1,34 1,45	1,22 1,28 1,34 1,45 1,51	1,22 1,28 1,34 1,46 1,51 1,56
		ω	148,83	118,57	114,45	113,35	112,21	108,30	111,44	106,34		100,45	100,45 93,57	100,45 93,57 77,42	100,45 93,57 77,42 73,09	100,45 93,57 77,42 73,09 68,23	100,45 93,57 77,42 73,09 68,23 63,68	100,45 93,57 77,42 73,09 68,23 63,68 58,41
	0pts.	C Mc	-0,14	-0,18	-0,19	-0,19	-0,20	-0,20	-0,21	-0,21		-0,22	-0,22 -0,23	-0,22 -0,23 -0,25	-0,22 -0,23 -0,25 -0,26	-0,22 -0,23 -0,25 -0,26	-0,22 -0,23 -0,25 -0,28 -0,28	-0,22 -0,25 -0,25 -0,26 -0,28 -0,29
	Vfoil 20	ပ ပ	0,0063	0,0076	0,0089	0,0099	0,0109	0,0122	0,0127	0,0142		0,0160	0,0160 0,0179	0,0160 0,0179 0,0223	0,0160 0,0179 0,0223 0,0247	0,0160 0,0179 0,0223 0,0247 0,0268	0,0160 0,0179 0,0223 0,0247 0,0268 0,0268	0,0160 0,0179 0,0223 0,0247 0,0268 0,0299 0,0333
		С _{Го}	0,94	0,91	1,01	1,12	1,22	1,32	1,42	1,51		1,61	1,61 1,68	1,61 1,68 1,72	1,61 1,68 1,72 1,81	1,61 1,68 1,72 1,81	1,61 1,68 1,72 1,81 1,83	1,61 1,68 1,72 1,81 1,90 1,90
		a (deg)	0,0	1,0	2,0	3,0	4,0	5,0	6,0	7,0		8,0	8,0 9,0	8,0 9,0 10,0	8,0 9,0 11,0	8,0 9,0 11,0 12,0	8,0 9,0 11,0 12,0	8,0 9,0 11,0 12,0 14,0

Tabla 3.4.4.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX 60-177 a diferentes Números de Reynolds (continuación I).

								FX 60	-177 (M	liley), Re: 3	3.000.000									
		Vfoil 2	00pts.			Mile	ey			Error At	osoluto		E _{R1} (⁵	%)= (1- C _e /	'C _c)x 100	c	E _{R2} (⁹	%)= (1- C	_c /C _e)x 1(00
α (deg)	о _г о	С С	C Mc	ω	0 Le	C C	C _{Me}	εe	ΔCL	ΔC_D	ΔC_M	3Δ	E _{CL1}	Е СD1 Г	CM1 E	1 ₆₁	E _{CL2}	E _{CD2}	E _{CM2}	Е _{£2}
0'0	0,81	0,0065	-0,18	124,90	0,53	0,0073		72,60	0,28	-0,0008		52,30	34,3	-13,1	4	1,9	52,1	11,6		-72,0
1,0	0,90	0,0074	-0,18	121,68	0,64	0,0080		80,00	0,26	-0,0006		41,68	29,2	-7,7-	ъ,	4,3	41,2	7,2		-52,1
2,0	1,01	0,0083	-0,19	121,64	0,74	0,0089		83,15	0,27	-0,0006		38,49	26,8	-7,1	ò	1,6	36,6	6,6		-46,3
3,0	1,12	0,0091	-0,19	122,38	0,84	0,0099		84,85	0,28	-0,0008		37,53	24,7	-8,6	3(0,7 -	32,8	7,9		-44,2
4,0	1,22	0,0101	-0,20	121,06	0,93	0,0107		86,92	0,29	-0,0006		34,14	23,6	-6,4	2	8,2	31,0	6,0		-39,3
5,0	1,33	0,0112	-0,20	118,55	1,02	0,0114		89,47	0,31	-0,0002		29,08	23,4	-1,5	2	4,5	30,5	1,5		-32,5
6,0	1,43	0,0119	-0,21	120,44	1,11	0,0123		90,24	0,32	-0,0004		30,20	22,3	-3,6	2(5,1 -	28,8	3,5		-33,5
7,0	1,53	0,0131	-0,21	116,71	1,19	0,0135		88,15	0,34	-0,0004		28,56	22,0	-3,2	2	4,5	28,3	3,1		-32,4
8,0	1,62	0,0147	-0,22	110,23	1,26	0,0157		80,25	0,36	-0,0010		29,98	22,3	-6,7	2	7,2	28,7	6,3		-37,4
9,0	1,70	0,0165	-0,23	102,74	1,32	0,0184		71,74	0,38	-0,0019		31,01	22,2	-11,4	3(0,2	28,5	10,3		-43,2
10,0	1,75	0,0207	-0,24	84,28	1,38	0,0205		67,32	0,37	0,0002		16,96	21,0	1,1	2(0,1	26,6	-1,1		-25,2
11,0	1,83	0,0228	-0,25	80,18	1,43				0,40				21,9			r	28,0			
12,0	1,88	0,0253	-0,26	74,63	1,48				0,40				21,5			r	27,3			
13,0	1,93	0,0276	-0,28	69,91	1,53				0,40				20,8			r	26,3			
14,0	2,00	0,0309	-0,29	64,83	1,57				0,43				21,7			r	27,7			
15,0	2,04	0,0345	-0,30	59,29	1,61				0,43				21,3			ŕ	27,0			
16.0	2.08	0.0384	-0.32	54.05	1.63				0.45				21.5			1	27.3			

Tabla 3.4.4.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX 60-177 a diferentes Números de Reynolds (continuación II).

Tabla 3.4.5.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX 61-140 a diferentes Números de Reynolds.

								FX 61	-140 (M	iley), Re: 1	1.000.000									
		Vfoil 1	80pts.			Mi	ley			Error Al	bsoluto		E _{R1} (5	%)= (1- (C _e /C _c)x 1	00	E _{R2} ((%)= (1- (C _c /C _e)x 1(00
a (deg)	C_{Lc}	C _{Dc}	C _{Mc}	٤ ^C	CLe	CDe	C _{Me}	ε _e	ΔCL	ΔC_D	ΔC_M	Δε	E _{CL1}	E _{CD1}	E _{CM1}	E ₆₁	E _{CL2}	E _{CD2}	E _{CM2}	E _{£2}
0'0	0,69	0,0080	-0,14	85,79	0,44	0,0078		56,41	0,25	0,0002		29,38	36,2	3,0		34,2	-56,8	-3,1		-52,1
1,0	0,80	0,0083	-0,14	96,43	0,55	0,0079		69,62	0,25	0,0004		26,81	31,2	4,8		27,8	-45,4	-5,0		-38,5
2,0	0,91	0,0086	-0,15	105,64	0,66	0,0082		80,49	0,25	0,0004		25,15	27,4	4,7		23,8	-37,8	-5,0		-31,2
3,0	1,02	0,0092	-0,15	110,76	0,76	0,0086		88,37	0,26	0,0006		22,38	25,4	6,6		20,2	-34,1	-7,0		-25,3
4,0	1,13	0,0097	-0,15	116,64	0,86	0,0091		94,51	0,27	0,0006		22,14	23,8	5,9		19,0	-31,2	-6,3		-23,4
5,0	1,24	0,0105	-0,16	118,05	0,96	0,0096		100,00	0,28	0,0009		18,05	22,4	8,4		15,3	-28,9	-9,1		-18,1
6,0	1,34	0,0117	-0,16	114,82	1,04	0,0103		100,97	0,30	0,0014		13,85	22,5	11,9		12,1	-29,0	-13,5		-13,7
7,0	1,45	0,0138	-0,16	105,00	1,12	0,0111		100,90	0,33	0,0027		4,10	22,8	19,7		3,9	-29,6	-24,5		-4,1
8,0	1,55	0,0187	-0,16	82,94	1,20	0,0122		98,36	0,35	0,0065		-15,42	22,5	34,7		-18,6	-29,0	-53,0		15,7
9,0	1,65	0,0214	-0,17	77,13	1,27				0,38				22,9				-29,7			
10,0	1,70	0,0241	-0,18	70,83	1,33				0,37				22,0				-28,2			

				_											
		100	E _{ε2}	-64,2	-51,0	-40,8	-34,2	-27,8	-18,7	-7,2	1,1	7,2	-2,5		
		C _c /C _e)x	E _{CM2}	-42,8	-45,7	-35,0	-37,3	-39,7	-41,8	-44,3	-45,6	-60,5	-66,3	-69,9	-95.9
		i(%)= (1-	E _{CD2}	-1,9	0,5	-0,6	-2,4	-3,7	-9'6	-19,2	-28,8	-38,3	-25,3		
		ШR	E _{CL2}	-67,3	-50,3	-41,6	-37,4	-32,5	-30,1	-27,8	-27,4	-28,4	-28,4	-28,9	-24.7
		100	E _{ε1}	39,1	33,8	29,0	25,5	21,7	15,8	6,7	-1,1	-7,7-	2,4		
		C _e /C _c)x	E _{CM1}	30,0	31,4	25,9	27,2	28,4	29,5	30,7	31,3	37,7	39,9	41,2	48.9
		%)= (1-	E _{cD1}	1,9	-0,5	0,6	2,4	3,6	8,8	16,1	22,4	27,7	20,2		
		Е _{R1} (E _{CL1}	40,2	33,4	29,4	27,2	24,5	23,1	21,8	21,5	22,1	22,1	22,4	19.8
			Δε	37,05	36,02	33,88	31,23	28,09	20,20	8,05	-1,18	-7,16	2,03		
	500.000	soluto	ΔC_M	-0,04	-0,05	-0,04	-0,04	-0,04	-0,05	-0,05	-0,05	-0,06	-0,07	-0,07	-0.10
1	ey), Re: 1	Error Ab	ΔC_D	0,0001	0,0000,0	0,0000	0,0002	0,0003	0,0008	0,0018	0,0030	0,0047	0,0040		
	-140 (Mil		ΔC_L	0,28	0,27	0,27	0,28	0,28	0,29	0,29	0,31	0,35	0,37	0,39	0.35
	FX 61-		ε _e	57,75	70,67	83,12	91,36	101,19	107,95	111,70	109,62	100,00	82,17		
		Y.	C _{Me}	-0,10	-0,10	-0,11	-0,11	-0,11	-0,11	-0,11	-0,11	-0,10	-0,10	-0,10	-0.10
		Mile	CDe	0,0071	0,0075	0,0077	0,0081	0,0084	0,0088	0,0094	0,0104	0,0122	0,0157		
			C _{Le}	0,41	0,53	0,64	0,74	0,85	0,95	1,05	1,14	1,22	1,29	1,36	1.41
	•		ε	94,80	106,68	117,00	122,59	129,28	128,16	119,75	108,44	92,84	84,20	79,39	70.08
		Opts.	C _{Mc}	-0,14	-0,15	-0,15	-0,15	-0,15	-0,16	-0,16	-0,16	-0,16	-0,17	-0,17	-0.20
		Vfoil 18	c_{Dc}	0,0072	0,0075	0,0077	0,0083	0,0087	0,0096	0,0112	0,0134	0,0169	0,0197	0,0221	0.0251
			C _{Lc}	0,69	0,80	0,91	1,02	1,13	1,24	1,34	1,45	1,57	1,66	1,75	1.76
			a (deg)	0'0	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0	9,0	10,0	11.0

Tabla 3.4.5.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX 61-140 a diferentes Números de Reynolds (continuación I).

								FX 61	-140 (M	iley), Re: 2	.000.000									
		Vfoil 1	80pts.			Mil	ey			Error At	soluto		Е _{R1} (⁵	%)= (1- 0	C _e /C _c)x 1(00	E _{R2} ((%)= (1- (C _c /C _e)x 1	00
a (deg)	CLc	c_{Dc}	C _{Mc}	ε _c	CLe	C _{De}	C _{Me}	ε _e	ΔC_L	ΔC_D	ΔC_M	Δε	E _{CL1}	E _{cD1}	E _{CM1}	E_{ϵ_1}	E _{CL2}	E _{CD2}	E _{CM2}	Е _{£2}
0'0	0,68	0,0067	-0,14	101,41	0,41	0,0068		60,29	0,27	-0,0001		41,12	40,0	-0,9		40,5	-66,7	0,9		-68,2
1,0	0,79	0,0070	-0,15	114,21	0,52	0,0070		74,29	0,27	0,0000		39,92	34,5	-0,7	-	35,0	-52,7	0,7		-53,7
2,0	0,90	0,0072	-0,15	125,36	0,63	0,0072		87,50	0,27	0,0000		37,86	30,4	0,2	-	30,2	-43,6	-0,2		-43,3
3,0	1,02	0,0077	-0,15	131,29	0,75	0,0073		102,74	0,27	0,0004		28,55	26,2	5,6		21,7	-35,4	-6,0		-27,8
4,0	1,13	0,0083	-0,15	135,66	0,86	0,0078		110,26	0,27	0,0005		25,40	23,6	6,0		18,7	-30,9	-6,4		-23,0
5,0	1,24	0,0094	-0,16	131,65	0,96	0,0083		115,66	0,28	0,0011		15,99	22,3	11,6		12,1	-28,7	-13,1		-13,8
6,0	1,35	0,0112	-0,16	119,71	1,06	0,0089		119,10	0,29	0,0023		0,61	21,3	20,9		0,5	-27,0	-26,3		-0,5
7,0	1,45	0,0129	-0,16	112,25	1,15	0,0103		111,65	0,30	0,0026		0,60	20,9	20,5		0,5	-26,4	-25,7		-0,5
8,0	1,57	0,0159	-0,16	98,71	1,23	0,0124		99,19	0,34	0,0035		-0,48	21,5	21,8		-0,5	-27,3	-27,9		0,5
9'0	1,66	0,0184	-0,17	89,79	1,30	0,0151		86,09	0,36	0,0033		3,69	21,5	18,1		4,1	-27,4	-22,2		4,3
10,0	1,75	0,0206	-0,17	84,99	1,37	0,0177		77,40	0,38	0,0029		7,59	21,9	14,2		8,9	-28,0	-16,6		-9,8
11,0	1,81	0,0233	-0,18	77,58	1,43	0,0207		69,08	0,38	0,0026		8,50	21,0	11,2		11,0	-26,5	-12,7		-12,3

								i												ſ
								FX 61	I-140 (M	iley), Re:3.	.000.000									
		Vfoil 1	80pts.			Mil	ey			Error Ab	soluto		Е _{R1} (⁵	%)=(1-(C _e /C _c)x 1	00	E _{R2} ((%)= (1- (C _c /C _e)x 1(00
α (deg)	C C	C _{Dc}	C _{Mc}	εc	С С	C C	C _{Me}	εe	ΔCL	ΔC_D	ΔC_M	3Δ	E _{CL1}	E _{CD1}	E _{CM1}	п ²	E _{CL2}	E _{CD2}	E _{CM2}	Е ²²
0'0	0,68	0,0061	-0,14	111,09	0,41	0,0063		65,08	0,27	-0,0002		46,01	39,7	-2,9		41,4	-65,9	2,8		-70,7
1,0	0,79	0,0063	-0,15	125,23	0,52	0,0064		81,25	0,27	-0,0001		43,98	34,3	-1,3		35,1	-52,2	1,3		-54,1
2,0	0,90	0,0066	-0,15	137,58	0,64	0,0066		96,97	0,26	0,0000		40,61	29,1	-0,6		29,5	-41,0	0,6		-41,9
3,0	1,01	0,0070	-0,15	144,02	0,75	0,0070		107,14	0,26	0,0000		36,88	26,0	0,6		25,6	-35,2	-0,6		-34,4
4,0	1,12	0,0077	-0,15	145,59	0,85	0,0073		116,44	0,27	0,0004		29,15	24,4	5,5		20,0	-32,3	-5,8		-25,0
5,0	1,24	0,0089	-0,16	138,27	0,96	0,0077		124,68	0,28	0,0012		13,59	22,3	13,8		9,8	-28,7	-16,0		-10,9
6,0	1,35	0,0110	-0,16	122,39	1,06	0,0085		124,71	0,29	0,0025		-2,31	21,3	22,8		-1,9	-27,1	-29,5		1,9
7,0	1,45	0,0122	-0,16	118,92	1,15	0,0100		115,00	0,30	0,0022		3,92	20,9	18,2		3,3	-26,5	-22,3		-3,4
8,0	1,57	0,0146	-0,16	107,24	1,24	0,0121		102,48	0,33	0,0025		4,76	20,8	17,1		4,4	-26,3	-20,7		4,6
9,0	1,68	0,0167	-0,16	100,15	1,31	0,0143		91,61	0,37	0,0024		8,54	21,8	14,5		8,5	-27,9	-17,0		-9,3
10,0	1,76	0,0191	-0,17	92,40	1,39	0,0160		86,88	0,37	0,0031		5,53	21,2	16,1		6,0	-26,8	-19,3		-6,4
11,0	1,84	0,0214	-0,18	85,71	1,45				0,39				21,1				-26,7			
12.0	1.85	0,0240	-0,20	76,96	1.51				0,34				18,3				-22,4			

Tabla 3.4.6.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX 61-147 a diferentes Números de Reynolds.

								FX 61	-147 (M	iley), Re: 1	.000.000									
		Vfoil 2	00pts.			Mile	λε			Error At	soluto		E _{R1} ('	%)=(1- (C _e /C _c)x 1	00	ER2	(%)= (1- (C _c /C _e)x 1	OC
α (deg)	С _{Гс}	C C	C _{Mc}	ω	C	C _{De}	C _{Me}	ε _e	ΔCL	ΔC_D	ΔC_M	3Δ	E _{CL1}	E _{CD1}	E _{CM1}	П 51	E _{CL2}	E _{CD2}	E _{CM2}	Е ₂
0'0	0,85	0,0086	-0,16	98,90	0,44	0,0076		57,89	0,41	0,0010		41,01	48,4	11,9		41,5	-93,8	-13,4		-70,8
1,0	0,96	0,0090	-0,17	107,33	0,55	0,0078		70,51	0,41	0,0012		36,82	42,9	13,1		34,3	-75,2	-15,1		-52,2
2,0	1,07	0,0093	-0,17	114,89	0,66	0,0081		81,48	0,41	0,0012		33,41	38,5	13,3		29,1	-62,6	-15,3		-41,0
3,0	1,18	0,0098	-0,17	119,71	0,76	0,0085		89,41	0,42	0,0013		30,29	35,5	13,6		25,3	-55,0	-15,8		-33,9
4,0	1,29	0,0104	-0,18	123,98	0,87	0,0090		96,67	0,42	0,0014		27,32	32,4	13,3		22,0	-47,9	-15,3		-28,3
5,0	1,39	0,0110	-0,18	127,18	0,96	0,0096		100,00	0,43	0,0014		27,18	31,2	12,5		21,4	-45,3	-14,2		-27,2
6,0	1,50	0,0121	-0,19	123,78	1,06	0,0102		103,92	0,44	0,0019		19,85	29,5	16,0		16,0	-41,8	-19,1		-19,1
7,0	1,61	0,0140	-0,19	114,91	1,14	0,0110		103,64	0,47	0,0030		11,28	29,2	21,5		9,8	-41,3	-27,5		-10,9
8,0	1,72	0,0166	-0,19	103,83	1,22	0,0121		100,83	0,50	0,0045		3,01	29,1	27,0		2,9	-41,0	-36,9		-3,0

_														
	100	E _{ε2}	-71,0	-50,1	-42,0	-33,0	-27,7	-21,4	-13,7	-6,1	0,2	16,6	17,1	11.0
	· C _c /C _e)x	E _{CM2}												
	-1) = (%)	E _{CD2}	-12,5	-13,9	-12,2	-13,5	-12,9	-14,6	-20,0	-27,6	-35,7	-64,2	-64,3	49.6
	E _{R3}	E _{CL2}	-92,4	-71,0	-59,4	-51,0	-44,2	-39,2	-36,5	-35,3	-35,4	-37,0	-36,2	-33.1
	100	E_{ϵ_1}	41,5	33,4	29,6	24,8	21,7	17,6	12,1	5,7	-0,2	-19,8	-20,6	-12.4
	- C _e /C _c)x	E _{CM1}												
	(%)= (1-	E _{CD1}	11,1	12,2	10,9	11,9	11,4	12,8	16,7	21,6	26,3	39,1	39,1	33.1
	E _{R1}	E _{CL1}	48,0	41,5	37,3	33,8	30,6	28,2	26,7	26,1	26,2	27,0	26,6	24.9
(Δε	45,27	39,54	37,55	32,62	29,75	24,34	15,90	6,87	-0,26	-17,20	-16,63	-9.02
.500.000	osoluto	ΔC_M												
ley), Re: 1	Error At	ΔC_D	0,0009	0,0010	0,0009	0,0011	0,0011	0,0013	0,0019	0,0029	0,0041	0,0083	0,0093	0.0088
-147 (Mi		ΔC_L	0,41	0,40	0,40	0,40	0,39	0,39	0,40	0,42	0,45	0,50	0,51	0.48
FX 61		ε _e	63,77	78,87	89,33	98,73	107,23	113,64	115,79	113,33	109,48	103,88	97,22	81.92
	ey	C _{Me}												
	Mi	C _{De}	0,0069	0,0071	0,0075	0,0079	0,0083	0,0088	0,0095	0,0105	0,0116	0,0129	0,0144	0.0177
		C _{Le}	0,44	0,56	0,67	0,78	0,89	1,00	1,10	1,19	1,27	1,34	1,40	1.45
		ε _c	109,04	118,42	126,88	131,35	136,97	137,98	131,69	120,21	109,23	86,67	80,59	72.90
	00pts.	C _{Mc}	-0,16	-0,17	-0,17	-0,17	-0,18	-0,18	-0,19	-0,19	-0,19	-0,19	-0,20	-0.23
	Vfoil 20	c_{Dc}	0,0078	0,0081	0,0084	0,0090	0,0094	0,0101	0,0114	0,0134	0,0157	0,0212	0,0237	0.0265
		C _{Lc}	0,85	0,96	1,07	1,18	1,28	1,39	1,50	1,61	1,72	1,84	1,91	1.93
		α (deg)	0'0	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0	9,0	10,0	11.0
_		_	_	_		_		_		_	_		_	_

Tabla 3.4.6.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX 61-147 a diferentes Números de Reynolds (continuación I).

								FX 61	-147 (M	liley), Re: 2	000.000.									
		Vfoil 2	00pts.			Milt	ey			Error At	osoluto		E _{R1} (%)= (1-	C _e /C _c)x	100	ER2	(%)= (1-	C _c /C _e)x .	00
a (deg)	C _{Lc}	c_{Dc}	C _{Mc}	ε _c	CLe	CDe	C _{Me}	ε _e	ΔC_L	ΔC_D	ΔC_M	Δε	E _{CL1}	E _{cD1}	E _{CM1}	E_{ε_1}	E _{CL2}	E _{CD2}	E _{CM2}	E _{£2}
0,0	0,84	0,0072	-0,16	116,49	0,44	0,0066	-0,11	66,67	0,40	0,0006	-0,05	49,83	47,8	8,7	32,7	42,8	-91,4	-9,5	-48,7	-74,7
1,0	0,95	0,0075	-0,17	126,60	0,56	0,0068	-0,11	82,35	0,39	0,0007	-0,06	44,24	41,3	9,8	34,3	34,9	-70,4	-10,8	-52,3	-53,7
2,0	1,06	0,0078	-0,17	135,73	0,67	0,0070	-0,11	95,71	0,39	0,0008	-0,06	40,01	37,1	10,7	35,9	29,5	-58,9	-12,0	-56,1	41,8
3,0	1,17	0,0084	-0,18	140,48	0,79	0,0074	-0,11	106,76	0,38	0,0010	-0,07	33,73	32,8	11,5	37,4	24,0	-48,7	-13,0	-59,7	-31,6
4,0	1,29	0,0088	-0,18	145,73	06'0	0,0079	-0,11	113,92	0,39	0,0009	-0,07	31,81	30,0	10,4	38,7	21,8	-42,8	-11,6	-63,1	-27,9
5,0	1,39	0,0096	-0,18	144,69	1,00	0,0084	-0,11	119,05	0,39	0,0012	-0,07	25,64	28,1	12,6	40,3	17,7	-39,0	-14,4	-67,5	-21,5
6,0	1,50	0,0111	-0,19	135,44	1,10	0,0088	-0,11	125,00	0,40	0,0023	-0,08	10,44	26,7	20,5	41,3	7,7	-36,4	-25,9	-70,4	-8,4
7,0	1,61	0,0132	-0,19	121,95	1,19	0,0099	-0,11	120,20	0,42	0,0033	-0,08	1,74	26,1	25,0	42,2	1,4	-35,3	-33,4	-73,0	-1,5
8,0	1,72	0,0152	-0,19	113,14	1,28	0,0114	-0,11	112,28	0,44	0,0038	-0,08	0,85	25,6	25,0	43,0	0,8	-34,4	-33,3	-75,3	-0,8
9'0	1,83	0,0199	-0,19	92,13	1,36	0,0134	-0,11	101,49	0,47	0,0065	-0,08	-9,36	25,9	32,7	43,2	-10,2	-34,9	-48,6	-76,1	9,2
10,0	1,94	0,0222	-0,20	87,22	1,43	0,0158	-0,12	90,51	0,51	0,0064	-0,08	-3,29	26,3	29,0	38,9	-3,8	-35,7	-40,8	-63,6	3,6
11,0	1,95	0,0248	-0,22	78,52	1,48		-0,12		0,47		-0,10				46,1		-31,7		-85,7	
12,0	1,97	0,0280	-0,25	70,15	1,53		-0,12		0,44		-0,13				51,4		-28,4		-105,6	

	100	П ²²	-75,4	-55,5	-46,4	-36,6	-30,4	-19,9	-10,3	-0,4	-2,3	5,8	-0,4	2,8	
	C _c /C _e)x	E _{CM2}													
	-1) =(%)	E _{CD2}	-6,0	-7,1	-6,5	-7,2	-9,3	-15,0	-22,4	-33,6	-30,4	-42,1	-33,3	-36,0	
	E _{R2}	E _{CL2}	-86,0	-66,5	-55,9	-46,4	-42,5	-37,9	-35,0	-34,2	-33,3	-33,8	-33,8	-32,2	-29,9
	100	П _{Е1}	43,0	35,7	31,7	26,8	23,3	16,6	9,4	0,4	2,2	-6,2	0,4	-2,8	
	- C _e /C _c)x	E _{CM1}													
	-1) =(%)	E _{CD1}	5,7	6,6	6,1	6,7	8,5	13,0	18,3	25,2	23,3	29,6	25,0	26,5	
	E _{R1}	E _{CL1}	46,2	39,9	35,9	31,7	29,8	27,5	25,9	25,5	25,0	25,3	25,3	24,4	23,0
(3∆	54,76	49,41	47,13	41,18	36,47	25,14	13,34	0,53	2,65	-6,19	0,37	-2,50	
000.000.	osoluto	ΔC_M													
ley), Re: 3	Error At	ΔC_D	0,0004	0,0005	0,0004	0,0005	0,0007	0,0012	0,0019	0,0032	0,0033	0,0054	0,0051	0,0060	
-147 (Mi		ΔC	0,39	0,38	0,38	0,37	0,38	0,38	0,39	0,41	0,43	0,46	0,49	0,49	0,47
FX 61		ε _e	72,58	89,06	101,49	112,68	120,00	126,25	129,07	126,32	117,27	106,20	94,77	90,48	
	Уe	C _{Me}													
	Mile	C _{De}	0,0062	0,0064	0,0067	0,0071	0,0075	0,0080	0,0086	0,0095	0,0110	0,0129	0,0153	0,0168	
		CLe	0,45	0,57	0,68	0,80	06'0	1,01	1,11	1,20	1,29	1,37	1,45	1,52	1,58
		εc	127,34	138,47	148,62	153,86	156,47	151,39	142,41	126,85	119,92	100,02	95,14	87,97	79,56
	00pts.	C _{Mc}	-0,16	-0,17	-0,17	-0,18	-0,18	-0,18	-0,19	-0,19	-0,19	-0,19	-0,20	-0,21	-0,22
	Vfoil 20	C C	0,0066	0,0069	0,0071	0,0076	0,0082	0,0092	0,0105	0,0127	0,0143	0,0183	0,0204	0,0228	0,0258
		C _{Lc}	0,84	0,95	1,06	1,17	1,28	1,39	1,50	1,61	1,72	1,83	1,94	2,01	2,05
		a (deg)	0'0	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0	9,0	10,0	11,0	12,0

Tabla 3.4.7.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX 61-163 a diferentes Números de Reynolds.

_				_										
		100	E _{ε2}	-61,8	-46,6	-39,9	-34,9	-27,2	-17,5	-9,8	-7,9	-16,0		
		- C _c /C _e)x	E _{CM2}											
		₂ (%)= (1-	E _{CD2}	3,9	2,9	2,9	2,9	-1,2	-6,6	-12,9	-13,9	-5,8		
		Ш	E _{CL2}	-55,5	-42,3	-35,8	-30,9	-28,7	-25,3	-23,9	-22,9	-22,8	-23,3	-24.4
		< 100	E_{ϵ_1}	38,2	31,8	28,5	25,9	21,4	14,9	8,9	7,3	13,8		
		- C _e /C _c)	E _{CM1}											
		(%)= (1	E _{cD1}	4,1	-3,0	-3,0	-3,0	1,2	6,2	11,4	12,2	5,5		
		П К	E _{CL1}	35,7	29,7	26,3	23,6	22,3	20,2	19,3	18,6	18,5	18,9	19.6
	1		Δε	38,08	36,39	35,67	34,88	29,14	19,90	11,25	8,32	14,85		
	.500.000	soluto	ΔC_M											
	ley), ке: 1	Error At	ΔC_D	-0,0003	-0,0002	-0,0002	-0,0002	0,0001	0,0006	0,0012	0,0016	0,0008		
	-163 (MI		ΔC_L	0,25	0,24	0,24	0,24	0,26	0,25	0,26	0,27	0,29	0,31	0.33
L L	FX 61		ε _e	61,64	78,08	89,47	100,00	107,23	113,64	114,58	105,26	92,81		
		ý	C _{Me}											
		Mile	C _{De}	0,0073	0,0073	0,0076	0,0079	0,0083	0,0088	0,0096	0,0114	0,0139		
			C _{Le}	0,45	0,57	0,68	0,79	0,89	1,00	1,10	1,20	1,29	1,35	1.36
			εc	99,72	114,48	125,14	134,88	136,37	133,54	125,83	113,59	107,65	85,55	75.52
		0pts.	C _{Mc}	-0,13	-0,14	-0,14	-0,14	-0,15	-0,15	-0,15	-0,16	-0,16	-0,17	-0.19
		Vfoil 20	c_{Dc}	0,0070	0,0071	0,0074	0,0077	0,0084	0,0094	0,0108	0,0130	0,0147	0,0195	0.0224
			CLc	0,70	0,81	0,92	1,03	1,15	1,25	1,36	1,47	1,58	1,66	1.69
			a (deg)	0,0	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0	9,0	10.0

Tabla 3.4.7.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX 61-163 a diferentes Números de Reynolds (continuación).

								FX 61	-163 (M	liley), Re: 2	000.000									
		Vfoil 2	00pts.			Milt	ey			Error At	osoluto		E _{R1} (5	%)=(1-(C _e /C _c)x .	00	E _{R2} ((%)= (1-	C _c /C _e)x 1	00
a (deg)	С С	C C	C C	ω	C	ပိ	C _{Me}	εe	ΔCL	ΔC_D	ΔC_M	ЗΔ	E _{CL1}	E _{CD1}	E _{CM1}	п "	E _{CL2}	E _{CD2}	E _{CM2}	Е ₂
0'0	0,70	0,0065	-0,13	106,93	0,45	0,0070	-0,09	64,29	0,25	-0,0005	-0,04	42,64	35,4	-7,5	32,9	39,9	-54,7	7,0	-49,1	-66,3
1,0	0,81	0,0066	-0,14	122,99	0,57	0,0069	-0,10	82,61	0,24	-0,0003	-0,04	40,38	29,5	-5,0	27,5	32,8	-41,8	4,8	-37,9	-48,9
2,0	0,92	0,0068	-0,14	134,50	0,68	0,0071	-0,10	95,77	0,24	-0,0003	-0,04	38,73	26,1	-3,7	29,2	28,8	-35,4	3,6	-41,3	-40,4
3,0	1,03	0,0071	-0,14	145,11	0,78	0,0075	-0,10	104,00	0,25	-0,0004	-0,04	41,11	24,4	-5,5	31,0	28,3	-32,3	5,2	-44,9	-39,5
4,0	1,14	0,0080	-0,15	143,29	0,89	0,0080	-0,10	111,25	0,25	0,0000	-0,05	32,04	22,2	-0,2	32,5	22,4	-28,5	0,2	-48,1	-28,8
5,0	1,25	0,0091	-0,15	137,41	0,99	0,0085	-0,10	116,47	0,26	0,0006	-0,05	20,94	20,9	6,7	34,2	15,2	-26,4	-7,2	-52,0	-18,0
6,0	1,36	0,0105	-0,15	129,61	1,08	0,0091	-0,10	118,68	0,28	0,0014	-0,05	10,93	20,8	13,5	35,4	8,4	-26,2	-15,6	-54,8	-9,2
7,0	1,47	0,0126	-0,16	117,45	1,18	0,0102	-0,10	115,69	0,29	0,0024	-0,06	1,77	20,0	18,8	36,4	1,5	-25,0	-23,1	-57,2	-1,5
8,0	1,58	0,0140	-0,16	113,36	1,27	0,0132	-0,10	96,21	0,31	0,0008	-0,06	17,15	19,8	5,5	37,4	15,1	-24,7	-5,8	-59,8	-17,8
9'0	1,67	0,0183	-0,17	91,43	1,32	0,0154	-0,10	85,71	0,35	0,0029	-0'0-	5,71	21,1	15,9	40,1	6,2	-26,8	-18,9	-66,9	-6,7
10,0	1,72	0,0211	-0,18	81,72	1,35				0,37				21,7				-27,6			

	100	E _{ε2}	-63,5	-52,1	-46,1	-39,5	-29,1	-21,1	-11,2	-10,7	-17,3			
	Cc/Ce)x	E _{CM2}												
	₂ (%)= (1-	E _{CD2}	8,0	7,2	9,0	7,8	2,8	-2,5	-10,4	-11,9	-6,3			
	ERS	E _{CL2}	-50,4	-41,1	-33,0	-28,7	-25,5	-24,1	-22,8	-23,9	-24,8	-24,9	-25,0	-25,6
	100	E_{ϵ_1}	38,8	34,3	31,5	28,3	22,6	17,4	10,1	9,7	14,8			
	- C _e /C _c)x	E _{CM1}												
	¹ (%)= (1	E _{cD1}	-8,7	-7,8	-0'0	-8,4	-2,9	2,4	9,4	10,7	6,0			
	Ē	E _{CL1}	33,5	29,1	24,8	22,3	20,3	19,4	18,6	19,3	19,8	19,9	20,0	20,4
0		Δε	45,61	46,40	46,76	43,33	34,01	25,69	13,49	12,02	17,75			
s.uuu.uu	osoluto	ΔC_M												
iley), Ke: 🗄	Error Al	ΔC_D	-0,0005	-0,0005	-0,0006	-0,0006	-0,0002	0,0002	0,0010	0,0013	0,0008			
-163 (M		ΔC_L	0,23	0,23	0,23	0,23	0,23	0,24	0,25	0,28	0,31	0,33	0,35	0,37
L A 0 I		ε _e	71,88	89,06	101,47	109,59	116,67	121,69	120,65	112,26	102,42			
	ey	C _{Me}												
	Mil	CDe	0,0064	0,0064	0,0068	0,0073	0,0078	0,0083	0,0092	0,0106	0,0124			
		CLe	0,46	0,57	0,69	0,80	0,91	1,01	1,11	1,19	1,27	1,34	1,40	1,43
		ε _c	117,49	135,46	148,24	152,92	150,67	147,38	134,14	124,29	120,17	99,95	89,85	83,22
	00pts.	C _{Mc}	-0,14	-0,14	-0,14	-0,15	-0,15	-0,15	-0,15	-0,16	-0,16	-0,17	-0,18	-0,19
	Vfoil 2(c_{Dc}	0,0059	0,0059	0,0062	0,0067	0,0076	0,0085	0,0102	0,0119	0,0132	0,0167	0,0195	0,0216
		C _{Lc}	0,69	0,80	0,92	1,03	1,14	1,25	1,36	1,47	1,58	1,67	1,75	1,80
		α (deg)	0'0	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0	9,0	10,0	11,0

Tabla 3.4.8.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX 61-168 a diferentes Números de Reynolds.

								FX 61	-168 (M	iley), Re: 1	000.000.									
		Vfoil 2	00pts.			Mil	ley			Error At	osoluto		E _{R1} (5	%)= (1- (C _e /C _c)x 1	00	E _{R2} ((%)= (1- C	_c /C _e)x 10	0
a (deg)	ပို	ပိ	C Mc	ω	C C	C _{De}	C _{Me}	εe	ΔC	ΔC_D	ΔC_M	3Ω	E _{CL1}	E _{CD1}	E _{CM1}	П E1	E _{CL2}	E _{CD2}	E _{CM2}	Е ²²
0'0	0,83	0,0083	-0,15	100,48	0,57	0,0091		62,64	0,26	-0,0008		37,84	31,5	-9,9		37,7	-45,9	9,0		60,4
1,0	0,94	0,0084	-0,16	112,28	0,67	0,0093		72,04	0,27	-0,0009		40,24	28,9	-10,8		35,8	-40,7	9,7		55,8
2,0	1,05	0,0088	-0,16	120,39	0,77	0,0096		80,21	0,28	-0,0008		40,18	26,9	-9,7		33,4	-36,9	8,8		50,1
3,0	1,16	0,0089	-0,17	130,52	0,87	0,0099		87,88	0,29	-0,0010		42,65	25,0	-11,4		32,7	-33,3	10,3		48,5
4,0	1,27	0,0095	-0,17	133,10	0,96	0,0102		94,12	0,31	-0,0007		38,99	24,4	-6,9		29,3	-32,3	6,4		41,4
5,0	1,38	0,0107	-0,18	128,77	1,06	0,0105		100,95	0,32	0,0002		27,82	23,2	2,0		21,6	-30,2	-2,1		-27,6
6,0	1,49	0,0121	-0,18	122,73	1,16	0,0109		106,42	0,33	0,0012		16,31	22,1	10,2		13,3	-28,4	-11,4		-15,3
7,0	1,60	0,0138	-0,19	115,84	1,26	0,0115		109,57	0,34	0,0023		6,28	21,2	16,7		5,4	-26,9	-20,0		-5,7
8,0	1,71	0,0163	-0,19	104,69	1,34	0,0135		99,26	0,37	0,0028		5,43	21,5	17,3		5,2	-27,5	-20,9		-5,5
0'0	1,82	0,0187	-0,19	97,10	1,40				0,42				22,9				-29,7			
10,0	1,82	0,0263	-0,22	69,23	1,44				0,38				20,8				-26,3			

ſ				-											
		100	Е ₂	-49,1	-46,1	-37,1	-34,0	-22,5	-17,8	-11,6	-11,1	-13,2			
		C _c /C _e)x	E _{CM2}	-29,8	-33,9	-37,6	-41,4	-45,8	-49,4	-40,8	-43,5	-46,0	-48,5	-64,0	-86,5
		-1) =(%)	E _{CD2}	6,2	8,4	5,6	5,9	-1,4	-3,4	-8,4	-9,0	-7,8			
		Erz	E _{CL2}	-39,9	-33,8	-29,5	-26,0	-24,2	-21,8	-20,9	-21,1	-22,0	-23,5	-22,8	-21,2
		100	щ Г	32,9	31,6	27,1	25,4	18,4	15,1	10,4	10,0	11,6			
		C _e /C _c)x	E _{CM1}	23,0	25,3	27,3	29,3	31,4	33,1	29,0	30,3	31,5	32,6	39,0	46,4
		-1) =(%)	E _{cD1}	-6,6	-9,2	-5,9	-6,3	1,4	3,3	7,7	8,2	7,2			
		ER1	E _{CL1}	28,5	25,3	22,8	20,7	19,5	17,9	17,3	17,4	18,0	19,1	18,6	17,5
			ЗΔ	36,68	39,39	36,25	36,80	26,08	21,19	13,61	12,10	12,80			
	500.000	soluto	ΔC_M	-0,04	-0,04	-0,05	-0,05	-0,06	-0,06	-0,05	-0,06	-0,06	-0,06	-0,08	-0,11
	iley), Re: 1	Error Ab	ΔC_D	-0,0005	-0,0007	-0,0005	-0,0005	0,0001	0,0003	0,0009	0,0011	0,0011			
	-168 (M		ΔCL	0,24	0,24	0,24	0,24	0,25	0,25	0,26	0,28	0,31	0,35	0,34	0,32
	FX 61		εe	74,68	85,37	97,59	108,24	115,91	118,95	117,14	109,09	97,22			
		ъ	C _{Me}	-0,12	-0,12	-0,12	-0,12	-0,12	-0,12	-0,13	-0,13	-0,13	-0,13	-0,13	-0,13
		Mile	C C	0,0079	0,0082	0,0083	0,0085	0,0088	0,0095	0,0105	0,0121	0,0144			
			CLe	0,59	0,70	0,81	0,92	1,02	1,13	1,23	1,32	1,40	1,47	1,51	1,53
			εc	111,37	124,76	133,84	145,04	141,99	140,14	130,75	121,19	110,02	104,13	76,97	69,48
		00pts.	C _{Mc}	-0,16	-0,16	-0,17	-0,17	-0,18	-0,18	-0,18	-0,19	-0,19	-0,19	-0,21	-0,24
		Vfoil 2(C C	0,0074	0,0075	0,0078	0,0080	0,0089	0,0098	0,0114	0,0132	0,0155	0,0174	0,0241	0,0267
			C _L c	0,83	0,94	1,05	1,16	1,27	1,38	1,49	1,60	1,71	1,82	1,85	1,85
			α (deg)	0'0	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0	9,0	10,0	11,0

Tabla 3.4.8.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX 61-168 a diferentes Números de Reynolds (continuación I).

								FX 61	-168 (M	iley), Re: 2	2.000.000	_								
		Vfoil 2	00pts.			Mil	ey			Error At	osoluto		E _{R1} ([.]	<u>%)= (1- (</u>	C _e /C _c)x 1	00	E _{R2} ((%)= (1- 1	C _c /C _e)x 1	OC
α (deg)	CLc	c_{Dc}	C _{Mc}	ε _c	CLe	C _{De}	C _{Me}	ε _e	ΔC_L	ΔC_D	ΔC_M	Δε	E _{CL1}	E _{cD1}	E _{CM1}	E _{ε1}	E _{CL2}	E _{CD2}	E _{CM2}	E _{ε2}
0,0	0,82	0,0069	-0,16	119,37	0,57	0,0068		83,82	0,25	0,0001		35,54	30,6	1,1		29,8	-44,0	-1,1		-42,4
1,0	0,93	0,0070	-0,16	133,96	0,67	0,0070		95,71	0,26	0,0000		38,25	28,2	-0,5		28,6	-39,2	0,5		40,0
2,0	1,05	0,0073	-0,17	143,80	0,77	0,0073		105,48	0,28	0,0000		38,32	26,4	-0,4		26,6	-35,8	0,4		-36,3
3,0	1,16	0,0076	-0,17	152,68	0,87	0,0076		114,47	0,29	0,0000		38,21	24,8	-0,3		25,0	-33,0	0,3		-33,4
4,0	1,27	0,0085	-0,17	148,77	0,97	0,0079		122,78	0,30	0,0006		25,99	23,6	7,4		17,5	-30,8	-8,0		-21,2
5,0	1,38	0,0096	-0,18	144,02	1,06	0,0083		127,71	0,32	0,0013		16,30	22,9	13,1		11,3	-29,8	-15,1		-12,8
6,0	1,49	0,0111	-0,18	134,47	1,16	0,0089		130,34	0,33	0,0022		4,13	22,0	19,5		3,1	-28,2	-24,2		-3,2
7,0	1,60	0,0128	-0,19	124,90	1,25	0,0101		123,76	0,35	0,0027		1,14	21,8	21,0		0,9	-27,8	-26,6		-0,9
8,0	1,71	0,0148	-0,19	115,71	1,34	0,0121		110,74	0,37	0,0027		4,96	21,5	18,0		4,3	-27,4	-22,0		4,5
9,0	1,82	0,0168	-0,19	107,93	1,42				0,40				21,8				-27,9			
10,0	1,90	0,0226	-0,20	83,88	1,48				0,42				22,0				-28,2			
11,0	1,92	0,0251	-0,23	76,47	1,51				0,41				21,4				-27,3			

								FX 61	-168 (Mi	ilev), Re: 3	000.000									
		Vfoil 2	00pts.			Mile	зy			Error At	osoluto		E _{R1} (9	%)=(1-(C _e /C _c)x 1	00	E _{R2} ((%)= (1- (C _c /C _e)x 1	00
a (deg)	CLc	C _{Dc}	C _{Mc}	εc	CLe	C _{De}	C _{Me}	ε _e	ΔC_L	ΔC_D	ΔC_M	Δε	E _{CL1}	E _{cD1}	E _{CM1}	E _{ε1}	E _{CL2}	E _{CD2}	E _{CM2}	$E_{\epsilon 2}$
0'0	0,82	0,0062	-0,16	131,03	0,58	0,0060		96,67	0,24	0,0002		34,37	28,9	3,6		26,2	-40,6	-3,7		-35,6
1,0	0,93	0,0063	-0,16	147,42	0,70	0,0062		112,90	0,23	0,0001		34,52	24,6	1,5		23,4	-32,6	-1,5		-30,6
2,0	1,04	0,0066	-0,17	158,34	0,80	0,0064		125,00	0,24	0,0002		33,34	23,2	2,7		21,1	-30,2	-2,8		-26,7
3,0	1,15	0,0072	-0,17	160,56	06'0	0,0067		134,33	0,25	0,0005		26,23	22,0	6,8		16,3	-28,2	-7,2		-19,5
4,0	1,27	0,0081	-0,18	156,13	1,00	0,0071		140,85	0,27	0,0010		15,29	21,0	12,5		9,8	-26,6	-14,2		-10,9
5,0	1,37	0,0091	-0,18	151,20	1,09	0,0077		141,56	0,28	0,0014		9,64	20,6	15,2		6,4	-26,0	-18,0		-6,8
6,0	1,49	0,0105	-0,18	141,47	1,18	0,0086		137,21	0,31	0,0019		4,26	20,6	18,1		3,0	-25,9	-22,1		-3,1
7,0	1,60	0,0121	-0,19	131,81	1,27	0,0104		122,12	0,33	0,0017		9,70	20,5	14,1		7,4	-25,7	-16,5		-7,9
8,0	1,71	0,0139	-0,19	122,48	1,36	0,0125		108,80	0,35	0,0014		13,68	20,3	10,3		11,2	-25,5	-11,5		-12,6
9,0	1,82	0,0156	-0,19	116,37	1,44	0,0146		98,63	0,38	0,0010		17,74	20,7	6,5		15,2	-26,1	-6,9		-18,0
10,0	1,93	0,0207	-0,19	93,16	1,51				0,42				21,8				-27,9			
11,0	1,96	0,0232	-0,22	84,57	1,55				0,41				20,9				-26,4			
12.0	1.96	0,0257	-0.25	76,22	1.56				0.40				20.3				-25,5			

Tabla 3.4.9.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX 61-184 a diferentes Números de Reynolds.

			~	~	ര	ß	ß	ø	~		÷	~
	¢ 100	E _{ε2}	-75,	-56,7	47,9	-35,	-29,	-21,8	-11,	2,2	10,4	16,3
	((°)	E _{CM2}										
	(%)= (1-	E _{CD2}	9,6	6,0	3,9	-1,9	4,3	-9,9	-20,7	-37,3	-49,6	-53,7
	E _{R2}	E _{CL2}	-58,3	-47,3	-42,1	-38,2	-35,0	-33,9	-34,1	-34,3	-34,0	-28,6
	100	E_{ϵ_1}	42,9	36,2	32,4	26,2	22,8	17,9	10,0	-2,2	-11,7	-19,5
	C _e /C _c)x	E _{CM1}										
	·1) = (%)	E _{cD1}	-10,6	-6,4	4 L	1,9	4,1	9,0	17,1	27,1	33,2	34,9
	E _{R1} (E _{CL1}	36,8	32,1	29,6	27,6	25,9	25,3	25,4	25,5	25,4	22,2
		Δε	41,90	38,44	37,56	31,20	28,52	22,72	12,02	-2,39	-11,29	-16,75
000.000	soluto	ΔC_M										
:y), Re: 1.	Error Ab	ΔC_D	0,0008	0,0005	0,0003	0,0002	0,0004	0,0009	0,0020	0,0038	0,0055	0,0065
184 (Mile		ΔC_L	0,28 -	0,28 -	0,29 -	0,30 (0,31 (0,33	0,36 (0,39 (0,41 (0,36 (
FX 61-1		٤ _e	5,81	7,82	8,41	7,78	6,74	04,26	38,16	10,68	08,11	02,46
		C _{Me}	2	9	2	ŝ	o	7	7	,	7	1(
	Miley	De (086	087	088	060	092	094	960	103	111	122
		C	3 0,0	0,0	0,0	0,0	0,0	0 ^{,0}	0,0	4 0,0	0,0	5 0,0
		CLe	0,48	0,59	0,69	0,79	0,8	0,98	1,0(1,1	1,2(1,25
		ε ^c	97,71	106,25	115,97	118,98	125,26	126,98	120,18	108,29	96,82	85,71
	20pts.	C _{Mc}	-0,15	-0,15	-0,16	-0,16	-0,17	-0,17	-0,18	-0,18	-0,20	-0,23
	Vfoil 22	c_{Dc}	0,0078	0,0082	0,0085	0,0092	0,0096	0,0103	0,0118	0,0141	0,0166	0,0187
		C_{Lc}	0,76	0,87	0,98	1,09	1,20	1,31	1,42	1,53	1,61	1,61
		a (deg)	0'0	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0	9,0

		-										
	100	E _{ε2}	-53,7	-40,9	-35,4	-21,5	-14,7	-5,9	3,8	10,2	9,2	5.8
	C _c /C _e)x	E _{CM2}										
	-1) =(%) ⁱ	E _{CD2}	-0,3	-2,6	-3,1	-10,6	-14,9	-22,6	-33,1	-41,0	-40,1	-32.4
	ERS	E _{CL2}	-54,1	-44,6	-39,6	-34,4	-31,8	-29,8	-28,0	-26,6	-27,2	-24.7
	: 100	E_{ϵ_1}	34,9	29,0	26,1	17,7	12,8	5,5	4,0	-11,4	-10,2	-6.2
	- C _e /C _c)x	E _{CM1}										
	(%)= (1-	E _{cD1}	0,3	2,6	3,0	9,6	13,0	18,4	24,9	29,1	28,6	24.5
	E _{R1}	E _{CL1}	35,1	30,9	28,3	25,6	24,2	22,9	21,9	21,0	21,4	19.8
(Δε	38,10	34,59	33,94	23,53	17,62	7,41	-4,93	-13,02	-10,81	-5.90
.500.000	osoluto	ΔC_M										
ley), Re: 1	Error At	ΔC_D	0,0000	0,0002	0,0002	0,0008	0,0011	0,0018	0,0028	0,0039	0,0044	0.0043
-184 (Mi		ΔC_L	0,26	0,27	0,28	0,28	0,29	0,30	0,31	0,32	0,35	0.33
FX 61		ε _e	71,01	84,51	95,89	109,46	119,74	126,25	129,07	127,37	117,27	101.52
	ey	C _{Me}										
	Mil	c_{De}	0,0069	0,0071	0,0073	0,0074	0,0076	0,0080	0,0086	0,0095	0,0110	0.0132
		C _{Le}	0,49	0,60	0,70	0,81	0,91	1,01	1,11	1,21	1,29	1.34
		ε _c	109,12	119,10	129,83	132,98	137,36	133,66	124,14	114,34	106,46	95.62
	20pts.	C _{Mc}	-0,15	-0,15	-0,16	-0,17	-0,17	-0,17	-0,18	-0,18	-0,19	-0.21
	Vfoil 22	c_{Dc}	0,0069	0,0073	0,0075	0,0082	0,0087	0,0098	0,0114	0,0134	0,0154	0.0175
		C _{Lc}	0,75	0,87	0,98	1,09	1,20	1,31	1,42	1,53	1,64	1.67
		α (deg)	0'0	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0	0.6

Tabla 3.4.9.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX 61-184 a diferentes Números de Reynolds (continuación I).

								FX 61	-184 (M	iley), Re: 2	000.000.									
		Vfoil 2	20pts.			Milt	б			Error Ab	soluto		E _{R1} ('	%)= (1- 1	C _e /C _c)x	100	E _{R2} (%)= (1-	C _c /C _e)x 1	00
a (deg)	CLc	c_{Dc}	C _{Mc}	ε ^c	CLe	CDe	C _{Me}	٤ _e	ΔC_L	ΔC_D	ΔC_M	Δε	E _{CL1}	E _{cD1}	E _{CM1}	E_{ϵ_1}	E _{CL2}	E _{CD2}	E _{CM2}	E _{ε2}
0'0	0,75	0,0064	-0,15	117,46	0,48	0,0066	-0,11	72,73	0,27	-0,0002	-0,04	44,74	36,2	-3,1	27,0	38,1	-56,6	3,0	-37,0	-61,5
1,0	0,87	0,0068	-0,16	128,16	0,59	0,0067	-0,12	88,06	0,28	0,0001	-0,04	40,11	31,8	0,8	22,8	31,3	-46,7	-0,8	-29,5	-45,5
2,0	0,98	0,0070	-0,16	140,50	0,70	0,0068	-0,12	102,94	0,28	0,0002	-0,04	37,56	28,4	2,3	25,2	26,7	-39,7	-2,3	-33,6	-36,5
3,0	1,09	0,0076	-0,17	143,27	0,80	0,0070	-0,12	114,29	0,29	0,0006	-0,05	28,98	26,4	7,7	27,6	20,2	-35,9	-8,4	-38,1	-25,4
4,0	1,20	0,0083	-0,17	144,91	0,91	0,0074	-0,12	122,97	0,29	0,0009	-0,05	21,94	24,1	10,5	29,6	15,1	-31,7	-11,8	-42,0	-17,8
5,0	1,31	0,0093	-0,17	140,88	1,01	0,0079	-0,12	127,85	0,30	0,0014	-0,05	13,04	22,9	15,0	31,4	9,3	-29,7	-17,7	-45,7	-10,2
6,0	1,42	0,0111	-0,18	128,39	1,10	0,0087	-0,12	126,44	0,32	0,0024	-0,06	1,95	22,6	21,4	33,0	1,5	-29,2	-27,2	-49,2	-1,5
7,0	1,53	0,0131	-0,18	116,64	1,18	0,0097	-0,12	121,65	0,35	0,0034	-0,06	-5,01	23,0	26,2	34,4	4,3	-29,9	-35,4	-52,4	4,1
8,0	1,64	0,0148	-0,19	110,74	1,24	0,0110	-0,12	112,73	0,40	0,0038	-0,07	-1,98	24,5	25,8	35,7	-1,8	-32,4	-34,8	-55,5	1,8
9,0	1,72	0,0169	-0,20	101,93	1,29	0,0126	-0,12	102,38	0,43	0,0043	-0,08	-0,45	24,9	25,3	39,5	-0,4	-33,2	-33,8	-65,3	0,4

	100	E _{ε2}	-56,6	-36,9	-30,3	-17,9	-12,0	-5,7	4,9	11,7	10,1	7.2
	- C _c /C _e)x	E _{CM2}										
	₂ (%)= (1-	E _{CD2}	0'0	-7,2	-8,7	-16,7	-21,6	-29,1	-43,7	-56,4	-56,1	-50.5
	Ш	E _{CL2}	-56,6	-46,7	-41,7	-37,6	-36,2	-36,5	-36,6	-38,0	-40,3	-39.7
	: 100	E_{ϵ_1}	36,2	26,9	23,3	15,2	10,7	5,4	-5,2	-13,3	-11,2	-7.7
	- C _e /C _c)x	E _{CM1}										
	(%)= (1	E _{cD1}	0'0	6,7	8,0	14,3	17,8	22,6	30,4	36,1	35,9	33.6
	E _{R1}	E _{CL1}	36,2	31,8	29,4	27,3	26,6	26,7	26,8	27,6	28,7	28.4
		Δε	42,46	34,51	32,69	21,73	15,50	7,55	-6,68	-15,50	-12,42	-7.90
.000.000	soluto	ΔC_M										
iley), Re: 3	Error Ab	ΔC_D	0,0000	0,0005	0,0006	0,0011	0,0015	0,0021	0,0034	0,0047	0,0053	0.00.57
-184 (M		ΔC_L	0,27	0,28	0,29	0,30	0,32	0,35	0,38	0,42	0,47	0.49
FX 61		ε _e	75,00	93,65	107,81	121,54	129,41	133,33	135,06	132,14	123,16	109.82
	ey	C _{Me}										
	Mil	CDe	0,0064	0,0063	0,0064	0,0065	0,0068	0,0072	0,0077	0,0084	0,0095	0.0112
		CLe	0,48	0,59	0,69	0,79	0,88	0,96	1,04	1,11	1,17	1.23
		ε _c	117,46	128,16	140,50	143,27	144,91	140,88	128,39	116,64	110,74	101.93
	20pts.	C _{Mc}	-0,15	-0,16	-0,16	-0,17	-0,17	-0,17	-0,18	-0,18	-0,19	-0.20
	Vfoil 22	c_{Dc}	0,0064	0,0068	0,0070	0,0076	0,0083	0,0093	0,0111	0,0131	0,0148	0.0169
		C _{Lc}	0,75	0,87	0,98	1,09	1,20	1,31	1,42	1,53	1,64	1.72
		α (deg)	0'0	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0	0.6

Tabla 3.4.10.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX 63-143 a diferentes Números de Reynolds.

								FX 63	-143 (M	iley), Re: 1	.000.000									
		Vfoil 1	80pts.			Mi	ley			Error At	soluto		E _{R1} ('	%)= (1- i	C _e /C _c)x 1	00	E _{R2} ('%)= (1- C	_c /C _e)x 1(00
a (deg)	CLc	c_{Dc}	C _{Mc}	د ر	C _{Le}	C _{De}	C _{Me}	ε _e	ΔC_L	ΔC_D	ΔC_M	Δε	E _{CL1}	E _{cD1}	E _{CM1}	E_{ϵ_1}	E _{CL2}	E _{CD2}	E _{CM2}	E _{ε2}
0'0	0,51	0,0072	-0,07	70,69	0,30	0,0068		44,12	0,21	0,0004		26,57	40,7	5,0		37,6	-68,6	-5,3		-60,2
1,0	0,58	0,0076	-0,09	76,32	0,40	0,0070		57,14	0,18	0,0006		19,18	30,9	7,8		25,1	-44,8	-8,4		-33,6
2,0	0,69	0,0078	-0,09	88,91	0,50	0,0073		68,49	0,19	0,0005		20,41	27,6	6,1		23,0	-38,2	-6,5		-29,8
3,0	0,80	0,0085	-0,09	93,99	0,60	0,0077		77,92	0,20	0,0008		16,06	24,9	9,4		17,1	-33,2	-10,4		-20,6
4,0	0,90	0,0087	-0,10	103,92	0,71	0,0080		88,75	0,19	0,0007		15,17	21,5	8,0		14,6	-27,3	-8,7		-17,1
5,0	1,01	0,0130	-0,10	77,22	0,81	0,0083		97,59	0,20	0,0047		-20,37	19,5	36,3		-26,4	-24,3	-57,1		20,9
6,0	1,11	0,0140	-0,11	79,33	0,91	0,0086		105,81	0,20	0,0054		-26,48	17,9	38,4		-33,4	-21,8	-62,4		25,0
7,0	1,21	0,0151	-0,11	79,72	1,01	0,0092		109,78	0,20	0,0059		-30,06	16,4	39,3	•	-37,7	-19,5	-64,6		27,4
8,0	1,30	0,0164	-0,12	79,69	1,10	0,0100		110,00	0,20	0,0064		-30,31	15,6	38,9		-38,0	-18,5	-63,6		27,6
9,0	1,38	0,0189	-0,13	72,94	1,18	0,0116		101,72	0,20	0,0073		-28,78	14,4	38,6		-39,5	-16,8	-62,9		28,3

			~										
	C _c /C _e)x 100	E ₂	-34,0	-19,3	-12,7	-3,0	-3,3	31,4	33,1	33,1	30,3		
		E _{CM2}	-67,8	-74,0	-79,4	-55,4	-60,8	-67,6	-74,9	-82,6	-91,1	-102,5	-182.5
	-1) =(%)	E _{CD2}	3,3	-2,9	-5,6	-12,3	-11,3	-66,0	-68,4	-66,9	-58,6		
	E _{R2}	E _{CL2}	-29,6	-22,9	-18,9	-15,7	-14,9	-13,8	-12,7	-11,6	-10,5	-8,9	-6,7
	100	E_{ϵ_1}	25,3	16,2	11,2	2,9	3,2	-45,8	-49,4	-49,5	-43,5		
	C _e /C _c)x	E _{CM1}	40,4	42,5	44,3	35,7	37,8	40,3	42,8	45,2	47,7	50,6	64.6
	-1) =(%	E _{CD1}	-3,4	2,9	5,3	11,0	10,1	39,7	40,6	40,1	37,0		
	E _{R1} (E _{CL1}	22,8	18,6	15,9	13,6	13,0	12,1	11,3	10,4	9,5	8,2	6.3
		Δε	18,25	13,78	11,14	3,08	3,70	-38,84	-43,06	-43,49	-38,40		
500.000	soluto	ΔC_M	-0,03	-0,04	-0,04	-0,03	-0,04	-0,04	-0,04	-0,05	-0,05	-0,06	-0,09
ley), Re: 1	Error Ab	ΔC_D	-0,0002	0,0002	0,0004	0,0008	0,0008	0,0048	0,0052	0,0056	0,0055		
-143 (Mi		ΔCL	0,11	0,11	0,11	0,11	0,12	0,12	0,13	0,13	0,12	0,11	0.09
FX 63		ε _e	53,73	71,21	87,88	101,47	112,86	123,61	130,26	131,33	126,60		
	ĥ	C _{Me}	-0,05	-0,05	-0,05	-0,06	-0,06	-0,06	-0,06	-0,06	-0,06	-0,06	-0.05
	Mile	C _{De}	0,0067	0,0066	0,0066	0,0068	0,0070	0,0072	0,0076	0,0083	0,0094		
		C _{Le}	0,36	0,47	0,58	0,69	0,79	0,89	0,99	1,09	1,19	1,29	1.35
	Vfoil 180pts.	εc	71,98	84,99	99,01	104,55	116,56	84,77	87,21	87,83	88,19	81,38	75,31
		C _{Mc}	-0,08	-0,09	-0,09	-0,09	-0,10	-0,10	-0,10	-0,11	-0,11	-0,12	-0.14
		c_{Dc}	0,0065	0,0068	0,0070	0,0076	0,0078	0,0120	0,0128	0,0139	0,0149	0,0173	0.0191
		CLc	0,47	0,58	0,69	0,80	0,91	1,01	1,12	1,22	1,31	1,40	1,44
		a (deg)	0'0	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0	9,0	10.0
Tabla 3.4.10.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX 63-143 a diferentes Números de Reynolds (continuación I).

								FX 63	143 (M	lley), Re: 2	.000.000									
		Vfoil 1	80pts.			Mile	ey			Error At	osoluto		E _{R1} ('	<u>%)= (1- (</u>	C _e /C _c)x 1	00	E _{R2} ((%)= (1- (C _c /C _e)x 1(00
α (deg)	C _{Lc}	c_{Dc}	C _{Mc}	ε	C _{Le}	CDe	C _{Me}	ε _e	ΔC_L	ΔC_D	ΔC_M	Δε	E _{CL1}	E _{cD1}	E _{CM1}	E_{ϵ_1}	E _{CL2}	E _{CD2}	E _{CM2}	E _{ε2}
0'0	0,47	0,0062	-0,08	75,73	0,36	0,0060		60,00	0,11	0,0002		15,73	23,0	2,8		20,8	-29,9	-2,9		-26,2
1,0	0,58	0,0063	-0,09	91,40	0,47	0,0059		79,66	0,11	0,0004		11,73	18,5	6,4		12,8	-22,6	-6,9		-14,7
2,0	0,69	0,0065	-0,09	106,54	0,58	0,0060		96,67	0,11	0,0005		9,88	15,8	7,2		9,3	-18,8	-7,8		-10,2
3,0	0,80	0,0071	-0,09	113,03	0,69	0,0062		111,29	0,11	0,0009		1,74	13,9	12,5		1,5	-16,1	-14,3		-1,6
4,0	0,91	0,0072	-0,10	125,48	0,80	0,0064		125,00	0,11	0,0008		0,48	11,9	11,6		0,4	-13,5	-13,1		-0,4
5,0	1,01	0,0112	-0,10	90,19	06'0	0,0067		134,33	0,11	0,0045		-44,14	11,1	40,3		-48,9	-12,5	-67,6		32,9
6,0	1,12	0,0120	-0,10	92,90	1,00	0,0072		138,89	0,12	0,0048		-45,99	10,4	40,1		-49,5	-11,6	-66,9		33,1
7,0	1,23	0,0131	-0,11	93,85	1,09	0,0079		137,97	0,14	0,0052		-44,13	11,1	39,5		-47,0	-12,4	-65,3		32,0
8,0	1,33	0,0140	-0,11	94,44	1,19	0,0089		133,71	0,14	0,0051		-39,27	10,2	36,6		-41,6	-11,3	-57,7		29,4
0'0	1,42	0,0162	-0,12	87,29	1,28	0,0113		113,27	0,14	0,0049		-25,99	9,7	30,4		-29,8	-10,7	-43,7		22,9
10,0	1,50	0,0181	-0,13	82,96	1,36				0,14				9,4				-10,4			
11,0	1,49	0,0198	-0,16	75,35	1,40				0,09				6,1				-6,5			

-															
	100	Е ₂	-12,9	-9,6	-6,4	0,9	-2,3	32,0	29,9	28,2	15,5	-0,7			
	C _c /C _e)x	E _{CM2}													
	-1) =(%) ⁱ	E _{CD2}	-3,8	-3,2	-2,7	-9,2	-3,6	-54,5	-49,7	-46,0	-24,6	-5,9			
	Erz	E _{CL2}	-17,1	-13,1	-9,3	-8,2	-6,0	-5,0	-5,0	-4,8	-5,3	-6,7	-6,7	-6,5	-5.8
	100	Е ²¹	11,4	8,8	6,0	-0,9	2,2	-47,1	-42,6	-39,3	-18,3	0,7			
	C _e /C _c)x	E _{CM1}													
	-1) = (%)	E _{CD1}	3,6	3,1	2,6	8,4	3,5	35,3	33,2	31,5	19,7	5,6			
	E _{R1} (E _{CL1}	14,6	11,6	8,5	7,6	5,6	4,8	4,8	4,6	5,0	6,2	6,3	6,1	5.5
		3Δ	9,18	8,93	7,10	-1,11	3,14	-46,37	-43,17	-40,25	-18,92	0,67			
000.000	soluto	ΔC_M													
ley), Re: 3	Error Ab	ΔC_D	0,0002	0,0002	0,0002	0,0005	0,0002	0,0037	0,0037	0,0038	0,0025	0,0008			
-143 (Mi		ΔCL	0,07	0,07	0,06	0,06	0,05	0,05	0,05	0,06	0,07	0,09	0,10	0,10	0.09
FX 63		εe	71,43	92,73	110,53	125,42	136,51	144,78	144,59	142,68	122,33	95,04			
	ý	C _{Me}													
	Mile	C _{De}	0,0056	0,0055	0,0057	0,0059	0,0063	0,0067	0,0074	0,0082	0,0103	0,0141			
		CLe	0,40	0,51	0,63	0,74	0,86	0,97	1,07	1,17	1,26	1,34	1,42	1,47	1.49
		εc	80,61	101,65	117,62	124,32	139,65	98,41	101,43	102,43	103,41	95,71	91,47	85,86	78.53
	Opts.	C _{Mc}	-0,08	-0,09	-0,09	-0,09	-0,10	-0,10	-0,10	-0,11	-0,11	-0,12	-0,12	-0,14	-0.16
	Vfoil 18	C _{Dc}	0,0058	0,0057	0,0059	0,0064	0,0065	0,0104	0,0111	0,0120	0,0128	0,0149	0,0166	0,0182	0.0201
		С ^{Гс}	0,47	0,58	0,69	0,80	0,91	1,02	1,12	1,23	1,33	1,43	1,52	1,57	1.58
		α (deg)	0'0	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0	9,0	10,0	11,0	12.0

Tabla 3.4.11.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX 63-145 a diferentes Números de Reynolds.

								FX 63	-145 (M	iley), Re: 1	.500.000									
		Vfoil 1	80pts.			Mil	ley			Error At	osoluto		E _{R1} ('	%)=(1-(C _e /C _c)x 1(Q	E _{R2} ((%)= (1- C _c /	C _e)x 100	
a (deg)	о ^{го}	C _{Dc}	C Nc	ω	ပီ	C _{De}	C _{Me}	εe	ΔCL	ΔC_D	ΔC_M	Δε	E _{CL1}	E _{CD1}	E _{CM1}	Щ 13	E _{CL2}	E _{CD2} E	CM2 E	52
0'0	0,80	0,0084	-0,16	95,35	0,56	0,0076		73,68	0,24	0,0008		21,67	29,9	9,2		22,7	-42,6	-10,2	-2	9,4
1,0	0,91	0,0091	-0,16	99,80	0,67	0,0078		85,90	0,24	0,0013		13,91	26,2	14,3		13,9	-35,5	-16,6	<u>-</u>	6,2
2,0	1,02	0,0116	-0,16	88,10	0,77	0,0081		95,06	0,25	0,0035		-6,96	24,9	30,4		-7,9	-33,1	-43,6	7	ů,
3,0	1,13	0,0121	-0,17	93,46	0,88	0,0084		104,76	0,25	0,0037		-11,30	22,2	30,6	•	-12,1	-28,6	-44,1	7	0,8
4,0	1,24	0,0128	-0,17	96,75	0,99	0,0089		111,24	0,25	0,0039		-14,49	20,1	30,5	'	-15,0	-25,2	43,9	÷	3,0
5,0	1,35	0,0136	-0,18	60'66	1,10	0,0094		117,02	0,25	0,0042		-17,93	18,3	30,8	'	-18,1	-22,4	-44,6	7	5,3
6,0	1,45	0,0145	-0,18	100,50	1,20	0,0100		120,00	0,25	0,0045		-19,50	17,5	30,9	'	-19,4	-21,1	-44,7	7	6,3
7,0	1,56	0,0154	-0,18	101,01	1,30	0,0110		118,18	0,26	0,0044		-17,17	16,7	28,8	•	-17,0	-20,0	-40,4	÷	4,5
8,0	1,67	0,0188	-0,18	88,74	1,40	0,0125		112,00	0,27	0,0063		-23,26	16,1	33,5	'	-26,2	-19,2	-50,5	5	0,8
9,0	1,77	0,0207	-0,19	85,75	1,48	0,0141		104,96	0,29	0,0066		-19,22	16,6	31,9	'	-22,4	-19,9	-46,8	7	8,3
10,0	1,88	0,0229	-0,19	82,13	1,55				0,33				17,5				-21,3			

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	- ~
Miley), Re: 3.000.000 $E_{R1}(\%) = (1 - C_e/C_e)x 100$ $E_{R2}(\%) = (1 - C_e/C_e)x$ Error Absoluto $E_{R1}(\%) = (1 - C_e/C_e)x 100$ $E_{R2}(\%) = (1 - C_e/C_e)x$ ΔC_D ΔC_M ΔE E_{C11} E_{C01} E_{C1} E_{C22} E_{C02} E	¢
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	- '- '-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-16.4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7 7
Miley), Re: 3.000.000 $E_{\rm Erl}(\%) = (1-1)^{-1}$ Error Absoluto $E_{\rm Erl}(\%) = (1-1)^{-1}$ $\Delta C_{\rm D}$ $\Delta C_{\rm M}$ $\Delta E_{\rm CL1}$ $\Delta C_{\rm D}$ $\Delta C_{\rm M}$ $\Delta E_{\rm CL1}$ $\Delta C_{\rm D}$ $\Delta C_{\rm M}$ $\Delta E_{\rm CL1}$ $0,0005$ $22,59$ $25,7$ $6,6$ $0,0028$ $-11,69$ $19,7$ $28,1$ $0,0027$ $-13,33$ $16,7$ $25,9$ $0,0027$ $-13,33$ $16,7$ $25,9$ $0,0022$ $-5,43$ $14,6$ $18,5$ $0,0022$ $-5,43$ $14,6$ $18,5$ $0,0014$ $3,83$ $14,1$ $11,1$ $0,0014$ $3,83$ $14,1$ $11,1$	
Miley), Re: 3.000.000 Error Absoluto Error Error ACD ΔCM ΔE Ecu1 0,0005 22,59 25,7 0,0008 15,64 22,6 0,7 0,07 19,7 0,0028 -11,69 19,7 0,0025 -10,80 15,2 16,7 0,0025 -10,80 15,43 16,7 0,07 14,60 14,1 0,0014 3,83 14,1 0,0014 3,83 14,1	- 0 9
Miley), Re: 3.000.000 Error Absoluto ΔC _D ΔC _M Δε 0,0005 22,59 -11,69 0,0028 -11,69 -13,33 0,0025 -10,80 0,002 0,0025 -5,43 0,002 0,0027 -5,43 0,002 0,0027 -5,43 0,002	14 1
Miley), Re: 3.000.000 Error Absoluto ∆C _D ∆C _M 0,0008 0,0028 0,0025 0,0025 0,0022 0,0014 0,0014	7.62
Miley), Re: (Error Al ΔCD 0,0005 0,0028 0,0027 0,0027 0,0027 0,0027	
Ψ.	0.0012
+145 (0,20 0,20 0,20 0,19 0,19 0,19 0,20 0,20	0.24
FX 63 E ₆ 88,06 100,00 112,33 120,51 122,09 112,09 112,09 112,09 112,09 112,09 112,09 112,09 112,09 112,09 112,09 112,09 112,000 112,000 112,	9172
ev G	
Mil C _{De} 0,0067 0,0073 0,0078 0,0078 0,0078 0,0078 0,00111	0.0157
CLe 0,59 0,94 1,15 1,15 35 35 35 35 35 35 35 35 35 35 35 35 35	1 44
ε _c 110,65 115,64 100,64 111,29 111,29 116,44 116,44	99.34
B0pts. C _{Mc} -0,16 -0,17 -0,17 -0,17 -0,18 -0,18	-0.18
Vfoil 1: Vfoil 1: C _{Dc} 0,0072 0,0101 0,0111 0,01118 0,01133	0,0169
C ₁₆ C ₁₆ C ₁₆ C ₁ C ₁ C ₁ C ₁ C ₁ C ₁ C ₁ C ₁	1.68
α (deg) 0,0 1,0 3,0 5,0 6,0 7,0	0 - 0

Tabla 3.4.12.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX 63-158 a diferentes Números de Reynolds.

								FX 63	-158 (M	iley), Re: 1	.500.000									
		Vfoil 2	00pts.			Mil	ey			Error At	osoluto		E _{R1} ('	%)= (1- (C _e /C _c)x 1	00	E _{R2} ((%)= (1- C _c	/C _e)x 10	0
a (deg)	о _{го}	C _{Dc}	C C	ω	0 C	ပ	C _{Me}	εe	ΔC	ΔC_D	ΔC_M	3Ω	E _{CL1}	E _{cD1}	E _{CM1}	П с1	E _{CL2}	E _{CD2} E	ECM2	Е ²²
0'0	0,86	0,0080	-0,18	107,27	0,57	0,0073		78,08	0,29	0,0007		29,19	33,9	9,2		27,2	-51,3	-10,1		37,4
1,0	0,97	0,0082	-0,18	118,83	0,68	0,0077		88,31	0,29	0,0005		30,52	30,1	5,9		25,7	-43,1	-6,3	•	34,6
2,0	1,08	0,0086	-0,18	126,51	0,79	0,0080		98,75	0,29	0,0006		27,76	27,1	6,6		21,9	-37,2	-7,1		28,1
3,0	1,20	0,0126	-0,19	95,22	06'0	0,0084		107,14	0,30	0,0042		-11,92	25,0	33,3		-12,5	-33,2	-49,9		11,1
4,0	1,31	0,0139	-0,19	94,58	1,01	0,0089		113,48	0,30	0,0050		-18,90	22,9	35,8		-20,0	-29,8	-55,7		16,7
5,0	1,42	0,0147	-0,19	96,27	1,11	0,0094		118,09	0,31	0,0053		-21,82	21,8	36,2		-22,7	-27,8	-56,8		18,5
6,0	1,53	0,0158	-0,20	96,87	1,20	0,0100		120,00	0,33	0,0058		-23,13	21,4	36,5		-23,9	-27,2	-57,6		19,3
7,0	1,63	0,0169	-0,20	96,61	1,30	0,0108		120,37	0,33	0,0061		-23,76	20,4	36,1		-24,6	-25,7	-56,6		19,7
8,0	1,74	0,0182	-0,21	95,51	1,38	0,0119		115,97	0,36	0,0063		-20,45	20,7	34,7		-21,4	-26,1	-53,1		17,6
9'0	1,81	0,0222	-0,22	81,33	1,46	0,0154		94,81	0,35	0,0068		-13,48	19,3	30,8		-16,6	-23,9	-44,5		14,2
10,0	1,85	0,0246	-0,24	75,36	1,51				0,34				18,5				-22,7			

_	_	_	_	_	_	_	_	_	_	_
	100	Е ₂	-34,5	-28,1	-22,2	18,6	23,5	23,6	21,0	19,6
	C _c /C _e)x	E _{CM2}								
	-1) =(%) ²	E _{CD2}	-8,0	-6,5	-6,5	-56,2	-62,9	-59,9	-53,3	-50,4
	ъ	E _{CL2}	-45,2	-36,4	-30,1	-27,2	-24,5	-22,1	-21,1	-21,0
	100	п 13	25,6	21,9	18,1	-22,9	-30,8	-30,9	-26,6	-24,3
	- C _e /C _c)x	E _{CM1}								
	¹ (%)= (1 ⁻	E _{CD1}	7,4	6,1	6,1	36,0	38,6	37,5	34,8	33,5
	Ш Ш	E _{CL1}	31,1	26,7	23,2	21,4	19,7	18,1	17,4	17,4
5		3Δ	32,27	30,67	27,06	-25,00	-33,40	-34,24	-29,76	-27,22
0.000.0	bsoluto	ΔC_M								
ley), re.	Error A	ΔC_D	0,0005	0,0004	0,0004	0,0039	0,0047	0,0048	0,0047	0,0049
		∆C	0,27	0,26	0,25	0,26	0,26	0,26	0,27	0,28
		ε _e	93,65	109,23	122,06	134,29	141,89	145,00	141,57	139,18
	ey	C _{Me}								
	Mil	C C	0,0063	0,0065	0,0068	0,0070	0,0074	0,0080	0,0089	0,0097
		C C	0,59	0,71	0,83	0,94	1,05	1,16	1,26	1,35
		ω	125,92	139,90	149,12	109,29	108,49	110,76	111,81	111,96
	00pts.	C Mc	-0,18	-0,18	-0,19	-0,19	-0,19	-0,20	-0,20	-0,20
	Vfoil 2(ပိ	0,0068	0,0069	0,0072	0,0109	0,0121	0,0128	0,0136	0,0146
		C C	0,86	0,97	1,08	1,20	1,31	1,42	1,53	1,63
		r (deg)	0,0	1,0	2,0	3,0	4,0	5,0	6,0	7,0

Tabla 3.4.13.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX 66-17A-175 a diferentes Números de Reynolds.

								FX 66-1	7A-175	(Miley), Re	5: 1.000.0	00								
		Vfoil 2	20pts.			Milk	эy			Error A	bsoluto		E _{R1} ('	%)= (1- (C _e /C _c)x 1	00	E _{R2} ((%)= (1- (C _c /C _e)x 1(OC
a (deg)	CLc	c_{Dc}	C _{Mc}	ε	C _{Le}	C _{De}	C _{Me}	٤ _e	ΔC_L	ΔC_D	ΔC_M	Δε	E _{CL1}	E _{cD1}	E _{CM1}	E _{ε1}	E _{CL2}	E _{CD2}	E _{CM2}	E _{ε2}
0'0	0,51	0,0089	-0,12	57,30	0,50	0,0101		49,50	0,01	-0,0012		7,79	1,5	-14,1		13,6	-1,5	12,3		-15,7
1,0	0,62	0,0090	-0,12	68,73	0,61	0,0102		59,80	0,01	-0,0012		8,93	1,2	-13,5		13,0	-1,2	11,9		-14,9
2,0	0,73	0,0092	-0,12	78,76	0,72	0,0102		70,59	0,01	-0,0010		8,17	0,8	-10,7		10,4	-0,8	9,7		-11,6
3,0	0,83	0,0097	-0,13	86,45	0,83	0,0104		79,81	0,00	-0,0007		6,64	0,6	-7,7-		7,7	-0,6	7,1		-8,3
4,0	0,94	0,0099	-0,13	95,05	0,93	0,0107		86,92	0,01	-0,0008		8,13	1,2	-8,0		8,6	-1,2	7,4		-9,4
5,0	1,05	0,0103	-0,14	102,40	1,04	0,0110		94,55	0,01	-0,0007		7,85	1,0	-7,3		7,7	-1,0	6,8		-8,3
6,0	1,16	0,0107	-0,14	108,70	1,14	0,0114		100,00	0,02	-0,0007		8,70	1,6	-7,0		8,0	-1,6	6,5		-8,7
7,0	1,26	0,0113	-0,14	111,49	1,25	0,0118		105,93	0,01	-0,0005		5,56	1,0	4 7		5,0	-1,0	4,1		-5,3
8,0	1,27	0,0201	-0,17	63,49	1,35	0,0121		111,57	-0,08	0,0080		-48,08	-6,0	39,7		-75,7	5,7	-65,8		43,1

	-											
	100	E _{ε2}	-13,4	-11,5	-10,7	-6,6	-5,2	-3,2	-1,5	1,6	44,4	
	C _c /C _e)x	E _{CM2}	-4,3	-7,6	-10,9	-14,7	-17,9	-21,1	-24,9	-17,2	-29,5	-46,6
	-1) =(%)	E _{CD2}	12,0	11,8	10,8	7,5	6,1	4,2	2,9	-0,2	-75,1	
	ER2	E _{CL2}	0,2	1,6	1,3	1,4	1,2	1,2	1,4	1,4	2,7	2,9
	100	E_{ϵ_1}	11,9	10,3	9,6	6,2	5,0	3,1	1,5	-1,7	-80,0	
	C _e /C _c)x	E _{CM1}	4,1	7,1	9,8	12,8	15,2	17,4	19,9	14,7	22,8	31,8
	%)= (1-	E _{cD1}	-13,7	-13,4	-12,1	-8,1	-6,6	4 4	-3,0	0,2	42,9	
	E _{R1} (E _{CL1}	-0,2	-1,7	-1,3	-1,4	-1,3	-1,2	-1,4	-1,4	-2,8	-2,9
00		Δε	7,54	7,89	8,47	5,95	5,29	3,52	1,82	-2,09	-57,44	
: 1.500.0	soluto	ΔC_M	0,00	-0,01	-0,01	-0,02	-0,02	-0,02	-0,03	-0,02	-0,04	-0,06
Ailey), Re	Error Ab	ΔC_D	-0,0011	-0,0011	-0,0010	-0,0007	-0,0006	-0,0004	-0,0003	0,0000	0,0080	
A-175 (N		ΔC_L	0,00	-0,01	-0,01	-0,01	-0,01	-0,01	-0,02	-0,02	-0,04	-0,04
FX 66-17		ε _e	56,04	68,48	79,57	90,43	101,05	111,46	120,41	127,72	129,25	
	ý	C _{Me}	-0,11	-0,11	-0,11	-0,11	-0,11	-0,11	-0,11	-0,12	-0,12	-0,12
	Mile	C _{De}	0,0091	0,0092	0,0093	0,0094	0,0095	0,0096	0,0098	0,0101	0,0106	
		C _{Le}	0,51	0,63	0,74	0,85	0,96	1,07	1,18	1,29	1,37	1,41
		ε _c	63,58	76,37	88,04	96,37	106,34	114,98	122,23	125,63	71,81	68,05
	Opts.	C _{Mc}	-0,11	-0,12	-0,12	-0,13	-0,13	-0,13	-0,14	-0,14	-0,16	-0,18
	Vfoil 22	$c_{\rm Dc}$	0,0080	0,0081	0,0083	0,0087	0,0089	0,0092	0,0095	0,0101	0,0186	0,0201
		C_{Lc}	0,51	0,62	0,73	0,84	0,95	1,06	1,16	1,27	1,33	1,37
		α (deg)	0'0	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0	9,0
	FX 66-17A-175 (Miley), Re: 1.500.000	FX 66-17A-175 (Miley), Re: 1.500.000 Ex 6.000 Ex 6.000 Ex 6.000 Ex 6.000 Ex 7.000 E 7.0000 E 7.0000 E 7.0000 E 7.0000 E 7.0000 E 7.0000 E 7.00000 E 7.000000 E 7.000000 E 7.000000 E 7.000000 E 7.000000 E 7.000000 E 7.0000000 E 7.0000000 E 7.0000000 E 7.0000000 E 7.0000000 E 7.0000000 E 7.00000000 E 7.00000000 E 7.000000000000 E 7.0000000000000000000 E 7.000000000000000000000000000000000000	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Tabla 3.4.13.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX 66-17A-175 a diferentes Números de Reynolds (continuación I).

								FX 66-1	7A-175	(Miley), Re	: 2.000.0	00								
		Vfoil 2.	20pts.			Mi	ley			Error At	osoluto		E _{R1} (5	%)= (1- i	C _e /C _c)x 1	00	E _{R2} ((%)= (1- (C _c /C _e)x 1	00
a (deg)	C _{Lc}	c_{Dc}	C _{Mc}	εc	C _{Le}	CDe	C _{Me}	ε _e	ΔC_L	ΔC_D	ΔC_M	Δε	E _{CL1}	E _{cD1}	E _{CM1}	E_{ϵ_1}	E _{CL2}	E _{CD2}	E _{CM2}	E _{ε2}
0'0	0,51	0,0074	-0,11	68,68	0,50	0,0077		64,94	0,01	-0,0003		3,74	2,3	-3,4		5,4	-2,3	3,3		-5,8
1,0	0,62	0,0076	-0,12	81,96	0,62	0,0079		78,48	0,00	-0,0003		3,48	0,2	4,2		4,2	-0,2	4,1		4,4
2,0	0,73	0,0077	-0,12	94,57	0,73	0,0082		89,02	0,00	-0,0005		5,54	0,3	-5,9		5,9	-0,3	5,6		-6,2
3,0	0,84	0,0081	-0,13	104,15	0,85	0,0084		101,19	-0,01	-0,0003		2,96	-0,8	-3,8		2,8	0,8	3,7		-2,9
4,0	0,95	0,0083	-0,13	114,57	0,96	0,0087		110,34	-0,01	-0,0004		4,22	-1,0	4,8		3,7	1,0	4,6		-3,8
5,0	1,06	0,0086	-0,13	124,01	1,07	0,0090		118,89	-0,01	-0,0004		5,12	-0,9	-5,2		4,1	0'0	5,0		4,3
6,0	1,17	0,0088	-0,14	132,44	1,17	0,0092		127,17	0,00	-0,0004		5,27	0'0	4		4,0	0,0	4,0		4,1
7,0	1,28	0,0094	-0,14	136,04	1,28	0,0094		136,17	0,00	0,0000		-0,13	-0,4	-0,3		-0,1	0,4	0,3		0,1
8,0	1,36	0,0175	-0,15	77,41	1,38	0,0097		142,27	-0,02	0,0078		-64,85	-1,8	44,6		-83,8	1,8	-80,5		45,6
9'0	1,42	0,0191	-0,16	74,21	1,42				00'0				-0,2				0,2			

-			r									
	100	E _{£2}	-13,7	-15,1	-12,9	-7,7-	-5,7	-1,7	-0,3	-0,3	42,9	
	C _c /C _e)x	E _{CM2}										
	-1) =(%) ²	E _{CD2}	7,9	9,5	8,3	5,4	4,7	3,0	2,4	1,5	-73,4	
	E _{R3}	E _{CL2}	-4,7	-4,2	-3,5	-1,9	-0,7	1,4	2,1	1,2	0'0	-2.4
	100	E_{ϵ_1}	12,1	13,1	11,4	7,2	5,4	1,6	0,3	0,3	-75,1	
	· C _e /C _c)x	E _{CM1}										
	-1) =(%)	E _{cD1}	-8,6	-10,5	-9,1	-5,7	4,9	-3,1	-2,5	-1,5	42,3	
	E _{R1}	E _{CL1}	4,5	4,0	3,4	1,9	0,7	-1,4	-2,1	-1,2	-0,9	2.3
00		Δε	9,09	11,93	11,91	8,21	6,86	2,24	0,48	0,48	-64,09	
: 3.000.C	soluto	ΔC_M										
(Miley), Re	Error Ab	ΔC_D	-0,0006	-0,0007	-0,0006	-0,0004	-0,0004	-0,0002	-0,0002	-0,0001	0,0068	
7A-175 (ΔC_L	0,02	0,03	0,02	0,02	0,01	-0,02	-0,03	-0,02	-0,01	0.03
FX 66-1		ε _e	66,22	78,95	92,21	106,41	120,25	135,00	146,34	151,16	149,46	
	Уŝ	C _{Me}										
	Mile	c_{De}	0,0074	0,0076	0,0077	0,0078	0,0079	0,0080	0,0082	0,0086	0,0093	
		C _{Le}	0,49	0,60	0,71	0,83	0,95	1,08	1,20	1,30	1,39	1.42
		εc	75,31	90,88	104,12	114,62	127,11	137,24	146,82	151,65	85,37	82.39
	20pts.	C _{Mc}	-0,11	-0,12	-0,12	-0,12	-0,13	-0,13	-0,13	-0,14	-0,14	-0.15
	Vfoil 23	c_{Dc}	0,0068	0,0069	0,0071	0,0074	0,0075	0,0078	0,0080	0,0085	0,0161	0.0176
		C _{Lc}	0,51	0,63	0,73	0,85	0,96	1,06	1,17	1,28	1,38	1.45
		a (deg)	0'0	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0	0.6
	FX 66-17A-175 (Miley), Re: 3.000.000	FX 66-17A-175 (Miley), Re: 3.000.000 Error Absoluto Error Absoluto Error Absoluto Error Ce/Ce,N 100 Erz(%)= (1- Ce/Ce,N 100 Erzon 200	$\begin{tabular}{l l l l l l l l l l l l l l l l l l l $	FX 66-17A-175 (Miley), Re: 3.000.000 Vfoil 220pts. Miley Error Absoluto Error Absoluto Error (%) = (1 - C ₆ /C ₆)X 100 Error(%) = (1 - C ₆ /C ₆)X 100 Error(%) = (1 - C ₆ /C ₆)X 100 Error (%) = (1 - C ₆ /C ₆	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Tabla 3.4.14.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX 66-S-161 a diferentes Números de Reynolds.

								FX 66-	S-161 (N	Ailey), Re:	1.000.000	C								
		Vfoil 2	20pts.			Mile	λε			Error Ab	soluto		E _{R1} (⁹	%)= (1- 0	C _e /C _c)x 10	0	E _{R2} (%)= (1- (C _c /C _e)x 1(00
a (deg)	C _{Lc}	c_{Dc}	C _{Mc}	ε ^c	C _{Le}	c_{De}	C _{Me}	ε _e	ΔC_L	ΔC_D	ΔC_M	Δε	E _{CL1}	E _{CD1}	E _{CM1}	E _{ε1}	E _{CL2}	E _{CD2}	E _{CM2}	$E_{\epsilon 2}$
0'0	0,53	0,0082	-0,11	64,07	0,46	0,0085		54,12	0,07	-0,0003		9,95	12,4	-3,7		5,5	-14,2	3,6		-18,4
1,0	0,63	0,0084	-0,12	75,82	0,57	0,0088		64,77	0,06	-0,0004		11,05	10,0	-5,3		14,6	-11,2	5,0		-17,1
2,0	0,74	0,0086	-0,12	86,09	0,68	0,0090		75,56	0,06	-0,0004		10,53	8,5	4,2	~	12,2	-9,3	4,0		-13,9
3,0	0,85	0,0089	-0,13	96,00	0,79	0,0093		84,95	0,06	-0,0004		11,06	7,1	-5,0	Ţ	1,5	-7,7	4,7		-13,0
4,0	0,96	0,0090	-0,13	106,60	0,89	0,0096		92,71	0,07	-0,0006		13,89	7,3	-6,6	~	13,0	-7,9	6,2		-15,0
5,0	1,07	0,0095	-0,14	112,52	0,99	0,0099		100,00	0,08	-0,0004		12,52	7,1	4,6	Ţ	1,1	-7,6	4,4		-12,5
6,0	1,17	0,0103	-0,14	113,83	1,09	0,0101		107,92	0,08	0,0002		5,91	6,8	1,7		5,2	-7,3	-1,7		-5,5
7,0	1,29	0,0100	-0,14	129,00	1,18	0,0101		116,83	0,11	-0,0001		12,17	8,4	-1,2		9,4	-9,1	1,1		-10,4
8,0	1,37	0,0117	-0,15	117,29	1,26	0,0105		120,00	0,11	0,0012		-2,71	8,0	10,0		-2,3	-8,7	-11,2		2,3

	-											
	100	E _{ε2}	-14,7	-13,8	-10,8	-8,8	-9,7	-7,4	-1,7	-7,1	4,5	48.9
	C _c /C _e)x	E _{CM2}	-13,8	-18,0	-22,9	-27,1	-31,3	-36,1	-41,0	-48,5	-51,7	-108.6
	-1) =(%)	E _{CD2}	2,6	3,7	4,0	4,2	6,4	4,9	0,2	5,1	-9,5	-83.2
	E _{R2}	E _{CL2}	-11,7	-9,7	-6,4	-4,3	-2,7	-2,1	-1,5	-1,7	-4,6	6.3
	100	E _{ε1}	12,8	12,1	9,8	8,1	8,9	6,9	1,6	6,6	4,7	-95.6
	C _e /C _c)x	E _{CM1}	12,1	15,3	18,6	21,3	23,8	26,5	29,1	32,7	34,1	52.1
	%)= (1-	E _{CD1}	-2,7	-3,8	4 2	4, 4,	-6,9	-5,2	-0,2	-5,3	8,7	45.4
	E _{R1} (E _{CL1}	10,5	8,8	6,0	4,1	2,6	2,0	1,4	1,6	4,4	-6.7
0		Δε	9,11	10,28	9,35	8,72	10,63	8,70	2,09	9,41	-6,08	-66.47
1.500.00	soluto	ΔC_M	-0,01	-0,02	-0,02	-0,03	-0,03	-0,04	-0,04	-0,05	-0,05	-0.11
ley), Re:	Error Ab	ΔC_D	-0,0002	-0,0003	-0,0003	-0,0003	-0,0006	-0,0004	0,0000	-0,0005	0,0009	0.0083
:-161 (Mi		ΔC_L	0,06	0,06	0,04	0,04	0,03	0,02	0,02	0,02	0,06	-0.09
FX 66-S		ε _e	61,84	74,36	86,42	98,80	109,30	117,98	126,09	132,98	136,08	136.00
	y	C _{Me}	-0,10	-0,10	-0,10	-0,10	-0,10	-0,10	-0,10	-0,10	-0,10	-0.10
	Mile	C _{De}	0,0076	0,0078	0,0081	0,0083	0,0086	0,0089	0,0092	0,0094	0,0097	0.0100
		C _{Le}	0,47	0,58	0,70	0,82	0,94	1,05	1,16	1,25	1,32	1.36
		ε _c	70,95	84,64	95,77	107,52	119,94	126,68	128,17	142,39	130,01	69.53
	Opts.	C _{Mc}	-0,11	-0,12	-0,12	-0,13	-0,13	-0,14	-0,14	-0,15	-0,15	-0.21
	Vfoil 22	$c_{\rm Dc}$	0,0074	0,0075	0,0078	0,0080	0,0080	0,0085	0,0092	0,0089	0,0106	0.0183
		CLc	0,53	0,64	0,74	0,86	0,97	1,07	1,18	1,27	1,38	1.27
		a (deg)	0'0	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0	0.0
_	_	_	_	_	_	_	_	_	_	_	_	_

Tabla 3.4.14.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX 66-S-161 a diferentes Números de Reynolds (continuación I).

								FX 66-	S-161 (N	/liley), Re:	2.000.00	0								
		Vfoil 2	20pts.			Mil	ey			Error At	soluto		E _{R1} ('	%)=(1-(C _e /C _c)x 1	0C	E _{R2} ((%)= (1- C	C _c /C _e)x 10	00
a (deg)	CLc	C _{Dc}	C Mc	ω	C	C C	C _{Me}	εe	ΔCL	ΔC_D	ΔC_M	3Δ	E _{CL1}	E _{cD1}	E _{CM1}	п 51	E _{CL2}	E _{CD2}	E _{CM2}	Е ₂
0'0	0,53	0,0069	-0,11	76,62	0,50	0,0070		71,43	0,03	-0,0001		5,19	5,0	-1,9		6,8	-5,3	1,8		-7,3
1,0	0,64	0,0070	-0,12	90,80	0,61	0,0071		85,92	0,03	-0,0001		4,88	4,2	-1,3		5,4	-4,3	1,3		-5,7
2,0	0,75	0,0072	-0,12	103,38	0,71	0,0073		97,26	0,04	-0,0001		6,12	5,0	-1,0		5,9	-5,3	1,0		-6,3
3,0	0,86	0,0074	-0,13	115,66	0,81	0,0075		108,00	0,05	-0,0001		7,66	5,4	-1,3		6,6	-5,7	1,3		-7,1
4,0	0,97	0,0075	-0,13	129,23	0,92	0,0078		117,95	0,05	-0,0003		11,29	4,8	-4,3		8,7	-5,1	4,1		-9,6
5,0	1,07	0,0079	-0,14	136,77	1,03	0,0080		128,75	0,04	-0,0001		8,02	4,1	-1,9		5,9	-4,3	1,9		-6,2
6,0	1,18	0,0085	-0,14	138,44	1,15	0,0083		138,55	0,03	0,0002		-0,11	2,5	2,6		-0,1	-2,6	-2,6		0,1
7,0	1,27	0,0087	-0,15	146,72	1,25	0,0088		142,05	0,02	-0,0001		4,67	1,9	-1,4		3,2	-1,9	1,4		-3,3
8,0	1,38	0,0101	-0,15	137,69	1,32	0,0096		137,50	0,06	0,0005		0,19	4,7	4,5		0,1	-4,9	4,8		-0,1
9,0	1,35	0,0174	-0,19	77,44	1,34				0,01				0,7				-0,7			

1													
		100	E _{£2}	-11,4	-10,6	-10,5	-12,5	-12,5	4, 4,	2,4	-0,8	-7,7-	
		· C _c /C _e)x	E _{CM2}										
		₂(%)= (1-	E _{CD2}	3,5	3,7	4,6	6,8	6,2	-1,4	-8,6	4,3	1,8	
		E _{R3}	E _{CL2}	-7,5	-6,4	-5,4	-4,9	-5,6	-5,8	-5,9	-5,1	-5,8	-6.3
		100	E_{ϵ_1}	10,2	9,6	9,5	11,1	11,1	4,2	-2,5	0,8	7,2	
		- C _e /C _c)x	E _{CM1}										
		1 ^(%) (1-	E _{CD1}	-3,7	-3,9	4,8	-7,3	-6,6	1,4	7,9	4,1	-1,9	
		Ē	E _{CL1}	6'9	6,0	5,2	4,7	5,3	5,5	5,6	4,9	5,4	6.0
	00		Δε	8,57	9,61	10,83	14,27	16,00	6,35	-3,85	1,26	10,05	
	3.000.0(osoluto	ΔC_M										
	/iley), Re:	Error Al	ΔC_D	-0,0002	-0,0002	-0,0003	-0,0005	-0,0004	0,0001	0,0006	0,0003	-0,0002	
	S-161 (N		ΔC_L	0,04	0,04	0,04	0,04	0,05	0,06	0,07	0,06	0,07	0.08
	FX 66-		ε _e	75,38	90,91	102,90	113,89	127,78	145,71	157,75	158,44	130,00	
		ey	C _{Me}										
		Mil	C _{De}	0,0065	0,0066	0,0069	0,0072	0,0072	0,0070	0,0071	0,0077	0,0100	
			CLe	0,49	0,60	0,71	0,82	0,92	1,02	1,12	1,22	1,30	1.33
			ε _c	83,96	100,52	113,73	128,16	143,77	152,06	153,90	159,70	140,05	87.74
		20pts.	C _{Mc}	-0,11	-0,12	-0,12	-0,13	-0,13	-0,13	-0,14	-0,15	-0,15	-0.17
		Vfoil 22	c_{Dc}	0,0063	0,0064	0,0066	0,0067	0,0068	0,0071	0,0077	0,0080	0,0098	0.0161
			C _{Lc}	0,53	0,64	0,75	0,86	0,97	1,08	1,19	1,28	1,37	1.41
			(deg)	0,0	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0	9.0
			۵										

Tabla 3.4.15.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX 66-S-196 a diferentes Números de Reynolds

								FX 66-	S-196 (N	/liley), Re:	1.000.00	0								
		Vfoil 2	00pts.			Mil	ey			Error Ab	soluto		E _{R1} ('	%)= (1- 1	C _e /C _c)x 1	100	E _{R2} ((%)= (1- (C _c /C _e)x 1	00
a (deg)	C _{Lc}	$c_{\rm Dc}$	C _{Mc}	εc	C _{Le}	CDe	C _{Me}	ε _e	ΔC_L	ΔC_D	ΔC_M	Δε	E _{CL1}	E _{CD1}	E _{CM1}	E _{ε1}	E _{CL2}	E _{CD2}	E _{CM2}	E _{ε2}
0'0	0,38	0,0082	-0,13	45,77	0,19	0,0087		21,84	0,19	-0,0005		23,93	49,4	-5,9		52,3	-97,8	5,6		-109,6
1,0	0,48	0,0084	-0,14	57,59	0,31	0,0089		34,83	0,17	-0,0005		22,75	35,9	-5,9		39,5	-56,1	5,6		-65,3
2,0	0,60	0,0085	-0,15	69,63	0,43	0,0092		46,74	0,17	-0,0007		22,89	27,7	-7,6		32,9	-38,4	7,1		-49,0
3,0	0,70	0,0090	-0,15	77,36	0,55	0,0095		57,89	0,15	-0,0005		19,46	21,0	-5,6		25,2	-26,6	5,3		-33,6
4,0	0,80	0,0092	-0,16	86,78	0,66	0,0098		67,35	0,14	-0,0006		19,44	17,6	-6,2		22,4	-21,3	5,8		-28,9
5,0	0,89	0,0100	-0,17	88,48	0,77	0,0100		77,00	0,12	0,0000		11,48	13,3	0,4		13,0	-15,4	-0,4		-14,9
6,0	0,98	0,0104	-0,18	94,16	0,89	0,0103		86,41	0,09	0,0001		7,75	9,2	1,0		8,2	-10,1	-1,0		-9,0
7,0	1,07	0,0111	-0,20	96,31	1,00				0,07				6,3				-6,7			
8,0	1,15	0,0115	-0,21	99,66	1,11				0,04				3,5				-3,7			
9,0	1,19	0,0129	-0,23	91,93	1,22				-0,03				-2,7				2,6			

	ſ											
	100	E _{ε2}	-96,3	-56,4	-37,6	-23,0	-15,7	-2,3	2,4	8,1	11,6	40.0
	C _c /C _e)x	E _{CM2}	-44,1	-50,9	-42,7	-49,9	-57,1	-51,2	-59,8	-69,1	-64,0	2.06-
	-1) =(%) ²	E _{CD2}	6,8	3,8	2,2	-1,6	-2,6	-9,4	-10,4	-13,4	-15,3	-54.4
	ER	E _{CL2}	-82,9	-50,4	-34,6	-25,0	-18,8	-11,9	-7,8	-4,2	-2,0	7.4
	100	E _{ε1}	49,1	36,1	27,3	18,7	13,6	2,2	-2,5	8,8 -8	-13,1	-66.8
	C _e /C _c)x	E _{CM1}	30,6	33,7	29,9	33,3	36,3	33,9	37,4	40,9	39,0	47.6
	-1) =(%)	E _{cD1}	-7,3	4,0	-2,3	1,6	2,5	8,6	9,5	11,8	13,3	35.3
	ER1	E _{CL1}	45,3	33,5	25,7	20,0	15,8	10,6	7,2	4,1	1,9	-8.0
2		Δε	25,59	23,86	21,72	16,63	13,57	2,27	-2,71	-9,87	-15,19	-56.14
nn.nnc.1	soluto	ΔC_M	-0,04	-0,05	-0,04	-0,05	-0,06	-0,06	-0,07	-0,08	-0,08	-0.11
illey, re.	Error Ak	ΔC_D	-0,0005	-0,0003	-0,0002	0,0001	0,0002	0,0008	0,0009	0,0012	0,0014	0.0050
1) 021-0		ΔC_L	0,17	0,17	0,16	0,14	0,13	0,10	0,07	0,04	0,02	-0.10
		ε _e	26,58	42,31	57,69	72,15	86,25	100,00	111,90	121,84	131,46	140.22
	ъ	C _{Me}	-0,09	-0,09	-0,10	-0,10	-0,10	-0,11	-0,11	-0,11	-0,12	-0.12
	Mile	CDe	0,0079	0,0078	0,0078	0,0079	0,0080	0,0082	0,0084	0,0087	0,0089	0.0092
		C _{Le}	0,21	0,33	0,45	0,57	0,69	0,82	0,94	1,06	1,17	1.29
		ε	52,17	66,17	79,41	88,78	99,82	102,27	109,20	111,97	116,27	84.08
	00pts.	C _{Mc}	-0,13	-0,14	-0,14	-0,15	-0,16	-0,17	-0,18	-0,19	-0,20	-0.23
	Vfoil 20	C _{Dc}	0,0074	0,0075	0,0076	0,0080	0,0082	0,0090	0,0093	0,0099	0,0103	0.0142
		CLc	0,38	0,50	0,61	0,71	0,82	0,92	1,01	1,10	1,19	1.19
		(deg)	0,0	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0	0.6

Tabla 3.4.15.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX 66-S-196 a diferentes Números de Reynolds (continuación I).

														_	-												
	100	Е ²²	-127,0	-65,4	-46,2	-30,1	-25,4	-11,9	4,7	3,7	5,7	43,9			100	E _{ε2}	-139,4	-62,0	-46,9	-31,2	-28,2	-15,7	-11,5	4,3	8,5	42,1	
	C _c /C _e)x	E _{CM2}													C _c /C _e)x	E _{CM2}											
	(%)= (1-	E _{CD2}	9,0	1,8	2,0	0,9	2,7	-3,8	-7,3	-12,6	-11,4	-67,2			(%)= (1-	E _{CD2}	12,6	1,3	3,2	1,3	3,7	-1,1	-1,6	-5,1	-15,6	-63,3	
	E _{R2} (E _{CL2}	-106,6	-62,4	-43,4	-28,8	-22,0	-16,1	-12,3	-8,5	-5,1	6,2	9,1		E _{R2} (E _{CL2}	-109,3	-59,8	-42,1	-29,5	-23,4	-17,0	-13,3	-9,7	-5,7	5,5	4.0
	100	П е1	56,0	39,5	31,6	23,1	20,2	10,6	4,4	-3,8	-6,0	-78,3			100	E_{e_1}	58,2	38,3	31,9	23,8	22,0	13,6	10,3	4,1	-9,3	-72,8	
	C _e /C _c)x	E _{CM1}													C _e /C _c)x	E _{CM1}											
	·· -1) =(%	E _{CD1}	-9,9	-1,9	-2,0	-0,9	-2,8	3,6	6,8	11,2	10,3	40,2			%)= (1-	E _{CD1}	-14,4	-1,3	-3,3	-1,3	-3,9	1,1	1,6	4,9	13,5	38,8	
	E _{R1} ('	E _{CL1}	51,6	38,4	30,2	22,4	18,0	13,9	10,9	7,8	4,9	-6,6	-10,0		E _{R1} (E _{CL1}	52,2	37,4	29,6	22,8	19,0	14,5	11,7	8,8	5,4	-5,8	4.2
0		3Δ	32,18	28,56	27,62	22,45	22,12	11,90	5,35	-4,75	-7,74	-63,86				Δε	37,31	30,98	31,24	26,14	27,39	17,17	14,02	5,81	-12,20	-61,27	
.000.000	soluto	ΔC_M												000.000.	soluto	ΔC_M											
sy), Re: 2	Error Abs	ΔC_D	7,0007	0,0001	0,0001	0,0001	0,0002	,0003	,0006	,0010	,0010	,0059		sy), Re: 3	Error Abs	ΔC_D	0,0009	0,0001	0,0002	0,0001	0,0003	,0001	,0001	,0004	,0013	,0056	
196 (Mile		^C), 20 -(,19 -(,19 -(), 16 -(,15 -(,13 C),11 C	006 0	,06 C	0,08 0	0,12	196 (Mile		∆CL),21 -(), 19 -(,19 -(,17 -(), 16 -(,14 0	,12 0	,10 0	,07 0	0,07 0	0.05
-S-99 X:		ε _e	5,33 0	3,66 0	9,72 0	1,67 0	7,18 0	0,00	5,00 C	8,40 0	6,47 0	5,45 -(7	-S-99 X:		ε _e 2	3,76 0	0,00	3,67 0	3,82 0	7,18 0	9,46 0	2,37 0	4,62 0	3,21 0	5,45 -(7
ш		Me	25	4	56	72	87	10	11	12	13	14				Me	2(20	96	80	16	10	12	13	14	14	
	Miley	o o	175	171	172	175	178	80	80	181	85	88			Miley	e C	171	164	990	968	171	174	176	178	181	88	
		ບື	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00				C	00'00	0,00	0,00	00'00	0,00	00'00	0,00	0,00	0,00	0,00	
		C C	0,19	0,31	0,43	0,56	0,68	0,80	0,92	1,04	1,16	1,28	1,36			C _{Le}	0,19	0,32	0,44	0,57	0,69	0,81	0,93	1,05	1,16	1,28	1.32
		εc	57,52	72,22	87,34	97,11	109,30	111,90	120,35	123,64	128,73	81,59	70,59			εc	64,07	80,98	97,90	109,96	124,58	126,63	136,39	140,42	131,01	84,19	76.57
	00pts.	C M	-0,13	-0,13	-0,14	-0,15	-0,15	-0,16	-0,17	-0,18	-0,19	-0,23	-0,25		00pts.	C _{Mc}	-0,13	-0,13	-0,14	-0,14	-0,15	-0,16	-0,17	-0,17	-0,19	-0,23	-0.24
	Vfoil 2	c C	0,0068	0,0070	0,0071	0,0074	0,0076	0,0083	0,0086	0,0091	0,0095	0,0147	0,0175		Vfoil 2	$c_{\rm Dc}$	0,0062	0,0063	0,0064	0,0067	0,0068	0,0075	0,0077	0,0082	0,0094	0,0144	0.0165
		C _{Lc}	0,39	0,50	0,62	0,72	0,83	0,93	1,03	1,13	1,22	1,20	1,24			CLc	0,40	0,51	0,63	0,74	0,85	0,95	1,05	1,15	1,23	1,21	1.27
		a (deg)	0'0	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0	9,0	10,0			α (deg)	0'0	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0	9,0	10.0

Tabla 3.4.16.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX L-V-152 a diferentes Números de Reynolds

	00	$E_{\epsilon 2}$		17,9	1,1	-3,6	7,9	10,1	29,5	
	_c /C _e)x 1(E _{CM2}								
	%)= (1- C	E _{CD2}		18,1	22,1	19,9	8,7	2,2	-7,6	
	E _{R2} (9	E _{CL2}	100,0	32,7	22,9	17,0	15,9	12,1	24,1	26,8
	100	E_{ϵ_1}		-21,8	-1,1	3,5	-8,6	-11,3	-41,8	
	Ce/Cc)x	E _{CM1}								
	%)= (1-	E _{cD1}		-22,0	-28,4	-24,9	-9,6	-2,3	7,1	
	E ^{R1} (E _{CL1}	-	-48,6	-29,7	-20,5	-19,0	-13,8	-31,8	-36,6
		Δε		-2,60	-0,25	1,18	-3,33	-5,02	-15,41	
500.000	soluto	ΔC_M								
liley), Re:	Error Ab	ΔC_D		-0,0020	-0,0026	-0,0024	-0,0011	-0,0003	0,0010	
V-152 (N		ΔC_L	-0,04	-0,05	-0,06	-0,07	-0,08	-0,07	-0,17	-0,21
FX L-		ε _e		14,55	23,73	32,77	42,15	49,59	52,24	
	уŝ	C _{Me}								
	Mile	CDe		0,0110	0,0118	0,0119	0,0121	0,0123	0,0134	
		C _{Le}	0,04	0,16	0,28	0,39	0,51	0,61	0,70	0,78
		ε	0,00	11,94	23,48	33,96	38,82	44,57	36,83	35,21
	0pts.	C _{Mc}	0,00	-0,01	-0,01	-0,02	-0,02	-0,03	-0,06	-0,08
	Vfoil 22	$c_{\rm Dc}$	0,0094	0,0090	0,0092	0,0095	0,0110	0,0120	0,0144	0,0162
		C_{Lc}	0,00	0,11	0,22	0,32	0,43	0,54	0,53	0,57
		α (deg)	0'0	1,0	2,0	3,0	4,0	5,0	6,0	7,0

	100	E _{ε2}	100,0	24,4	14,2	10,1	16,0	9,8	10,7	23,5	26,8	
	· C _c /C _e)x	E _{CM2}										
	(%)= (1-	E _{CD2}	6,6	10,5	9,7	7,2	-0,6	2,0	-3,8	-3,0	4,6	
	Щ	E _{CL2}	100,0	32,3	22,5	16,5	15,5	11,7	7,3	21,2	30,2	30,8
	100	$E_{\epsilon 1}$	-	-32,2	-16,5	-11,2	-19,0	-10,9	-12,0	-30,7	-36,6	
	C _e /C _c)x	E _{CM1}										
	(%)= (1-	E _{CD1}	-7,1	-11,8	-10,7	-7,7-	0,6	-2,1	3,7	2,9	4,9	
	Ш	E _{CL1}		-47,8	-29,0	-19,8	-18,3	-13,2	-7,9	-26,9	-43,3	-44,5
		Δε	-4,40	-4,28	-4,31	-4,24	-8,14	-5,34	-5,83	-12,56	-13,48	
/ uu.uuu	soluto	ΔC_M	0,00	-0,01	-0,01	-0,02	-0,02	-0,03	-0,03	-0,07	-0,11	-0,13
lliey), Ke:	Error Ab	ΔC_D	-0,0006	-0,0010	-0,0009	-0,0007	0,0001	-0,0002	0,0005	0,0004	-0,0008	
V-152 (IV		ΔC_L	-0,04	-0,05	-0,06	-0,06	-0,08	-0,07	-0,05	-0,17	-0,26	-0.28
		ε _e	4,40	17,58	30,43	41,94	51,00	54,46	54,26	53,42	50,30	
	л. А	C _{Me}	00'0	00'0	00'0	00'0	00'0	00'0	00'0	00'0	00'0	00,0
	Mile	CDe	0,0091	0,0091	0,0092	0,0093	0,0100	0,0112	0,0129	0,0146	0,0169	
		C _{Le}	0,04	0,16	0,28	0,39	0,51	0,61	0,70	0,78	0,85	0,92
		ε	0,00	13,30	26,12	37,70	42,86	49,12	48,43	40,86	36,81	35,39
	Opts.	C _{Mc}	0,00	-0,01	-0,01	-0,02	-0,02	-0,03	-0,03	-0,07	-0,11	-0,13
	Vfoil 22	c_{Dc}	0,0085	0,0081	0,0083	0,0086	0,0101	0,0110	0,0134	0,0150	0,0161	0,0180
		C _{Lc}	0,00	0,11	0,22	0,33	0,43	0,54	0,65	0,61	0,59	0,64
		α (deg)	0,0	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0	9,0

Tabla 3.4.17.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX S 02-196 a diferentes Números de Reynolds

							FX S 0	2-196 (N	Ailey), Re:	1.000.00	0								
Vfoil 220pts. Miley	Vfoil 220pts. Miley	20pts. Miley	Miley	Miley	Miley	ey			Error At	osoluto		E _{R1} ('	%)= (1-	C _e /C _c)x 1	00	E _{R2}	(%)= (1- (C _c /C _e)x 1	00
C _{Lc} C _{Dc} C _{Mc} ϵ_{c} C _{Le} C _{De} C _{Me}	C _{Dc} C _{Mc} E _c C _{Le} C _{De} C _{Me}	C _{Mc} ε _c C _{Le} C _{De} C _{Me}	ε _c C _{Le} C _{De} C _{Me}	C _{Le} C _{De} C _{Me}	C _{De} C _{Me}	C _{Me}	ε _e	ΔC_L	ΔC_D	ΔC_M	Δε	E _{CL1}	E _{cD1}	E _{CM1}	E_{ϵ_1}	E _{CL2}	E _{CD2}	E _{CM2}	E _{ε2}
0,57 0,0086 -0,12 66,97 0,51 0,0086	0,0086 -0,12 66,97 0,51 0,0086	-0,12 66,97 0,51 0,0086	66,97 0,51 0,0086	0,51 0,0086	0,0086		59,30	0,06	0,0000		7,66	11,0	-0,5		11,4	-12,4	0,5		-12,9
0,68 0,0089 -0,13 76,52 0,63 0,0091	0,0089 -0,13 76,52 0,63 0,0091	-0,13 76,52 0,63 0,0091	76,52 0,63 0,0091	0,63 0,0091	0,0091		69,23	0,05	-0,0003		7,29	7,0	-2,8		9,5	-7,5	2,7		-10,5
0,78 0,0090 -0,14 86,36 0,74 0,0096	0,0090 -0,14 86,36 0,74 0,0096	-0,14 86,36 0,74 0,0096	86,36 0,74 0,0096	0,74 0,0096	0,0096		77,08	0,04	-0,0006		9,27	5,3	-6,1		10,7	-5,6	5,8		-12,0
0,82 0,0145 -0,16 56,39 0,85 0,0101	0,0145 -0,16 56,39 0,85 0,0101	-0,16 56,39 0,85 0,0101	56,39 0,85 0,0101	0,85 0,0101	0,0101		84,16	-0,03	0,0044		-27,77	-4,1	30,3		-49,2	3,9	-43,4		33,0
0,89 0,0155 -0,17 57,77 0,95 0,0105	0,0155 -0,17 57,77 0,95 0,0105	-0,17 57,77 0,95 0,0105	57,77 0,95 0,0105	0,95 0,0105	0,0105		90,48	-0,06	0,0050		-32,71	-6,3	32,1		-56,6	5,9	-47,3		36,1
0,97 0,0164 -0,18 59,32 1,06 0,0108	0,0164 -0,18 59,32 1,06 0,0108	-0,18 59,32 1,06 0,0108	59,32 1,06 0,0108	1,06 0,0108	0,0108		98,15	-0,09	0,0056		-38,83	-8,8	34,3		-65,5	8,1	-52,1		39,6
1,05 0,0173 -0,19 60,72 1,16 0,0109	0,0173 -0,19 60,72 1,16 0,0109	-0,19 60,72 1,16 0,0109	60,72 1,16 0,0109	1,16 0,0109	0,0109		106,42	-0,11	0,0064		-45,70	-10,3	37,1		-75,3	9,4	-58,9		42,9
1,12 0,0185 -0,21 60,73 1,25 0,0111	0,0185 -0,21 60,73 1,25 0,0111	-0,21 60,73 1,25 0,0111	60,73 1,25 0,0111	1,25 0,0111	0,0111		112,61	-0,13	0,0074		-51,89	-11,1	40,1		-85,4	10,0	-66,9		46,1
1,15 0,0198 -0,23 58,08 1,33 0,0113	0,0198 -0,23 58,08 1,33 0,0113	-0,23 58,08 1,33 0,0113	58,08 1,33 0,0113	1,33 0,0113	0,0113		117,70	-0,18	0,0085		-59,61	-15,6	42,9	'	102,6	13,5	-75,3		50,7
1,18 0,0213 -0,25 55,46 1,40 0,0116	0,0213 -0,25 55,46 1,40 0,0116	-0,25 55,46 1,40 0,0116	55,46 1,40 0,0116	1,40 0,0116	0,0116		120,69	-0,22	0,0097		-65,23	-18,4	45,6	'	117,6	15,5	-83,9		54,0

í.	_	_												
		100	E _{ε2}	-7,4	-5,6	-2,8	39,2	42,6	45,3	47,0	49,1	49,7	52,6	45.6
		C _c /C _e)x 1	E _{CM2}	-12,0	-16,0	-21,3	-26,9	-38,2	-47,0	-56,4	-66,2	-76,7	-97,3	-116.0
		-1) =(%)	E _{CD2}	-5,0	4,7	-3,8	-62,8	-65,9	-72,0	-75,4	-80,1	-80,6	-84,1	-64.3
		ER	E _{CL2}	-12,7	-10,6	-6,7	1,0	4,8	5,9	7,1	8,4	9,2	12,7	10.6
		100	E _{ε1}	6,9	5,3	2,8	-64,3	-74,2	-82,7	-88,8	-96,6	-98,8	-110,9	-83.8
		$C_e/C_c)x$	E _{CM1}	10,7	13,8	17,6	21,2	27,6	32,0	36,0	39,8	43,4	49,3	53.7
		(%)= (1-	E _{cD1}	4,7	4,5	3,7	38,6	39,7	41,9	43,0	44,5	44,6	45,7	39.1
		E _{R1} (E _{CL1}	11,3	9,6	6,3	-1,0	-5,0	-6,2	-7,6	-9,2	-10,1	-14,6	-11.9
	0		Δε	5,17	4,59	2,69	-40,58	-47,55	-54,53	-59,95	-65,17	-66,44	-70,94	-50.94
	1.500.00	soluto	ΔC_M	-0,01	-0,02	-0,02	-0,03	-0,05	-0,06	-0,07	-0,08	-0,09	-0,12	-0.14
	(iley), Re:	Error Ab	ΔC_D	0,0004	0,0004	0,0003	0,0051	0,0057	0,0063	0,0069	0,0076	0,0081	0,0089	0.0082
	2-196 (N		ΔC_L	0,07	0,07	0,05	-0,01	-0,05	-0,06	-0,08	-0,11	-0,12	-0,18	-0.15
	FX S 0		ε _e	69,86	81,58	94,87	103,66	111,63	120,45	127,47	132,63	133,66	134,91	111.72
		Уŝ	C _{Me}	-0,11	-0,11	-0,11	-0,12	-0,12	-0,12	-0,12	-0,12	-0,12	-0,12	-0.12
		Mile	CDe	0,0073	0,0076	0,0078	0,0082	0,0086	0,0088	0,0091	0,0095	0,0101	0,0106	0.0128
			CLe	0,51	0,62	0,74	0,85	0,96	1,06	1,16	1,26	1,35	1,43	1.43
			ε	75,04	86,17	97,56	63,08	64,07	65,92	67,52	67,46	67,22	63,97	60.78
		20pts.	C _{Mc}	-0,12	-0,13	-0,13	-0,15	-0,17	-0,18	-0,19	-0,20	-0,21	-0,24	-0.26
		Vfoil 22	C _{Dc}	0,0077	0,0080	0,0081	0,0133	0,0143	0,0151	0,0160	0,0171	0,0182	0,0195	0.0210
			C _{Lc}	0,58	0,69	0,79	0,84	0,91	1,00	1,08	1,15	1,23	1,25	1.28
			a (deg)	0,0	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0	9,0	10.0

Tabla 3.4.17.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX S 02-196 a diferentes Números de Reynolds (continuación I).

								FX S 0	2-196 (N	Viley), Re:	2.000.00	0								
Vfoil 220pts.	Vfoil 220pts.	20pts.				Mile	ey			Error Al	osoluto		E _{R1} (⁹	%)=(1-(C _e /C _c)x 1	00	E _{R2}	(%)= (1- C	_c /C _e)x 10	0
C _{Lc} C _{Dc} C _{Mc} E _c	C _{Dc} C _{Mc} E _c	C _{Mc} E _c	εc		CLe	C De	C _{Me}	εe	ΔCL	ΔC_D	ΔC_M	Δε	E _{CL1}	E _{CD1}	E _{CM1}	П 51	E _{CL2}	E _{CD2}	E _{CM2}	Е ²²
0,58 0,0071 -0,12 80,66 0	0,0071 -0,12 80,66 0	-0,12 80,66 0	80,66 (0	,49	0,0072		68,06	0,09	-0,0001		12,61	14,8	-1,0		15,6	-17,4	1,0		-18,5
0,69 0,0074 -0,13 93,26 0	0,0074 -0,13 93,26 0	-0,13 93,26 0	93,26 0	0	,61	0,0074		82,43	0,08	0,0000		10,83	11,4	-0,3		11,6	-12,8	0,3		-13,1
0,80 0,0075 -0,13 105,94 0,	0,0075 -0,13 105,94 0,	-0,13 105,94 0,	105,94 0,	Ő	73	0,0077		94,81	0,07	-0,0002		11,14	8,7	-2,1		10,5	-9,5	2,0		-11,7
0,86 0,0126 -0,15 67,97 0,	0,0126 -0,15 67,97 0,	-0,15 67,97 0,	67,97 0,	õ	84	0,0079		106,33	0,02	0,0047		-38,36	2,0	37,4		-56,4	-2,0	-59,6		36,1
0,94 0,0136 -0,16 69,48 0,9	0,0136 -0,16 69,48 0,9	-0,16 69,48 0,9	69,48 0,9	0,0	35	0,0080		118,75	-0,01	0,0056		-49,27	-0,8	41,0		-70,9	0,8	-69,5		41,5
1,02 0,0144 -0,17 71,00 1,0	0,0144 -0,17 71,00 1,0	-0,17 71,00 1,0	71,00 1,0	1,0	5	0,0082		128,05	-0,03	0,0062		-57,04	-3,0	42,9		-80,3	2,9	-75,1		44,5
1,10 0,0151 -0,18 72,86 1,	0,0151 -0,18 72,86 1,	-0,18 72,86 1,	72,86 1,	-	15	0,0086		133,72	-0,05	0,0065		-60,86	-4,3	43,1		-83,5	4,2	-75,9		45,5
1,18 0,0162 -0,19 72,73 1,	0,0162 -0,19 72,73 1,	-0,19 72,73 1,	72,73 1,	Ĺ,	25	0,0091		137,36	-0,07	0,0071		-64,63	-5,8	44,0		-88,9	5,5	-78,5		47,1
1,26 0,0174 -0,20 72,38 1,	0,0174 -0,20 72,38 1,	-0,20 72,38 1,	72,38 1,	-	34	0,0096		139,58	-0,08	0,0078		-67,20	-6,7	44,7		-92,9	6,3	-80,8		48,1
1,33 0,0185 -0,22 71,64 1	0,0185 -0,22 71,64 1	-0,22 71,64	71,64	·	I,38	0,0111		124,32	-0'02	0,0074		-52,68	-4,0	40,1		-73,5	3,8	-66,9		42,4
1,35 0,0198 -0,24 67,82 1	0,0198 -0,24 67,82 1	-0,24 67,82 1	67,82 1	-	,39	0,0132		105,30	-0,04	0,0066		-37,48	-3,3	33,5		-55,3	3,2	-50,3		35,6

FX S 02-196 (Miley), Re: 3.000.000	Miley Error Absoluto E _{R1} (%)= (1- C _e /C _c)x 100 E _{R2} (%)= (1- C _e /C _e)x 100	Coe Cue se dC, dC dC dS Ecui Ecui Ecui Eci Ecuz Ecuz Ecu Ecz	0,0069 73,91 0,07 -0,0005 15,79 11,6 -7,3 17,6 -13,1 6,8 -21,4	0,0071 87,32 0,07 -0,0004 15,45 10,0 -5,9 15,0 -11,2 5,5 -17,7	0,0072 102,78 0,06 -0,0004 15,00 7,8 -5,6 12,7 -8,5 5,3 -14,6	0,0073 116,44 0,02 0,0044 -41,63 2,5 37,3 -55,7 -2,5 -59,6 35,8	0,0073 131,51 0,00 0,0052 -54,90 0,0 41,7 -71,7 0,0 -71,6 41,7	0,0074 143,24 -0,02 0,0059 -64,94 -1,8 44,3 -82,9 1,8 -79,6 45,3	0,0077 151,95 -0,04 0,0063 -71,54 -3,9 45,0 -89,0 3,7 -81,9 47,1	0,0084 151,19 -0,06 0,0066 -70,78 -5,1 44,1 -88,0 4,9 -78,9 46,8	0,0101 134,65 -0,07 0,0060 -54,63 -5,8 37,1 -68,3 5,4 -59,1 40,6	0,0142 97,89 -0,03 0,0030 -18,75 -2,2 17,3 -23,7 2,2 -21,0 19,2	
	E _{R1} (%)=	CL1 EC	1,6 -7,	0,0 -5,	,8 ,5	,5 37	,0 41	,8	,9 45	6,1 44	6,8 37	17 17	,
		Jε Π	,79 11	,45 10	2 00,	1,63 2	4,90 0	1,94 -1	1,54 -3),78 -5	1,63 -5	3,75 -2	
000.000	luto	∆C _M ∧	15	15	15	4	-54	-64	-71	-70	-54	-18	
ley), Re: 3.0	Error Abso	ΔC _D	-0,0005	-0,0004	-0,0004	0,0044	0,0052	0,0059	0,0063	0,0066	0,0060	0,0030	
2-196 (Mi		ΔC_L	0,07	0,07	0,06	0,02	0,00	-0,02	-0,04	-0,06	-0,07	-0,03	
FX S 02		ε ^e	73,91	87,32	102,78	116,44	131,51	143,24	151,95	151,19	134,65	97,89	
	ы	C _{Me}											
	Mile	C _{De}	0,0069	0,0071	0,0072	0,0073	0,0073	0,0074	0,0077	0,0084	0,0101	0,0142	
		C _{Le}	0,51	0,62	0,74	0,85	0,96	1,06	1,17	1,27	1,36	1,39	
		ε	89,71	102,77	117,77	74,81	76,60	78,30	80,40	80,41	80,02	79,14	
	20pts.	C _{Mc}	-0,12	-0,13	-0,13	-0,14	-0,15	-0,17	-0,18	-0,19	-0,20	-0,21	00.0
	Vfoil 2.	C _{Dc}	0,0064	0,0067	0,0068	0,0117	0,0125	0,0133	0,0140	0,0150	0,0161	0,0172	00100
		С ^{Гс}	0,58	0,69	0,80	0,87	0,96	1,04	1,13	1,21	1,29	1,36	
		a (deg)	0,0	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0	9,0	0.01

Tabla 3.4.18.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX S 02/1-158 a diferentes Números de Reynolds

								FX S 02	/1-158 (Miley), Re.	1.000.00	00								
		Vfoil 1	80pts.			Mil	ey			Error At	osoluto		E _{R1} (⁹	%)= (1- (C _e /C _c)x 1(0	E _{R2} (%)= (1- C	c/C _e)x 10	0
a (deg)	С С	C _{Dc}	C _{Mc}	ω	0 C	C De	C _{Me}	εe	ΔC	ΔC_D	ΔC_M	3Δ	E _{CL1}	E _{cD1}	E _{CM1}	П с1	E _{CL2}	E _{CD2}	E _{CM2}	$E_{\mathfrak{E}^2}$
0,0	0,53	0,0084	-0,11	63,75	0,45	0,0095		47,37	0,08	-0,0011		16,39	15,7	-13,5		25,7	-18,6	11,9		-34,6
1,0	0,64	0,0085	-0,11	76,00	0,56	0,0095		58,95	0,08	-0,0010		17,05	12,9	-12,3		22,4	-14,8	10,9		-28,9
2,0	0,75	0,0088	-0,12	85,21	0,67	0,0096		69,79	0,08	-0,0008		15,42	11,0	-8,7		18,1	-12,3	8,0		-22,1
3,0	0,86	0,0095	-0,12	90,70	0,78	0,0096		81,25	0,08	-0,0001		9,45	9,4	-1,1		10,4	-10,4	1,1		-11,6
4,0	0,97	0,0098	-0,13	99,40	06'0	0,0099		90,91	0,07	-0,0001		8,50	7,2	-1,5		8,5	-7,8	1,5		-9,3
5,0	1,08	0,0101	-0,13	106,60	1,01	0,0103		98,06	0,07	-0,0002		8,55	6,3	-1,9		8,0	-6,7	1,8		-8,7
6,0	1,19	0,0108	-0,13	110,28	1,12	0,0110		101,82	0,07	-0,0003		8,46	5,5	-2,3		7,7	-5,8	2,3		-8,3
7,0	1,30	0,0174	-0,14	74,64	1,21	0,0117		103,42	0,09	0,0057		-28,77	6,7	32,7	'	38,5	-7,2	-48,6		27,8
8,0	1,29	0,0192	-0,17	67,23	1,29	0,0121		106,61	0,00	0,0071		-39,38	-0,2	36,8		58,6	0,2	-58,3		36,9

100	Ë,	-28,3	-23,2	-18,4	-10,8	-9,3	-5,8	-1,1	36,9	40,4
	Cc ^r Ce A	-10,2	-14,3	-7,6	-11,3	-15,0	-18,5	-21,9	-24,3	-40,3
-11=(%)	Ecna Ecna	7,7	6,8	5,1	0,3	0,1	-2,1	-5,9	-68,9	-77.3
Ц	Ш С С С С	-18,4	-14,8	-12,4	-10,5	-9,1	-8,0	-7,1	-6,6	-5.8
100	ы Б	22,0	18,8	15,5	9,8	8,5	5,5	1,0	-58,4	-67.7
	Се́ Сс) х ПС _{М1}	9,3	12,5	7,1	10,2	13,0	15,6	18,0	19,5	28,7
-11= (%)	E Col	φ,3	-7,3	-5,4	-0,3	-0,1	2,1	5,6	40,8	43,6
μ	Ш С	15,5	12,9	11,0	9,5	8,4	7,4	6,6	6,2	5,5
	3Δ	15,51	15,84	14,68	9,82	9,36	6,52	1,29	-47,88	-55,34
	∆C _M	-0,01	-0,01	-0,01	-0,01	-0,02	-0,02	-0,02	-0,03	-0,04
Error Ab		-0,0006	-0,0006	-0,0004	0,0000,0	0,0000,0	0,0002	0,0005	0,0065	0,0075
	ΔC	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08
	ω	54,88	68,29	79,76	90,70	101,14	112,36	121,98	129,79	137,11
	х С _М е	-0,10	-0,10	-0,11	-0,11	-0,11	-0,11	-0,11	-0,11	-0,10
Milo	C _D	0,0082	0,0082	0,0084	0,0086	0,0088	0,0089	0,0091	0,0094	0,0097
	ŭ	0,45	0,56	0,67	0,78	0,89	1,00	1,11	1,22	1.33
	ŭ	70,38	84,13	94,44	100,52	110,50	118,88	123,26	81,91	81,78
Onte	C MC	-0,11	-0,11	-0,12	-0,12	-0,13	-0,13	-0,13	-0,14	-0,14
14 July 18		0,0076	0,0076	0,0080	0,0086	0,0088	0,0091	0,0096	0,0159	0,0172
	0 0	0,53	0,64	0,75	0,86	0,97	1,08	1,19	1,30	1,41
	a (deg)	0,0	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0

Tabla 3.4.18.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX S 02/1-158 a diferentes Números de Reynolds (continuación I).

		Ξ _{ε2}	5,4	0,1	4,6	5,0	4,3	1,5	5.5	9,7	8,3
)x 100	2 E	ιŅ	ιŅ	7	Ŷ	۲	1	. 1	Ś	ņ
	- C _c /C _e	E _{CM}									
	(%)= (1	E _{CD2}	5,7	6,1	3,3	-2,7	-2,5	4,5	-8,0	-75,6	-71,6
	Е _{R3}	E _{CL2}	-18,3	-12,7	-10,7	-7,9	-6,9	-6,1	-5,3	-5,9	-5,9
	100	E _{ε1}	20,3	16,8	12,7	4,7	4,1	1,5	-2,5	-65,9	-62,0
	C _e /C _c)x	E _{CM1}									
	%)= (1-	E _{cD1}	-6,0	-6,5	-3,5	2,7	2,4	4,3	7,4	43,0	41,7
	E _{R1} (E _{CL1}	15,4	11,3	9,7	7,3	6,4	5,7	5,1	5,5	5,6
00		Δε	15,24	15,10	12,86	5,11	4,85	1,90	-3,36	-57,47	-54,16
2.000.00	soluto	ΔC_M									
liley), Re:	Error Ab	ΔC_D	-0,0004	-0,0005	-0,0003	0,0002	0,0002	0,0004	0,0007	0,0064	0,0067
/1-158 (N		ΔC_L	0,08	0,07	0,07	0,06	0,06	0,06	0,06	0,07	0,08
FX S 02		ε _e	60,00	75,00	88,31	102,56	113,75	125,93	136,14	144,71	141,49
	У	C _{Me}									
	Mile	C _{De}	0,0075	0,0076	0,0077	0,0078	0,0080	0,0081	0,0083	0,0085	0,0094
		C _{Le}	0,45	0,57	0,68	0,80	0,91	1,02	1,13	1,23	1,33
		ε	75,24	90,10	101,17	107,68	118,60	127,82	132,78	87,24	87,33
	t0pts.	C _{Mc}	-0,11	-0,11	-0,12	-0,12	-0,13	-0,13	-0,13	-0,14	-0,14
	Vfoil 18	c_{Dc}	0,0071	0,0071	0,0074	0,0080	0,0082	0,0085	0,0090	0,0149	0,0161
		C _{Lc}	0,53	0,64	0,75	0,86	0,97	1,08	1,19	1,30	1,41
		α (deg)	0,0	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0

	100	E _{ε2}	-23,5	-17,5	-12,6	-7,8	-7,5	-3,6	-0,8	37,2	39,8	16.0
	· C _c /C _e)x	E _{CM2}										
	² (%)= (1-	E _{CD2}	6,5	5,7	3,0	-0,2	0,4	-2,6	-5,7	-71,7	-80,5	-31.3
	ЕR	E _{CL2}	-15,5	-10,8	-9,2	-8,0	-7,0	-6,3	-6,5	-7,8	-8,6	-10,3
	100	E_{ϵ_1}	19,0	14,9	11,2	7,2	6,9	3,5	0,8	-59,2	-66,2	-19,1
	- C _e /C _c)x	E _{CM1}										
	·(%)= (1·	E _{cD1}	-6,9	-6,1	-3,1	0,2	-0,4	2,5	5,4	41,7	44,6	23.9
	E _{R1}	E _{CL1}	13,5	9,7	8,4	7,4	6,6	5,9	6,1	7,3	8,0	9.3
00		Δε	15,68	14,73	12,40	8,50	9,05	4,87	1,18	-56,25	-63,13	-17,14
3.000.0	osoluto	ΔC_M										
Miley), Ke	Error At	ΔC_D	-0,0004	-0,0004	-0,0002	0,0000	0,0000	0,0002	0,0004	0,0057	0,0066	0.0040
2/1-158 (I		ΔC_L	0,07	0,06	0,06	0,06	0,06	0,06	0,07	0,09	0,11	0.14
LA S UZ		ε _e	66,67	84,06	98,57	109,59	121,33	136,00	145,45	151,25	158,54	106,98
	ey	C _{Me}										
	Mil	CDe	0,0069	0,0069	0,0070	0,0073	0,0075	0,0075	0,0077	0,0080	0,0082	0.0129
		CLe	0,46	0,58	0,69	0,80	0,91	1,02	1,12	1,21	1,30	1.38
		ε	82,35	98,79	110,97	118,09	130,38	140,87	146,63	95,00	95,40	89,83
	30pts.	C _{Mc}	-0,11	-0,11	-0,12	-0,12	-0,13	-0,13	-0,13	-0,14	-0,14	-0,14
	Vfoil 18	c_{Dc}	0,0065	0,0065	0,0068	0,0073	0,0075	0,0077	0,0081	0,0137	0,0148	0.0169
		CLc	0,53	0,64	0,75	0,86	0,97	1,08	1,19	1,30	1,41	1.52
		a (deg)	0'0	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0	0.0
			-									

Tabla 3.4.19.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX S 03-182 a diferentes Números de Reynolds

								FX S 0	3-182 (N	diley), Re:	1.500.00	0								
		Vfoil 1	80pts.			Mil	ey			Error At	soluto		E _{R1} ('	%)= (1- C	c _e /C _c)x 1(00	E _{R2} ((%)= (1- 0	C _c /C _e)x 1(0
α (deg)	CLc	$c_{\rm Dc}$	C _{Mc}	ε _c	CLe	C _{De}	C _{Me}	ε _e	ΔC_L	ΔC_D	ΔC_M	Δε	E _{CL1}	E _{cD1}	E _{CM1}	E_{ϵ_1}	E _{CL2}	E _{CD2}	E _{CM2}	E _{٤2}
0'0	0,59	0,0068	-0,14	86,74	0,45	0,0076		59,21	0,14	-0,0008		27,52	24,2	-11,0		31,7	-32,0	9,9		-46,5
1,0	0,70	0,0071	-0,14	98,91	0,56	0,0076		73,68	0,14	-0,0005		25,23	20,5	-6,8		25,5	-25,7	6,3		-34,2
2,0	0,81	0,0072	-0,15	113,06	0,67	0,0076		88,16	0,14	-0,0004		24,91	17,6	-5,7		22,0	-21,3	5,4		-28,3
3,0	0,92	0,0074	-0,15	125,22	0,77	0,0076		101,32	0,15	-0,0002		23,90	16,3	-3,4		19,1	-19,5	3,3		-23,6
4,0	1,03	0,0077	-0,16	132,53	0,87	0,0077		112,99	0,16	0,0000		19,54	15,2	0,6		14,7	-17,9	-0,6		-17,3
5,0	1,13	0,0079	-0,16	142,66	0,98	0,0078		125,64	0,15	0,0001		17,02	13,3	1,5		11,9	-15,3	-1,6		-13,5
6,0	1,19	0,0123	-0,18	96,97	1,07	0,0080		133,75	0,12	0,0043		-36,78	10,0	34,7	'	.37,9	-11,1	-53,2		27,5
7,0	1,21	0,0166	-0,21	73,01	1,14	0,0086		132,56	0,07	0,0080		-59,55	6,0	48,2	'	·81,6	-6,4	-93,2		44,9
8,0	1,28	0,0179	-0,22	71,62	1,17	0,0099		118,18	0,11	0,0080		-46,57	8,6	44,6	'	-65,0	-9,4	-80,5		39,4
0'0	1,34	0,0198	-0,23	67,59	1,20	0,0116		103,45	0,14	0,0082		-35,86	10,5	41,5	'	-53,0	-11,8	-71,1		34,7
10,0	1,40	0,0215	-0,25	64,86	1,23	0,0137		89,78	0,17	0,0078		-24,92	11,9	36,3	'	38,4	-13,5	-57,1		27,8
11,0	1,47	0,0238	-0,26	61,74	1,26				0,21				14,3				-16,7			

I								i			00000									ſ
								FX S 0	3-182 (N	VIIIey), Ke:	2.000.00	0								
		Vfoil 16	80pts.			Mil	ey			Error At	osoluto		E _{R1} ('	%)= (1- (C _e /C _c)x 1	00	ERZ	(%)= (1-	C _c /C _e)x 1	00
	с С	C _{Dc}	C _{Mc}	υC	C	C C	C _{Me}	εe	ΔCL	ΔC_D	ΔC_M	3Δ	E _{CL1}	E _{cD1}	E _{CM1}	п 51	E _{CL2}	E _{CD2}	E _{CM2}	П ^{£2}
Ĺ	0,59	0,0063	-0,14	93,47	0,53	0,0070		75,71	0,06	-0,0007		17,75	10,6	-10,4		19,0	-11,8	9,4		-23,4
2	0,70	0,0066	-0,14	106,64	0,64	0,0070		91,43	0,06	-0,0004		15,21	9,0	-6,1		14,3	-9,9	5,8		-16,6
-	0,82	0,0066	-0,14	122,99	0,74	0,0070		105,71	0,08	-0,0004		17,27	9,4	-5,4		14,0	-10,4	5,1		-16,3
-	0,93	0,0068	-0,15	136,42	0,83	0,0070		118,57	0,10	-0,0002		17,85	10,4	-3,1		13,1	-11,6	3,0		-15,1
	1,03	0,0072	-0,16	144,49	0,91	0,0071		128,17	0,12	0,0000		16,32	11,9	0,7		11,3	-13,5	-0,7		-12,7
•	1,13	0,0077	-0,16	145,95	0,99	0,0071		139,44	0,14	0,0006		6,52	12,4	8,3		4,5	-14,2	-9,1		4,7
	1,19	0,0120	-0,18	98,77	1,07	0,0070		152,86	0,12	0,0050		-54,09	10,1	41,9		-54,8	-11,2	-72,1		35,4
•	1,23	0,0157	-0,20	78,42	1,14	0,0072		158,33	0,09	0,0085		-79,91	7,4	54,1	'	101,9	-8,0	-118,0		50,5
•	1,30	0,0169	-0,21	76,95	1,20	0,0085		141,18	0,10	0,0084		-64,23	7,7	49,7		-83,5	-8,3	-98,7		45,5
	1,36	0,0188	-0,23	72,63	1,26	0,0115		109,57	0,10	0,0073		-36,93	7,6	38,7		-50,8	-8,2	-63,3		33,7
-	1,42	0,0204	-0,24	69,69	1,31				0,11				7,8				-8,4			
-	1,50	0,0225	-0,26	66,45	1,35				0,15				9,8				-10,8			
	1,52	0,0247	-0,28	61,72	1,39				0,13				8,8				-9,7			

								FX S 0	3-182 (N	diley), Re:	3.000.00	0								
		Vfoil 1	80pts.			W	iley			Error At	soluto		E _{R1} (%)=(1- (C _e /C _c)x 1	00	E _{R2} ((%)= (1-	C _c /C _e)x 1	OC
a (deg)	CLc	c_{Dc}	C _{Mc}	εc	C _{Le}	CDe	C _{Me}	ε _e	ΔC_L	ΔC_D	ΔC_M	Δε	E _{CL1}	E _{cD1}	E _{CM1}	E_{ϵ_1}	E _{CL2}	E _{CD2}	E _{CM2}	E _{ε2}
0,0	0,59	0,0057	-0,14	104,12	0,48	0,0058		82,76	0,11	-0,0001		21,36	19,2	-1,6		20,5	-23,8	1,6		-25,8
1,0	0,71	0,0060	-0,14	118,69	0,58	0,0059		98,31	0,13	0,0001		20,39	17,9	0,8		17,2	-21,8	-0,8		-20,7
2,0	0,82	0,0060	-0,14	137,24	0,69	0,0061		113,11	0,13	-0,0001		24,13	15,9	-2,0		17,6	-18,9	2,0		-21,3
3,0	0,93	0,0061	-0,15	152,51	0,80	0,0064		125,00	0,13	-0,0003		27,51	14,1	4 8,		18,0	-16,4	4,6		-22,0
4,0	1,04	0,0064	-0,15	161,75	06'0	0,0068		132,35	0,14	-0,0004		29,40	13,4	-5,8		18,2	-15,5	5,5		-22,2
5,0	1,13	0,0087	-0,16	130,15	1,00	0,0075		133,33	0,13	0,0012		-3,19	11,6	13,7		-2,4	-13,1	-15,8		2,4
6,0	1,20	0,0118	-0,18	102,45	1,08	0,0085		127,06	0,12	0,0033		-24,61	10,3	27,7		-24,0	-11,5	-38,3		19,4
7,0	1,28	0,0146	-0,19	87,55	1,14	0,0123		92,68	0,14	0,0023		-5,14	10,9	15,8		-5,9	-12,2	-18,8		5,5
8,0	1,34	0,0157	-0,20	85,17	1,18				0,16				11,8				-13,4			
9,0	1,41	0,0175	-0,22	80,27	1,22				0,19				13,2				-15,3			
10,0	1,47	0,0190	-0,23	77,20	1,26				0,21				14,1				-16,5			
11,0	1,52	0,0208	-0,25	73,31	1,30				0,22				14,6				-17,1			
12,0	1,57	0,0227	-0,27	69,21	1,33				0,24				15,4				-18,2			

Tabla 3.4.19.- Comparación entre las características aerodinámicas experimentales y computacionales para el perfil FX S 03-182 a diferentes Números de Reynolds (continuación).

3.5. COMENTARIOS

Observando las tablas de la sección anterior se puede notar rápidamente que los errores relativos asociados a los resultados experimentales (E_{R2}) calculados con el fin de evaluar la predicción computacional de los coeficientes aerodinámicos de los perfiles de la serie FX, exceden en la mayoría de los casos de estudio el valor de 15%, considerado convencionalmente aceptable.

Salvo ciertos perfiles enumerados a continuación se puede inferir que la evaluación de perfiles FX estudiados en esta investigación con el programa VisualFoil 4.1. no ofrece predicciones suficientemente satisfactorias de los coeficientes aerodinámicos, a diferencia de lo resultados obtenidos en la tesis de J. Aparicio (2006), con otro grupo de perfiles FX.

Predicción del coeficiente de sustentación

El programa calculó coeficientes de sustentación con errores relativos a los resultados experimentales aceptable a 6 perfiles diferentes de la serie FX, pero para un rango de ángulos de ataque positivos superiores a los valores donde es alcanzado el coeficiente de sustentación máxima (donde se inicia el fenómeno de Stall) los errores relativos superaron el 15%.

Para los perfiles FX 60-126 y FX 66-17A-175 los errores relativos son inferiores a 5% en la predicción del coeficiente de sustentación a cualquier Número de Reynolds. Para el perfil FX 66-17A-175 los errores aumentan con el Número de Reynolds pero no superan el límite aceptable.

Para el perfil FX 63-143 los coeficientes de sustentación calculados a Re = 3.000.000, arrojan errores relativo a los resultados experimentales considerados como aceptables, sin embargo, para las evaluaciones realizadas a Números de Reynolds inferiores los mismos superan el 15%.

En el caso del perfil FX 66-S-161 los valores de error relativo obtenidos en la predicción de los coeficientes de sustentación varían entre 1,5% y 14,2% sin superar el límite de 15% aceptable.

Para los perfiles FX S 02-196 y FX S 02/1-158 estos errores relativos varían entre 0% y 17.4% para el primero, y, 6.1% y 18.4% para este ultimo. En estos casos el límite de 15% aceptable es superado ligeramente.

Predicción del coeficiente de Arrastre

En los pocos casos para los cuales el Software ofrece resultados admisibles, los mismos están sujetos a ciertas condiciones fuera de las cuales el error relativo a los resultados experimentales resulta exagerado. A continuaciones se enumeran los casos particulares para los cuales se obtuvo una predicción aceptable del coeficiente de arrastre:

- FX 60-126. Errores relativos entre 0.7% y 1.5% para ángulos de ataque comprendidos entre 0° y 5°.
- FX 60-177. Errores relativos inferiores a 13.6% para todo el rango evaluado de ángulos de ataque.
- FX 61-163. Errores relativos inferiores a 15% en las evaluaciones realizadas a Números de Reynolds entre 1.500.000 y 3.000.000.
- FX 61-168. Errores relativos inferiores a 15% para la evaluación realizada a Número de Reynolds igual a 1.500.000.
- FX 66-17A-175. Errores relativos entre 0.2% y 12,3% para ángulos de ataque comprendidos entre 0° y 7°.
- FX 66-S-161. Errores relativos entre 1.1% y 11% para ángulos de ataque comprendidos entre 0° y 8°.
- FX 66-S-196. Errores relativos inferiores a 15,6% para ángulos de ataque comprendidos entre 0° y 8°.
- FX L-V-152. Errores relativos entre 0.6% y 10.5% para ángulos de ataque comprendidos entre 0° y 8° y Re = 7 E5.
- FX 02/1-158. Errores relativos entre 0.1% y 11.9% para ángulos de ataque comprendidos entre 0° y 6°.

Predicción del coeficiente de momento.

El software no ofrece resultados confiables de coeficientes de momentos para ninguno de los perfiles evaluados. Los errores relativos a los resultados experimentales respecto a los valores computacionales exceden los límites de 15%.

Predicción de la Fineza.

Debido a que la fineza es una variable que depende del coeficiente de sustentación y de arrastre solo tres de los 19 perfiles evaluados ofrecen una buena predicción de la fineza para los rangos de ángulos de ataque en los cuales la los valores de coeficientes de arrastre son aceptable. Estos perfiles son:

- FX 60-126, para ángulos de ataque mayores que 0° e inferiores a 6°.
- FX 66-17A-175, para ángulos de ataque entre 0° y 7°.
- FX 66-S-161, para ángulos de ataque entre 0° y 8°.

En el caso de los demás perfiles FX evaluados, los errores relativos de la fineza aerodinámica superan el 15%.

4. CAPITULO 4: EVALUACIÓN COMPUTACIONAL DE PERFILES DE LA SERIE FX, SZ2200 Y MODIFICADOS

El capitulo 4 reporta la mayoría de la información nueva que aporta este trabajo. En la primera sección de este capitulo se dará una breve explicación sobre el criterio empleado para la selección de los perfiles base y la fuente de la cual fueron extraídas las coordenadas de los mismos. Seguido de esto se mencionará el método de modificación del borde de ataque propuesto por el profesor tutor para luego explicar la codificación con la que se nombró a los nuevos perfiles.

En la segunda parte del capitulo se muestran en orden alfanumérico las graficas en el formato establecido de las características aerodinámicas evaluadas con el software VisualFoil 4.1. de cada uno de los 16 perfiles base de la serie FX seleccionados, para cinco Números de Reynolds diferentes.

En la tercera sección del capitulo se muestran, en el mismo formato, las graficas de las características aerodinámicas evaluadas con el software VisualFoil 4.1. de los 16 perfiles ZAREA, para los mismos valores de Números de Reynolds que fueron evaluados los perfiles base.

En la cuarta y quinta sección del capitulo se muestran las graficas de las características aerodinámicas evaluadas computacionalmente con las mismas condiciones de las graficas anteriores para los 30 perfiles de la serie SZ2200 (sin estudios aerodinámicos previos) y 8 perfiles seleccionados de esta serie que fueron modificados.

En la sección 4.6. se muestran tablas comparativas entre las características aerodinámicas más importantes, C_d , C_l y ε , de los perfiles base con su respectiva modificación.

El capitulo 4 termina con comentarios pertinentes a los resultados obtenidos.

4.1. MODIFICACIÓN DEL BORDE DE ATAQUE Y CODIFICACIÓN DE LOS NUEVOS PERFILES.

Para comprobar los aportes del método de modificación que se estudia se seleccionaron un total de 24 perfiles, 16 de la serie FX y 8 de la serie SZ2200.

Para la selección de los perfiles FX se evaluaron más de 30 perfiles de esta serie con el software VisualFoil 4.1. para los números de Reynolds existentes en la bibliografía y utilizando las coordenadas de la base de datos de la UIUC. De estos 30 perfiles evaluados se eliminaron los que para un número de puntos mínimo de 160 no ofrecían suficientes valores de los coeficientes aerodinámicos en un rango medio de ángulos de ataque. También fueron desechados los que mostraron incongruencia en las coordenadas, como por ejemplo, los que demostraron en la proximidad del borde de fuga intersección del intradós con el extradós. Al final de la depuración realizada contamos con 16 perfiles de esta serie.

Para la selección de los perfiles de la serie SZ2200, fueron evaluados computacionalmente 30 de ellos a cinco Números de Reynolds diferentes. De esta gama estudiada se tomaron 8 partiendo del siguiente criterio:

- 6 perfiles cuyas características aerodinámicas se consideraron buenas 1.50 < C_{lmax} < 2.00 @ Re = 1 E6, α = 10°.
- 2 perfiles con características aerodinámicas consideradas como sobresaliente
 2.00 < C_{lmax} @ Re = 1 E6, α = 10°.

Los perfiles de la serie SZ-2200 fueron obtenidos por la aplicación del Método Paramétrico Modificado, diseñado por el profesor tutor de esta tesis.

El método de modificaciones sucesivas utilizado para la modificación del borde de ataque también fue diseñado por el Prof. Zarea y el mismo consistió en la sustitución del intradós y extradós del perfil correspondiente a aproximadamente 20% de la cuerda por curvas semejantes a parábolas asimétricas que guardaron condiciones de continuidad y tangencia en los puntos de unión con la porción del perfil sin modificar. Este procedimiento fue aplicado a los perfiles base tantas veces como fue necesario hasta conseguir un incremento considerable en los coeficientes de sustentación para los diferentes ángulos de ataque. Se consiguieron hasta 3 modificaciones diferentes por cada perfil base seleccionado, pero en este trabajo solo se reportan las más exitosas.

Una característica importante de este procedimiento consiste en la conservación de la cuerda, es decir, la cuerda del perfil modificado es igual a la del perfil base, en coordenadas adimensionales. En los métodos de modificación del borde de ataque de los perfiles, reportados en la literatura especializada, esta condición no esta respetada, lo que equivale a la modificación completa del perfil, no solamente el borde de ataque.

Los perfiles de la serie FX modificados fueron nombrados siguiendo la codificación empleada en trabajos especiales anteriores. Se sustituye el nombre de la serie por la palabra ZAREA seguida por la numeración que identifica la familia y parámetros geométricos del perfil. Por ejemplo, el perfil FX 60-126 modificado por el método de modificaciones sucesivas es llamado ZAREA 60-126.

Esta codificación obedece a uno de los criterios de identificación del perfil por el nombre del autor del procedimiento de obtención del mismo, tal como se acostumbra, por ejemplo, con los perfiles Joukowski, Carafoli, etc.

A los perfiles de la serie SZ 2200 modificados con este mismo método se le agrego la letra "M" al final del código. Por ejemplo, el perfil modificado SZ2264, será llamado SZ2264M.

A continuación se muestran en la figura 4.1.1 los contornos de los perfiles base ubicados en la columna izquierda acompañados por los perfiles modificados situados en la columna derecha. En la tabla 4.1.1 se muestran los valores de algunas características geométricas de interés.

Fig. 4.1.1. Contorno de los perfiles base seleccionados y sus respectivas modificaciones (continuación I).

Fig. 4.1.1. Contorno de los perfiles base seleccionados y sus respectivas modificaciones (continuación II).

Fig. 4.1.1. Contorno de los perfiles base seleccionados y sus respectivas modificaciones (continuación III).

Fig. 4.1.1. Contorno de los perfiles base seleccionados y sus respectivas modificaciones (continuación IV).

D - rfil	f (0(-)		- (0(-)		^
FX 60-126	T _{max} (%C)	XI _{max}	e _{max} (%C)	Xe _{max}	A 0.075287
74RFA 60-126	5 34305	0.414739	12,5320	0,279389	0,075671
EX 60-157	2 7152	0 745866	15 677	0.386752	0 105458
ZAREA 60-157	3 46795	0 254134	15 6777	0 400705	0 105472
EX 61-147	3 18485	0 331975	14 7665	0.331975	0.092269
74RFA 61-147	5 68845	0 241801	14,7000	0.331975	0.093576
EX 61-163	2 55695	0.345492	16,3618	0.359134	0 100734
7ARFA 61-163	5.08765	0,206107	16,3721	0.359134	0 101706
EX 61-168	2 98985	0.359134	16,8125	0.359134	0 104417
ZAREA 61-168	4,77805	0,266666	16,8169	0.359134	0.105405
EX 61-184	3 0874	0.624345	18,3694	0.375655	0 113495
7ARFA 61-184	4 48765	0 28711	18,3707	0.375655	0 11435
EX 63-143	3 0884	0.312697	14 3154	0.345492	0.092946
7ARFA 63-143	5 5883	0.25	14 3275	0.345492	0.094064
EX 63-145	4 03925	0.372891	14 4737	0.305365	0.086299
74RFA 63-145	5 77615	0 305365	14 4635	0.305365	0.086778
FX 63-158	3 7679	0.36428	15 8205	0.345492	0.097533
7ARFA 63-158	5 54015	0.308658	15 8211	0.345492	0.098488
EX 66-17A-175	4,1575	0.38874	17,5376	0.324313	0.101356
ZAREA 66-17A-175	5 8694	0.324313	17 5308	0.324313	0 1021
FX 66-S-161	3,9131	0.414739	16,1288	0.331975	0.096354
ZAREA 66-S-161	5.53855	0.359134	16,121	0.331975	0.097413
FX 66-S-196	3,781	0.428843	19.6471	0.386752	0.119802
ZAREA 66-S-196	5.3497	0.359134	19.6434	0.386752	0.119931
FX L-V-152	0.0378	0.000204	15.3002	0.359134	0.095048
ZAREA L-V-152	2,8098	0,17257	15,3089	0,359134	0,095258
FX S 02-196	3,74055	0,443004	19,5905	0,359134	0,118022
ZAREA S 02-196	4,75	0.372891	19,5804	0,372891	0,118066
FX S 02/1-158	3,4945	0,372891	15,7847	0,318596	0,088822
ZAREA S 02/1-158	5,27145	0,305365	15,787	0,318596	0,089273
FX S 03-182	2,85315	0,571157	18,225	0,414739	0,115272
ZAREA 03-182	4,2746	0,359134	18,2218	0,414739	0,11545
SZ2262	3,2956	0,414739	11,9793	0,292293	0,082882
SZ2262M	4,9624	0,318596	11,9707	0,292293	0,082836
SZ2264	1,12775	0,386752	16,1281	0,318596	0,115728
SZ2264M	2,88565	0,266666	16,1277	0,318596	0,115043
SZ2266	1,6237	0,400705	15,1421	0,318596	0,104483
SZ2266M	3,41155	0,254134	15,1423	0,318596	0,104095
SZ2274	0,30085	0,254134	17,8559	0,345492	0,124811
SZ2274M	3,0768	0,17257	17,8938	0,372891	0,12469
SZ2279	1,24845	0,345492	16,4278	0,318596	0,115717
SZ2279M	3,67665	0,266666	16,4316	0,318596	0,115667
SZ2288	0,78105	0,254134	17,5661	0,359134	0,120564
SZ2288M	3,4885	0,194676	17,5932	0,359134	0,12053
SZ2289	0,45055	0,266666	18,1314	0,345492	0,1248
SZ2289M	3,14545	0,194676	18,1537	0,345492	0,124504
SZ2290	3,33875	0,457213	12,6222	0,292293	0,077302
SZ2290M	4,65745	0,345492	12,6154	0,292293	0,078163

Tabla 4.1.1.- Características geométricas de los perfiles base y modificados.

4.2. EVALUACIÓN COMPUTACIONAL DE LOS PERFILES FX BASE

Fig. 4.2.1. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil FX 60-126. Met. Panel y Capa Límite. 220 Puntos.

(d) CI, Cd y Cm Vs. Ángulo de ataque

del perfil FX 60-126

Fig. 4.2.2. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil FX 60-157. Met. Panel y Capa Límite. 220 Puntos.

(d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil FX 60-157

Fig. 4.2.3. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil FX 61-147. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.2.4. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil FX 61-163. Met. Panel y Capa Límite. 220 Puntos.

(d) CI, Cd y Cm Vs. Ángulo de ataque

del perfil FX 61-163

Fig. 4.2.5. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil FX 61-168. Met. Panel y Capa Límite. 220 Puntos.

(d) CI, Cd y Cm Vs. Ángulo de ataque

del perfil FX 61-168

Fig. 4.2.6. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil FX 61-184. Met. Panel y Capa Límite. 200 Puntos.

(d) CI, Cd y Cm Vs. Ángulo de ataque

del perfil FX 61-184

Fig. 4.2.7. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil FX 63-143. Met. Panel y Capa Límite. 180 Puntos.

Fig. 4.2.8. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil FX 63-145. Met. Panel y Capa Límite. 220 Puntos.

(d) CI, Cd y Cm Vs. Ángulo de ataque del perfil FX 63-145

Fig. 4.2.9. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil FX 63-158. Met. Panel y Capa Límite. 160 Puntos.

Fig. 4.2.10. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil FX 66-17A-175. Met. Panel y Capa Límite. 280 Puntos.

Fig. 4.2.11. (a) Cp (0° , 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil FX 66-S-161. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.2.12. (a) Cp (0° , 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil FX 66-S-196. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.2.13. (a) Cp (0°, 5° yα_M :α para Clmax) vs.
X para Re = 1 E6 (leer Cp(α_M) a la derecha) y
(b) Curvas Polares del perfil FX L-V-152.
Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.2.15. (a) Cp (0° , 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil FX S 02/1-158. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.3.1. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil ZAREA 60-126. Met. Panel y Capa Límite. 220 Puntos.

del perfil ZAREA 60-126

Fig. 4.3.2. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil ZAREA 60-157. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.3.3. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil ZAREA 61-147. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.3.4. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil ZAREA 61-163. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.3.5. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil ZAREA 61-168. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.3.6. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil ZAREA 61-184. Met. Panel y Capa Límite. 200 Puntos.

Fig. 4.3.7. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil ZAREA 63-143. Met. Panel y Capa Límite. 180 Puntos.

Fig. 4.3.8. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil ZAREA 63-145. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.3.9. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil ZAREA 63-158. Met. Panel y Capa Límite. 160 Puntos.

Fig. 4.3.10. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil ZAREA 66-17A-175. Met. Panel y Capa Límite. 280 Puntos.

Fig. 4.3.11. (a) Cp (0° , 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil ZAREA 66-S-161. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.3.12. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil ZAREA 66-S-196. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.3.13. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil ZAREA L-V-152. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.3.14. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil ZAREA S 02-196. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.3.15. (a) Cp (0° , 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil ZAREA S 02/1-158. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.3.16. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil ZAREA S 03-182. Met. Panel y Capa Límite. 220 Puntos.

4.4. EVALUACIÓN COMPUTACIONAL DE LOS PERFILES SZ2200

Fig. 4.4.3. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil SZ2263. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.4.4. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil SZ2264. Met. Panel y Capa Límite. 220 Puntos.

Fig. 4.4.6. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil SZ2266. Met. Panel y Capa Límite. 220 Puntos.

(d) CI, Cd y Cm Vs. Ángulo de ataque

(d) CI, Cd y Cm Vs. Ángulo de ataque

Fig. 4.4.8. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil SZ2268. Met. Panel y Capa Límite. 220 Puntos.

(d) CI, Cd y Cm Vs. Ángulo de ataque

(d) CI, Cd y Cm Vs. Ángulo de ataque

(d) CI, Cd y Cm Vs. Ángulo de ataque

(d) CI, Cd y Cm Vs. Ángulo de ataque

(d) CI, Cd y Cm Vs. Ángulo de ataque

(d) CI, Cd y Cm Vs. Ángulo de ataque

(d) CI, Cd y Cm Vs. Ángulo de ataque

(d) CI, Cd y Cm Vs. Ángulo de ataque

(d) Cl, Cd y Cm Vs. Ángulo de ataque

(d) CI, Cd y Cm Vs. Ángulo de ataque

(d) CI, Cd y Cm Vs. Ángulo de ataque

(d) CI, Cd y Cm Vs. Ángulo de ataque

4.5. EVALUACIÓN COMPUTACIONAL DE LOS PERFILES SZ2200 MODIDICADOS.

Fig. 4.5.1. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil SZ2262M

Fig. 4.5.2. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil SZ2264M

del perfil SZ2274M

Fig. 4.5.5. (c) Curvas de Cl/Cd y (d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil SZ2279M

(d) Cl, Cd y Cm Vs. Ángulo de ataque del perfil SZ2288M

Fig. 4.5.8. (a) Cp (0°, 5° y α_{M} : α para Clmax) vs. X para Re = 1 E6 (leer Cp(α_{M}) a la derecha) y (b) Curvas Polares del perfil SZ2290M. Met. Panel y Capa Límite. 220 Puntos.

4.6. COMPARACIÓN DE LAS CARACTERÍSTICAS AERODINÁMICAS DE LOS PERFILES BASE Y MODIFICADOS

Con el fin de cuantificar la influencia que tiene la modificación del borde de ataque sobre las características aerodinámicas de los perfiles base, se diseñó un formato de tabla en el cual se calcula la diferencia y variación porcentual entre los valores de los coeficientes aerodinámicos de los perfiles base y su respectiva modificación.

Las expresiones empleadas para cuantificar la variación entre los coeficientes son:

$\Delta C = C_{\rm M} = C_{\rm B},$

variación porcentual: %C = $(C_M / C_B - 1) \times 100$,

donde, C_M representa los valores de los coeficientes aerodinámicos (C_L , C_D , ϵ) del perfil modificado, y C_B corresponde a los valores de coeficientes para el perfil base.

Cuando el valor de la variación porcentual es positivo, se evidencia un incremento en la característica aerodinámica evaluada, mientras que cuando el valor es negativo esto de refleja como un decremento de la misma. Las mejoras de las características aerodinámicas de una modificación se pueden ver reflejadas con un signo positivo en la variación porcentual del coeficiente de sustentación y fineza aerodinámica, ó un signo negativo en la variación porcentual del coeficiente de arrastre.

A continuación se muestra para cada pareja de perfiles (base y modificado) una tabla comparativa, donde se identifican las condiciones de la evaluación computacional y el Número de Reynolds, para el cual se cuantifican las variaciones de los coeficientes aerodinámicos según las expresiones definidas anteriormente.

Tabla 4.6.1Comparación entre las características aerodinámicas de los perfiles FX 60-126
y la modificación ZAREA 60-126 evaluados a diferentes Números de Reynolds.

	FX 60-126, ZAREA 60-126; Re= 500.000; Vfoil 220pts.												
α (deg)	Cl _B	Cd_B	ε _B	CIM	Cd_M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε	
0	0,53	0,0092	57,93	0,70	0,0127	55,51	0,17	0,0035	-2,42	32,00	37,77	-4,19	
1	0,63	0,0093	67,77	0,80	0,0122	65,81	0,17	0,0029	-1,95	27,15	30,93	-2,88	
2	0,73	0,0100	73,72	0,90	0,0125	71,56	0,16	0,0026	-2,16	22,19	25,88	-2,93	
3	0,84	0,0103	80,87	0,99	0,0131	75,32	0,15	0,0028	-5,55	18,26	26,97	-6,86	
4	0,93	0,0117	79,28	1,08	0,0137	78,70	0,15	0,0020	-0,58	16,18	17,04	-0,73	
5	1,02	0,0129	78,90	1,17			0,15			15,07			
6	1,09	0,0157	69,82	1,24			0,15			13,39			
7	1,15	0,0221	52,10	1,34	0,0221	60,44	0,18	0,0000	8,34	16,02	0,00	16,01	
8	1,24	0,0218	57,16	1,41	0,0165	85,22	0,16	-0,0052	28,06	13,24	-24,05	49,09	
9	1,31	0,0279	46,92	1,48	0,0257	57,68	0,17	-0,0022	10,76	13,18	-7,93	22,93	
10	1,36	0,0303	44,83	1,55	0,0272	57,05	0,19	-0,0031	12,22	14,37	-10,13	27,27	
11	1,43	0,0278	51,25	1,62	0,0244	66,28	0,19	-0,0035	15,04	13,29	-12,41	29,34	
12	1,47	0,0307	48,06	1,68	0,0243	69,10	0,20	-0,0064	21,04	13,75	-20,88	43,77	
13	1,53	0,0359	42,79										

			FX 60)-126, Z	ZAREA 60)-126; Re	e= 1.00	0.000; Vfo	il 220pts.			
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd_M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,53	0,0076	70,30	0,71	0,0108	65,35	0,17	0,0032	-4,95	32,70	42,75	-7,04
1	0,64	0,0077	83,56	0,82	0,0103	79,05	0,17	0,0026	-4,52	27,05	34,31	-5,40
2	0,74	0,0082	89,74	0,91	0,0106	86,40	0,18	0,0023	-3,34	23,73	28,52	-3,72
3	0,84	0,0087	97,34	1,01	0,0111	91,29	0,17	0,0024	-6,05	19,91	27,86	-6,22
4	0,95	0,0098	96,72	1,10	0,0115	95,73	0,16	0,0018	-0,99	16,85	18,06	-1,02
5	1,04	0,0108	96,48	1,19	0,0113	104,44	0,14	0,0005	7,96	13,68	5,02	8,25
6	1,12	0,0134	83,87	1,28	0,0197	65,17	0,16	0,0063	-18,70	14,29	47,08	-22,29
7	1,19	0,0217	54,83	1,37	0,0175	77,86	0,17	-0,0042	23,02	14,55	-19,32	41,99
8	1,27	0,0233	54,58	1,45	0,0165	87,74	0,18	-0,0068	33,16	14,01	-29,08	60,76
9	1,36	0,0244	55,82	1,54	0,0186	82,40	0,18	-0,0057	26,58	12,89	-23,52	47,61
10	1,42	0,0334	42,43	1,61	0,0223	72,15	0,19	-0,0111	29,72	13,73	-33,12	70,06
11	1,49	0,0289	51,48	1,68	0,0238	70,71	0,19	-0,0051	19,23	12,97	-17,75	37,36
12	1,54	0,0316	48,88	1,75	0,0249	70,39	0,21	-0,0067	21,50	13,44	-21,22	43,99
13	1,55	0,0342	45,35									

			FX 60)-126, Z	AREA 60)-126; Re	= 3.00	0.000; Vfo	il 220pts.			
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd _M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,53	0,0058	91,88	0,73	0,0087	83,51	0,19	0,0029	-8,37	35,63	49,23	-9,11
1	0,64	0,0062	104,59	0,82	0,0087	94,58	0,18	0,0025	-10,01	27,75	41,27	-9,57
2	0,75	0,0068	111,40	0,93	0,0083	112,26	0,18	0,0015	0,86	23,64	22,69	0,77
3	0,85	0,0073	116,24	1,04	0,0087	119,37	0,19	0,0014	3,13	21,77	18,58	2,69
4	0,96	0,0080	119,38	1,14	0,0090	126,20	0,18	0,0010	6,82	18,90	12,48	5,71
5	1,06	0,0089	119,43	1,22	0,0156	78,61	0,16	0,0067	-40,82	15,12	74,90	-34,18
6	1,16	0,0106	109,08	1,32	0,0162	81,30	0,16	0,0056	-27,78	13,86	52,77	-25,47
7	1,23	0,0208	59,20	1,41	0,0168	83,99	0,18	-0,0040	24,79	14,41	-19,36	41,87
8	1,33	0,0228	58,04	1,51	0,0171	88,36	0,18	-0,0058	30,32	13,84	-25,23	52,25
9	1,41	0,0246	57,51	1,61	0,0210	76,52	0,19	-0,0036	19,01	13,54	-14,67	33,06
10	1,49	0,0271	54,88	1,69	0,0224	75,44	0,20	-0,0048	20,56	13,41	-17,50	37,47
11	1,57	0,0302	52,00	1,76	0,0243	72,17	0,19	-0,0058	20,17	11,94	-19,35	38,79
12	1,63	0,0331	49,26	1,82	0,0280	64,97	0,19	-0,0052	15,71	11,34	-15,58	31,88
13	1,70	0,0362	47,07	1,81	0,0371	48,68	0,11	0,0010	1,62	6,17	2,64	3,44
14	1,72	0,0422	40,75	1,81	0,0324	55,99	0,09	-0,0098	15,24	5,41	-23,28	37,40

	FX 60-157, ZAREA 60-157; Re= 500.000; Vfoil 220pts.													
α (deg)	Cl _B	Cd_B	٤ _B	CIM	Cd _M	٤ _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε		
0	0,71	0,0086	81,99	0,80	0,0089	89,68	0,09	0,0003	7,69	12,60	2,94	9,38		
1	0,81	0,0091	89,12	0,90	0,0099	90,34	0,09	0,0008	1,22	10,74	9,25	1,37		
2	0,91	0,0104	88,18	1,00	0,0137	72,59	0,08	0,0033	-15,59	8,80	32,17	-17,68		
3	1,02	0,0117	87,04	1,09	0,0143	76,47	0,08	0,0026	-10,57	7,52	22,39	-12,15		
4	1,11	0,0143	77,63	1,19	0,0151	78,67	0,08	0,0008	1,04	7,20	5,79	1,34		
5	1,21	0,0158	76,31	1,28	0,0158	81,13	0,08	0,0000	4,82	6,25	-0,07	6,32		
6	1,29	0,0179	71,97	1,37	0,0166	82,68	0,08	-0,0013	10,71	6,46	-7,33	14,88		
7	1,36	0,0208	65,18	1,45	0,0176	82,22	0,09	-0,0032	17,05	6,69	-15,43	26,15		
8	1,44	0,0226	63,73	1,53	0,0186	82,47	0,09	-0,0040	18,74	6,29	-17,86	29,40		
9	1,51	0,0247	61,18	1,59	0,0232	68,38	0,08	-0,0015	7,20	5,15	-5,92	11,77		
10	1,57	0,0269	58,43	1,65	0,0250	65,87	0,08	-0,0019	7,45	4,84	-7,01	12,75		
11	1,63	0,0297	54,75	1,70	0,0274	61,99	0,08	-0,0023	7,23	4,62	-7,59	13,21		
12	1,68	0,0329	51,09	1,75	0,0322	54,47	0,08	-0,0006	3,39	4,57	-1,93	6,63		
13	1,73	0,0365	47,24	1,80	0,0356	50,60	0,08	-0,0009	3,36	4,35	-2,58	7,11		
14	1,77	0,0410	43,12	1,84	0,0398	46,28	0,07	-0,0012	3,16	4,20	-2,90	7,32		
15	1,78	0,0458	38,79	1,85	0,0435	42,50	0,07	-0,0023	3,71	4,03	-5,06	9,57		
16	1,78	0,0515	34,46	1,88	0,0494	37,97	0,10	-0,0021	3,52	5,66	-4,12	10,20		

Tabla 4.6.2.-Comparación entre las características aerodinámicas de los perfiles FX 60-157 y la modificación ZAREA 60-157 evaluados a diferentes Números de Reynolds.

	FX 60-157, ZAREA 60-157; Re= 1.000.000; Vfoil 220pts.												
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd_M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε	
0	0,72	0,0068	106,04	0,81	0,0073	111,28	0,09	0,0004	5,25	11,84	6,57	4,95	
1	0,82	0,0075	109,25	0,91	0,0084	107,91	0,09	0,0009	-1,34	11,07	12,44	-1,22	
2	0,92	0,0087	106,43	1,01	0,0116	87,14	0,08	0,0029	-19,29	9,05	33,20	-18,12	
3	1,03	0,0099	104,08	1,11	0,0120	92,12	0,08	0,0021	-11,96	7,74	21,73	-11,49	
4	1,12	0,0120	93,79	1,21	0,0127	94,98	0,08	0,0007	1,19	7,36	6,02	1,26	
5	1,22	0,0133	91,94	1,30	0,0133	98,31	0,08	-0,0001	6,37	6,43	-0,47	6,93	
6	1,31	0,0152	86,10	1,40	0,0139	100,64	0,09	-0,0014	14,55	6,54	-8,86	16,90	
7	1,40	0,0181	77,28	1,49	0,0148	100,82	0,09	-0,0033	23,54	6,60	-18,29	30,46	
8	1,47	0,0195	75,73	1,58	0,0155	101,70	0,11	-0,0039	25,98	7,32	-20,09	34,30	
9	1,54	0,0210	73,57	1,64	0,0197	83,33	0,10	-0,0013	9,75	6,35	-6,10	13,26	
10	1,63	0,0230	70,73	1,71	0,0212	80,51	0,08	-0,0018	9,78	4,87	-7,87	13,83	
11	1,67	0,0251	66,46	1,77	0,0233	75,78	0,10	-0,0018	9,32	5,95	-7,08	14,02	
12	1,75	0,0279	62,74	1,83	0,0275	66,60	0,08	-0,0004	3,87	4,57	-1,50	6,16	
13	1,80	0,0307	58,64	1,88	0,0302	62,30	0,08	-0,0005	3,66	4,36	-1,78	6,25	
14	1,85	0,0340	54,44	1,93	0,0334	57,69	0,08	-0,0006	3,25	4,20	-1,67	5,97	
15	1,89	0,0377	50,13	1,97	0,0365	53,96	0,08	-0,0013	3,83	4,01	-3,37	7,63	

			FX 60)-157, Z	ZAREA 60)-157; Re	= 3.000	0.000; Vfo	l 220pts.			
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd _M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,72	0,0057	125,62	0,81	0,0064	127,43	0,10	0,0007	1,81	13,57	11,96	1,44
1	0,83	0,0068	121,71	0,93	0,0071	130,12	0,10	0,0003	8,41	11,93	4,69	6,91
2	0,93	0,0076	123,00	1,02	0,0091	112,52	0,09	0,0015	-10,48	9,32	19,50	-8,52
3	1,04	0,0085	122,08	1,12	0,0094	119,23	0,08	0,0009	-2,85	7,96	10,54	-2,33
4	1,14	0,0093	121,93	1,22	0,0099	123,24	0,09	0,0006	1,31	7,54	6,40	1,07
5	1,24	0,0104	119,14	1,33	0,0104	128,60	0,09	-0,0001	9,45	7,37	-0,53	7,94
6	1,34	0,0121	111,13	1,43	0,0108	132,45	0,09	-0,0013	21,32	6,56	-10,59	19,18
7	1,44	0,0146	98,32	1,53	0,0115	133,29	0,09	-0,0031	34,97	6,51	-21,44	35,57
8	1,52	0,0157	96,98	1,61	0,0129	125,18	0,10	-0,0028	28,20	6,27	-17,67	29,08
9	1,61	0,0170	94,89	1,69	0,0155	109,26	0,08	-0,0015	14,37	5,20	-8,63	15,14
10	1,68	0,0183	91,81	1,78	0,0168	106,19	0,10	-0,0016	14,38	5,89	-8,45	15,67
11	1,75	0,0201	87,20	1,85	0,0184	100,64	0,10	-0,0017	13,44	5,72	-8,39	15,41
12	1,84	0,0221	82,99	1,90	0,0216	87,80	0,06	-0,0005	4,80	3,42	-2,24	5,79
13	1,90	0,0242	78,40	1,96	0,0236	82,90	0,06	-0,0006	4,50	3,15	-2,45	5,74
14	1,95	0,0263	74,17	2,04	0,0263	77,42	0,08	-0,0001	3,25	4,17	-0,21	4,39
15	2,00	0,0289	69,43	2,08	0,0284	73,34	0,08	-0,0004	3,91	3,98	-1,56	5,63
16	2,05	0,0317	64,68	2,13	0,0315	67,51	0,08	-0,0002	2,82	3,84	-0,51	4,37
17	2,12	0,0354	59,82	2,17	0,0353	61,42	0,05	-0,0001	1,60	2,33	-0,33	2,67
18	2.16	0.0392	55.04									

Tabla 4.6.2.-Comparación entre las características aerodinámicas de los perfiles FX 60-157 y la modificación ZAREA 60-157 evaluados a diferentes Números de Reynolds (continuación).

	FX 61-147, ZAREA 61-147; Re= 500.000; Vfoil 220pts.														
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd _M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε			
0	0,87	0,0103	84,59	1,07	0,0124	86,68	0,21	0,0021	2,09	23,59	20,61	2,47			
1	0,98	0,0106	91,95	1,17	0,0120	97,36	0,19	0,0014	5,42	19,73	13,07	5,89			
2	1,09	0,0111	97,88	1,28	0,0126	101,31	0,19	0,0015	3,42	17,70	13,72	3,50			
3	1,19	0,0119	100,07	1,39	0,0149	93,49	0,20	0,0029	-6,57	16,34	24,52	-6,57			
4	1,30	0,0126	103,54	1,50	0,0156	95,94	0,19	0,0030	-7,60	14,94	24,05	-7,34			
5	1,41	0,0134	105,48	1,60	0,0167	95,99	0,19	0,0033	-9,49	13,75	24,99	-8,99			
6	1,51	0,0149	101,62	1,71	0,0177	96,63	0,19	0,0028	-4,99	12,70	18,52	-4,91			
7	1,62	0,0163	99,50	1,81	0,0188	96,55	0,19	0,0025	-2,95	11,81	15,23	-2,96			
8	1,73	0,0189	91,57	1,91	0,0194	98,37	0,18	0,0006	6,81	10,64	2,99	7,43			
9	1,75	0,0263	66,51	1,98	0,0215	92,11	0,23	-0,0048	25,61	13,01	-18,40	38,50			
10				2,02	0,0230	87,96	2,02	0,0230	87,96						

Tabla 4.6.3.-Comparación entre las características aerodinámicas de los perfiles FX 61-147 y la modificación ZAREA 61-147 evaluados a diferentes Números de Reynolds.

	FX 61-147, ZAREA 61-147; Re= 1.000.000; Vfoil 220pts.													
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd _M	٤ _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε		
0	0,86	0,0085	101,10	1,06	0,0104	102,36	0,20	0,0019	1,26	23,75	22,22	1,25		
1	0,97	0,0088	110,21	1,16	0,0099	116,74	0,20	0,0012	6,53	20,21	13,48	5,93		
2	1,08	0,0091	117,61	1,27	0,0104	121,87	0,19	0,0013	4,26	18,09	13,96	3,62		
3	1,19	0,0099	120,14	1,38	0,0124	111,25	0,20	0,0026	-8,89	16,64	25,96	-7,40		
4	1,29	0,0104	124,82	1,49	0,0130	114,80	0,20	0,0026	-10,02	15,20	25,26	-8,03		
5	1,40	0,0110	127,78	1,60	0,0138	115,45	0,20	0,0029	-12,33	13,97	26,14	-9,65		
6	1,51	0,0123	122,97	1,70	0,0146	117,03	0,19	0,0023	-5,94	12,91	18,65	-4,83		
7	1,62	0,0141	114,87	1,81	0,0153	117,98	0,19	0,0013	3,10	11,95	9,00	2,70		
8	1,73	0,0168	102,86	1,92	0,0162	117,98	0,19	-0,0005	15,12	11,02	-3,21	14,70		
9	1,83	0,0219	83,61	2,02	0,0176	114,78	0,19	-0,0043	31,16	10,11	-19,78	37,27		
10	1,85	0,0254	72,94	2,12	0,0188	113,09	0,27	-0,0066	40,15	14,79	-25,96	55,04		
11	1,88	0,0284	66,04											

	FX 61-147, ZAREA 61-147; Re= 3.000.000; Vfoil 220pts.														
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd _M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε			
0	0,84	0,0065	130,01	1,06	0,0081	129,61	0,21	0,0017	-0,40	25,04	25,42	-0,31			
1	0,95	0,0067	142,32	1,15	0,0077	150,71	0,20	0,0009	8,39	20,81	14,08	5,89			
2	1,07	0,0070	152,34	1,26	0,0080	157,52	0,19	0,0010	5,18	18,18	14,30	3,40			
3	1,18	0,0076	155,59	1,37	0,0097	141,70	0,20	0,0021	-13,89	16,66	28,10	-8,93			
4	1,28	0,0082	155,79	1,48	0,0101	147,11	0,20	0,0018	-8,69	15,51	22,33	-5,58			
5	1,39	0,0091	154,00	1,59	0,0107	148,71	0,20	0,0017	-5,29	14,20	18,26	-3,44			
6	1,50	0,0105	143,03	1,70	0,0112	151,83	0,20	0,0007	8,80	13,07	6,51	6,15			
7	1,62	0,0128	126,65	1,81	0,0117	154,37	0,19	-0,0010	27,72	11,96	-8,15	21,89			
8	1,72	0,0144	120,15	1,92	0,0123	155,81	0,19	-0,0021	35,66	11,12	-14,31	29,68			
9	1,84	0,0177	103,64	2,02	0,0132	152,98	0,19	-0,0045	49,34	10,16	-25,37	47,61			
10	1,94	0,0203	95,89	2,13	0,0147	144,86	0,19	-0,0056	48,97	9,52	-27,50	51,07			
11	2,02	0,0224	90,00	2,23	0,0184	121,07	0,21	-0,0040	31,06	10,45	-17,89	34,51			
12	2,04	0,0260	78,51												

	FX 61-163, ZAREA 61-163; Re= 500.000; Vfoil 220pts.														
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd _M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε			
0	0,72	0,0096	74,98	0,94	0,0116	80,90	0,22	0,0020	5,92	30,53	20,98	7,90			
1	0,83	0,0099	84,07	1,03	0,0106	97,06	0,20	0,0007	12,98	23,77	7,22	15,44			
2	0,94	0,0100	93,29	1,13	0,0112	101,28	0,20	0,0012	7,99	21,06	11,51	8,57			
3	1,05	0,0105	99,72	1,24	0,0118	105,42	0,20	0,0013	5,70	18,87	12,44	5,72			
4	1,16	0,0112	103,51	1,35	0,0133	101,51	0,20	0,0022	-2,00	17,13	19,44	-1,93			
5	1,26	0,0120	105,33	1,46	0,0163	89,95	0,20	0,0043	-15,38	15,81	35,61	-14,60			
6	1,37	0,0134	102,46	1,55	0,0172	89,86	0,18	0,0039	-12,60	12,97	28,81	-12,30			
7	1,48	0,0154	96,34	1,65	0,0184	89,65	0,17	0,0030	-6,69	11,38	19,69	-6,94			
8	1,57	0,0178	88,18	1,72	0,0195	88,15	0,15	0,0017	-0,02	9,66	9,69	-0,03			
9				1,76	0,0211	83,56									

Tabla 4.6.4.-Comparación entre las características aerodinámicas de los perfiles FX 61-163 y la modificación ZAREA 61-163 evaluados a diferentes Números de Reynolds.

			FX 61	-163, Z	ZAREA 61	I-163; Re	= 1.000	0.000; Vfo	l 220pts.			
α (deg)	Cl _B	Cd _B	ε _B	Cl _M	Cd_M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,71	0,0078	91,19	0,92	0,0098	93,73	0,21	0,0020	2,54	28,97	25,47	2,78
1	0,82	0,0080	102,73	1,02	0,0085	119,26	0,20	0,0005	16,53	23,96	6,78	16,09
2	0,93	0,0081	114,42	1,13	0,0091	124,48	0,20	0,0009	10,06	21,49	11,67	8,79
3	1,04	0,0085	122,65	1,24	0,0095	129,86	0,20	0,0011	7,21	19,22	12,60	5,88
4	1,15	0,0090	127,45	1,35	0,0109	124,14	0,20	0,0019	-3,31	17,41	20,54	-2,59
5	1,26	0,0101	125,00	1,46	0,0135	108,57	0,20	0,0034	-16,44	15,99	33,56	-13,15
6	1,37	0,0115	119,09	1,57	0,0142	110,75	0,20	0,0027	-8,34	14,66	23,29	-7,00
7	1,48	0,0134	110,00	1,68	0,0152	110,13	0,20	0,0018	0,13	13,44	13,30	0,12
8	1,59	0,0157	100,85	1,75	0,0161	108,80	0,17	0,0004	7,95	10,47	2,40	7,88
9	1,63	0,0213	76,65	1,85	0,0175	105,72	0,22	-0,0038	29,07	13,21	-17,92	37,93
10				1,92	0,0184	104,12						
11				1,96	0,0200	97,66						

			FX 61	-163, Z	ZAREA 61	I-163; Re	= 3.00	0.000; Vfoi	l 220pts.			
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd _M	٤ _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,70	0,0059	119,08	0,91	0,0076	119,91	0,21	0,0017	0,83	30,43	29,53	0,70
1	0,81	0,0060	134,53	1,01	0,0065	154,59	0,20	0,0005	20,06	25,05	8,82	14,91
2	0,92	0,0061	151,27	1,12	0,0071	158,27	0,20	0,0010	7,00	22,06	16,66	4,63
3	1,03	0,0068	152,91	1,23	0,0078	157,87	0,20	0,0011	4,96	19,38	15,63	3,24
4	1,14	0,0075	152,22	1,35	0,0084	160,05	0,20	0,0009	7,83	17,73	11,97	5,14
5	1,25	0,0086	146,21	1,46	0,0104	140,75	0,20	0,0018	-5,46	16,19	20,69	-3,73
6	1,37	0,0100	137,14	1,57	0,0108	144,56	0,20	0,0009	7,42	14,78	8,88	5,41
7	1,48	0,0118	125,72	1,68	0,0116	144,71	0,20	-0,0002	18,99	13,50	-1,40	15,11
8	1,59	0,0132	119,87	1,79	0,0122	146,52	0,20	-0,0011	26,64	12,48	-7,97	22,23
9	1,68	0,0169	99,44	1,89	0,0131	144,29	0,21	-0,0038	44,84	12,71	-22,32	45,09
10	1,75	0,0193	91,00	1,97	0,0146	134,59	0,22	-0,0046	43,59	12,46	-23,96	47,91
11	1,82	0,0213	85,40	2,04	0,0163	125,13	0,23	-0,0050	39,73	12,44	-23,26	46,52
12				2,09	0,0187	111,91						

			FX 6	1-168,	ZAREA 6	61-168; R	e= 500	.000; Vfoil	220pts.			
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd _M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,85	0,0101	84,41	0,99	0,0106	93,70	0,14	0,0005	9,29	17,00	5,40	11,01
1	0,96	0,0104	92,27	1,10	0,0108	101,63	0,14	0,0005	9,36	15,05	4,45	10,15
2	1,07	0,0106	100,37	1,21	0,0114	106,68	0,15	0,0007	6,31	13,63	6,91	6,28
3	1,18	0,0111	105,61	1,32	0,0123	107,22	0,15	0,0012	1,61	12,34	10,65	1,53
4	1,28	0,0117	109,88	1,43	0,0137	104,30	0,15	0,0020	-5,59	11,39	17,36	-5,08
5	1,39	0,0128	108,87	1,54	0,0146	105,56	0,15	0,0018	-3,31	10,42	13,87	-3,04
6	1,50	0,0143	104,68	1,65	0,0185	89,03	0,15	0,0042	-15,65	9,82	29,12	-14,95
7	1,61	0,0164	97,87	1,76	0,0194	90,68	0,15	0,0030	-7,19	9,49	18,17	-7,35
8	1,73	0,0186	92,62	1,84	0,0212	86,84	0,11	0,0026	-5,78	6,63	13,73	-6,24
9	1,80	0,0227	79,30	1,89	0,0226	83,78	0,10	-0,0001	4,49	5,40	-0,24	5,66
10				1,92	0,0246	78,23						

Tabla 4.6.5.-Comparación entre las características aerodinámicas de los perfiles FX 61-168 y la modificación ZAREA 61-168 evaluados a diferentes Números de Reynolds.

			FX 61	-168, Z	ZAREA 61	I-168; Re	= 1.00	0.000; Vfo	l 220pts.			
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd_M	٤ _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,84	0,0082	102,39	0,98	0,0086	114,04	0,14	0,0004	11,66	16,97	5,01	11,38
1	0,95	0,0084	112,00	1,09	0,0088	124,47	0,15	0,0003	12,47	15,44	3,87	11,14
2	1,06	0,0086	122,65	1,20	0,0092	131,03	0,15	0,0006	8,38	13,94	6,65	6,83
3	1,17	0,0090	129,46	1,31	0,0100	131,38	0,15	0,0010	1,92	12,59	10,95	1,48
4	1,28	0,0094	135,26	1,42	0,0112	127,09	0,15	0,0018	-8,18	11,60	18,78	-6,04
5	1,39	0,0106	131,21	1,53	0,0119	129,18	0,15	0,0013	-2,03	10,59	12,32	-1,54
6	1,50	0,0121	123,44	1,64	0,0153	107,25	0,15	0,0032	-16,19	9,93	26,53	-13,12
7	1,60	0,0142	113,26	1,75	0,0165	106,19	0,15	0,0023	-7,07	9,14	16,41	-6,24
8	1,71	0,0164	104,74	1,86	0,0175	106,05	0,14	0,0012	1,31	8,43	7,09	1,25
9	1,82	0,0190	96,01	1,96	0,0187	105,14	0,14	-0,0003	9,13	7,82	-1,54	9,51
10	1,82	0,0260	70,13	2,03	0,0201	100,88	0,20	-0,0059	30,75	11,06	-22,79	43,85
11				2,07	0,0215	96,46	2,07	0,0215	96,46			
12				2,09	0,0235	89,06	2,09	0,0235	89,06			

			FX 61	-168, Z	AREA 61	I-168; Re	= 3.000	0.000; Vfo	il 220pts.			
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd _M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,82	0,0062	133,16	0,97	0,0065	149,84	0,15	0,0003	16,68	18,10	4,95	12,53
1	0,93	0,0064	146,82	1,08	0,0066	164,79	0,15	0,0002	17,97	15,93	3,28	12,24
2	1,05	0,0065	162,04	1,20	0,0072	166,76	0,15	0,0007	4,71	14,36	11,13	2,91
3	1,16	0,0072	161,35	1,31	0,0079	165,70	0,15	0,0007	4,35	12,53	9,57	2,70
4	1,27	0,0080	157,63	1,42	0,0087	163,11	0,15	0,0006	5,47	11,80	8,05	3,47
5	1,38	0,0090	152,71	1,53	0,0096	159,27	0,15	0,0006	6,56	10,78	6,21	4,30
6	1,49	0,0106	141,32	1,64	0,0118	138,57	0,15	0,0013	-2,75	9,99	12,17	-1,95
7	1,60	0,0125	128,65	1,75	0,0127	138,09	0,15	0,0002	9,44	9,15	1,69	7,34
8	1,71	0,0140	121,94	1,86	0,0133	139,18	0,14	-0,0007	17,24	8,47	-4,97	14,14
9	1,82	0,0157	116,30	1,97	0,0141	139,50	0,14	-0,0016	23,21	7,92	-10,03	19,95
10	1,93	0,0201	95,93	2,07	0,0152	136,01	0,14	-0,0049	40,08	7,33	-24,30	41,77
11	2,00	0,0228	87,91	2,18	0,0162	134,68	0,18	-0,0066	46,77	8,85	-28,95	53,20
12				2,25	0,0181	124,30	2,25	0,0181	124,30			

			FX 6	1-184,	ZAREA 6	i1-184; R	e= 500	.000; Vfoil	200pts.			
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd _M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,76	0,0097	78,94	0,91	0,0103	88,04	0,15	0,0007	9,11	19,22	6,89	11,53
1	0,87	0,0102	86,12	1,02	0,0111	92,08	0,15	0,0009	5,96	16,64	9,09	6,93
2	0,99	0,0105	93,75	1,13	0,0116	97,39	0,15	0,0011	3,63	14,82	10,53	3,87
3	1,10	0,0112	97,91	1,24	0,0122	101,84	0,15	0,0010	3,93	13,24	8,87	4,01
4	1,21	0,0117	102,73	1,35	0,0132	102,71	0,15	0,0014	-0,02	12,05	12,07	-0,02
5	1,32	0,0127	103,90	1,47	0,0138	106,00	0,15	0,0012	2,10	11,60	9,39	2,02
6	1,43	0,0139	103,10	1,50	0,0185	81,32	0,07	0,0046	-21,78	4,88	32,97	-21,13
7	1,51	0,0162	93,38									
8	1,52	0,0187	81,25									

Tabla 4.6.6.-Comparación entre las características aerodinámicas de los perfiles FX 61-184 y la modificación ZAREA 61-184 evaluados a diferentes Números de Reynolds.

			FX 61	-184, Z	AREA 61	-184; Re	= 1.000	0.000; Vfo	il 200pts.			
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd _M	ε _M	ΔCI	ΔCd	Δε	%CI	%Cd	%ε
0	0,76	0,0078	97,21	0,91	0,0083	108,47	0,15	0,0006	11,26	19,64	7,22	11,58
1	0,87	0,0082	105,84	1,01	0,0090	113,10	0,14	0,0007	7,25	16,56	9,09	6,85
2	0,98	0,0085	115,58	1,13	0,0094	119,82	0,14	0,0009	4,24	14,70	10,64	3,67
3	1,09	0,0090	120,64	1,24	0,0098	125,67	0,15	0,0008	5,03	13,47	8,93	4,17
4	1,20	0,0095	127,03	1,35	0,0106	126,72	0,15	0,0012	-0,31	12,24	12,52	-0,25
5	1,31	0,0104	125,71	1,46	0,0113	129,60	0,15	0,0008	3,89	11,15	7,82	3,09
6	1,42	0,0118	120,29	1,54	0,0153	100,52	0,12	0,0035	-19,77	8,38	29,69	-16,44
7	1,53	0,0140	109,81	1,65	0,0163	101,50	0,12	0,0023	-8,31	7,65	16,46	-7,57
8	1,61	0,0161	100,23	1,71	0,0174	98,39	0,10	0,0013	-1,83	6,28	8,26	-1,83
9	1,66	0,0183	91,08									

			FX 61	-184, Z	ZAREA 61	I-184; Re	= 3.000	0.000; Vfoi	l 200pts.			
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd _M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,75	0,0058	129,33	0,90	0,0062	144,46	0,15	0,0004	15,12	20,28	7,69	11,69
1	0,86	0,0061	140,57	1,01	0,0067	149,80	0,15	0,0006	9,23	17,49	10,25	6,57
2	0,97	0,0063	154,05	1,12	0,0071	159,05	0,15	0,0007	5,00	15,45	11,82	3,25
3	1,09	0,0069	156,66	1,24	0,0078	159,33	0,15	0,0008	2,67	13,75	11,84	1,70
4	1,20	0,0078	154,01	1,35	0,0086	156,62	0,15	0,0008	2,61	12,13	10,26	1,70
5	1,31	0,0090	145,50	1,46	0,0095	153,00	0,15	0,0005	7,50	11,31	5,85	5,16
6	1,42	0,0106	134,06	1,57	0,0117	134,62	0,15	0,0011	0,56	10,38	9,92	0,42
7	1,53	0,0122	126,05	1,68	0,0122	137,40	0,15	0,0001	11,36	9,53	0,48	9,01
8	1,65	0,0135	121,48	1,79	0,0131	136,53	0,15	-0,0004	15,05	8,83	-3,17	12,39
9	1,73	0,0153	112,75	1,87	0,0140	133,69	0,14	-0,0013	20,93	8,29	-8,67	18,57
10	1,82	0,0170	107,54	1,98	0,0152	130,20	0,15	-0,0018	22,66	8,40	-10,47	21,08

			FX 6	3-143,	ZAREA 6	3-143; R	e= 500	.000; Vfoil	180pts.			
α (deg)	Cl _B	Cd_B	ε _B	CIM	Cd_M	٤ _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,54	0,0088	61,40	0,73	0,0116	63,53	0,19	0,0028	2,13	35,95	31,39	3,47
1	0,64	0,0092	70,31	0,83	0,0104	79,41	0,18	0,0012	9,10	28,17	13,48	12,95
2	0,75	0,0094	79,49	0,92	0,0107	86,53	0,17	0,0012	7,04	23,15	13,13	8,86
3	0,85	0,0103	82,93	0,98	0,0131	74,70	0,12	0,0028	-8,24	14,60	27,24	-9,93
4	0,95	0,0106	89,69	1,08	0,0137	78,52	0,13	0,0031	-11,17	13,55	29,70	-12,45
5	1,00	0,0153	65,32	1,18	0,0145	81,70	0,18	-0,0008	16,38	18,33	-5,40	25,08
6	1,10	0,0165	66,84	1,28	0,0153	83,86	0,18	-0,0012	17,02	16,50	-7,15	25,47
7	1,20	0,0179	66,79	1,37	0,0165	82,70	0,17	-0,0014	15,92	14,24	-7,74	23,83
8	1,28	0,0195	65,80	1,45	0,0176	82,14	0,17	-0,0018	16,34	13,15	-9,36	24,83
9				1,45	0,0186	77,93						
10				1,49	0,0199	74,98						

Tabla 4.6.7.-Comparación entre las características aerodinámicas de los perfiles FX 63-143 y la modificación ZAREA 63-143 evaluados a diferentes Números de Reynolds.

			FX 63	8-143, Z	ZAREA 63	3-143; Re	= 1.00	0.000; Vfoi	l 180pts.			
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd _M	٤ _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,51	0,0072	70,72	0,72	0,0097	74,37	0,21	0,0025	3,65	42,14	35,16	5,16
1	0,58	0,0076	76,34	0,77	0,0086	89,72	0,19	0,0010	13,38	33,45	13,54	17,53
2	0,69	0,0078	88,91	0,88	0,0088	99,96	0,19	0,0010	11,04	27,14	13,09	12,42
3	0,80	0,0085	94,01	0,98	0,0109	90,24	0,18	0,0024	-3,77	22,79	27,92	-4,01
4	0,90	0,0087	103,95	1,09	0,0114	95,40	0,19	0,0027	-8,54	20,77	31,59	-8,22
5	1,01	0,0130	77,25	1,19	0,0120	99,51	0,19	-0,0010	22,26	18,61	-7,92	28,81
6	1,11	0,0140	79,36	1,29	0,0126	102,85	0,19	-0,0014	23,49	16,75	-9,91	29,60
7	1,21	0,0151	79,76	1,39	0,0136	102,34	0,19	-0,0015	22,58	15,40	-10,06	28,30
8	1,30	0,0164	79,74	1,49	0,0144	103,24	0,19	-0,0019	23,50	14,34	-11,69	29,47
9	1,38	0,0189	73,00	1,59	0,0154	103,30	0,21	-0,0035	30,30	15,03	-18,71	41,51
10				1,66	0,0163	101,83						
11				1,66	0,0178	93,50						
12				1,72	0,0190	90,45						

			FX 63	8-143, Z	AREA 63	3-143; Re	= 3.00	0.000; Vfo	il 180pts.			
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd _M	٤ _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,47	0,0058	80,63	0,67	0,0077	87,15	0,20	0,0019	6,52	43,48	32,74	8,09
1	0,58	0,0057	101,71	0,78	0,0081	97,34	0,21	0,0024	-4,37	35,92	42,03	-4,30
2	0,69	0,0059	117,66	0,89	0,0066	134,21	0,20	0,0008	16,55	28,72	12,85	14,06
3	0,80	0,0064	124,34	0,99	0,0084	117,90	0,19	0,0020	-6,44	24,04	30,81	-5,18
4	0,91	0,0065	139,65	1,10	0,0088	124,70	0,19	0,0023	-14,95	20,74	35,22	-10,71
5	1,02	0,0104	98,44	1,21	0,0092	130,74	0,19	-0,0011	32,30	18,32	-10,92	32,81
6	1,12	0,0111	101,46	1,32	0,0096	136,41	0,19	-0,0014	34,95	17,06	-12,93	34,44
7	1,23	0,0120	102,47	1,42	0,0104	136,17	0,19	-0,0016	33,70	15,66	-12,96	32,88
8	1,33	0,0128	103,46	1,52	0,0110	138,56	0,19	-0,0019	35,10	14,55	-14,47	33,92
9	1,43	0,0149	95,79	1,62	0,0115	140,26	0,19	-0,0034	44,47	13,24	-22,67	46,43
10	1,52	0,0165	91,64	1,73	0,0123	140,85	0,21	-0,0043	49,22	13,94	-25,87	53,71
11	1,57	0,0182	86,06	1,81	0,0134	135,35	0,25	-0,0048	49,29	15,65	-26,47	57,28
12	1,58	0,0200	78,75	1,82	0,0172	105,70	0,24	-0,0028	26,95	15,29	-14,10	34,22

			FX 6	3-145,	ZAREA 6	3-145; R	e= 500	.000; Vfoil	220pts.			
α (deg)	Cl _B	Cd_B	ε _B	CIM	Cd _M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,83	0,0146	56,87	0,96	0,0142	68,04	0,13	-0,0004	11,17	15,97	-3,07	19,64
1	0,93	0,0143	65,25	1,06	0,0134	79,02	0,13	-0,0008	13,77	13,98	-5,88	21,10
2	1,04	0,0150	69,26	1,17	0,0140	83,27	0,13	-0,0009	14,01	12,64	-6,31	20,23
3	1,14	0,0156	73,26	1,27	0,0149	85,56	0,13	-0,0007	12,30	11,73	-4,33	16,79
4	1,25	0,0165	75,42	1,38	0,0155	88,71	0,13	-0,0010	13,30	10,70	-5,89	17,63
5	1,35	0,0176	76,76	1,48	0,0164	90,64	0,13	-0,0012	13,88	9,90	-6,93	18,09
6	1,46	0,0195	74,75	1,59	0,0173	91,70	0,13	-0,0022	16,95	9,08	-11,08	22,67
7	1,56	0,0211	74,00	1,69	0,0184	92,01	0,13	-0,0027	18,02	8,47	-12,77	24,35
8	1,63	0,0247	66,21	1,79	0,0196	91,64	0,16	-0,0051	25,42	9,85	-20,63	38,39
9				1,87	0,0218	85,81						
10				1,96	0,0230	85,15						

Tabla 4.6.8.-Comparación entre las características aerodinámicas de los perfiles FX 63-145 y la modificación ZAREA 63-145 evaluados a diferentes Números de Reynolds.

FX 63-145, ZAREA 63-145; Re= 1.000.000; Vfoil 220pts.												
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd_M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,82	0,0127	65,02	0,96	0,0121	79,24	0,14	-0,0006	14,22	16,41	-4,48	21,87
1	0,93	0,0124	74,74	1,06	0,0115	92,57	0,13	-0,0010	17,83	14,32	-7,70	23,86
2	1,03	0,0130	79,49	1,17	0,0118	98,58	0,13	-0,0012	19,10	12,60	-9,21	24,02
3	1,14	0,0133	85,18	1,27	0,0125	101,54	0,14	-0,0008	16,36	12,00	-6,05	19,21
4	1,24	0,0141	88,00	1,38	0,0130	105,91	0,14	-0,0011	17,91	10,94	-7,82	20,35
5	1,35	0,0150	89,94	1,48	0,0136	108,81	0,14	-0,0013	18,87	10,11	-8,98	20,98
6	1,45	0,0166	87,61	1,59	0,0144	110,76	0,14	-0,0022	23,14	9,29	-13,55	26,41
7	1,56	0,0179	87,25	1,69	0,0151	111,93	0,14	-0,0027	24,68	8,67	-15,28	28,28
8	1,67	0,0210	79,33	1,80	0,0160	112,36	0,13	-0,0050	33,02	7,79	-23,89	41,62
9	1,75	0,0238	73,49	1,90	0,0174	109,58	0,16	-0,0064	36,09	8,89	-26,97	49,11
10				2,01	0,0185	108,47						
11				2,11	0,0197	107,09						
12				2,17	0,0217	100,05						

FX 63-145, ZAREA 63-145; Re= 3.000.000; Vfoil 220pts.												
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd _M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,81	0,0103	79,12	0,95	0,0097	98,52	0,14	-0,0006	19,39	17,04	-6,00	24,51
1	0,92	0,0100	92,09	1,06	0,0090	117,18	0,14	-0,0010	25,09	14,85	-9,74	27,25
2	1,03	0,0105	98,35	1,17	0,0094	124,47	0,14	-0,0011	26,12	13,38	-10,41	26,56
3	1,14	0,0108	105,28	1,28	0,0099	128,57	0,14	-0,0009	23,29	12,35	-8,00	22,12
4	1,24	0,0114	109,27	1,38	0,0102	135,15	0,14	-0,0011	25,88	11,26	-10,05	23,68
5	1,35	0,0119	112,85	1,49	0,0106	140,33	0,14	-0,0013	27,48	10,41	-11,22	24,36
6	1,46	0,0132	109,98	1,59	0,0111	143,74	0,14	-0,0021	33,76	9,58	-16,16	30,69
7	1,56	0,0142	110,26	1,70	0,0116	146,35	0,14	-0,0025	36,09	8,94	-17,92	32,74
8	1,67	0,0168	99,39	1,81	0,0122	148,14	0,14	-0,0046	48,75	8,09	-27,48	49,05
9	1,78	0,0185	96,09	1,91	0,0132	145,49	0,14	-0,0054	49,40	7,60	-28,93	51,41
10	1,88	0,0205	91,91	2,02	0,0139	145,57	0,14	-0,0066	53,66	7,18	-32,33	58,38
11	1,95	0,0228	85,42	2,12	0,0146	145,68	0,17	-0,0083	60,26	8,84	-36,18	70,54
12				2,23	0,0164	135,85						
Tabla 4.6.9Comparación entre las características aerodinámicas de los perfiles FX 63-158												
--												
y la modificación ZAREA 63-158 evaluados a diferentes Números de Reynolds.												

FX 63-158, ZAREA 63-158; Re= 500.000; Vfoil 160pts.														
α (deg)	Cl _B	Cd_{B}	ε _B	Cl _M	Cd_M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε		
0	0,86	0,0103	83,86	1,01	0,0114	88,60	0,15	0,0011	4,74	17,00	10,74	5,66		
1	0,97	0,0112	87,10	1,12	0,0117	95,38	0,15	0,0006	8,28	14,98	5,00	9,50		
2	1,08	0,0115	94,48	1,23	0,0121	101,61	0,15	0,0006	7,13	13,43	5,48	7,54		
3	1,19	0,0118	100,89	1,34	0,0135	99,43	0,15	0,0016	-1,45	12,30	13,95	-1,44		
4	1,30	0,0132	99,08	1,45	0,0160	90,35	0,14	0,0029	-8,73	10,98	21,71	-8,81		
5	1,41	0,0134	104,58	1,55	0,0168	92,47	0,15	0,0034	-12,11	10,47	24,95	-11,58		
6	1,50	0,0201	74,48	1,66	0,0181	91,75	0,16	-0,0020	17,27	10,99	-9,89	23,18		
7	1,60	0,0219	73,17	1,74	0,0195	88,98	0,13	-0,0024	15,82	8,37	-10,89	21,62		
8	1,66	0,0236	70,23	1,84	0,0209	88,34	0,18	-0,0028	18,11	10,98	-11,77	25,79		
9	1,72	0,0258	66,89	1,88	0,0228	82,44	0,15	-0,0030	15,55	8,90	-11,63	23,24		

			FX 63	8-158, Z	AREA 63	3-158; Re	= 1.000	0.000; Vfo	il 160pts.			
α (deg)	Cl _B	Cd _B	ε _B	Cl _M	Cd_{M}	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,85	0,0084	101,99	1,00	0,0093	107,52	0,15	0,0009	5,54	17,33	11,29	5,43
1	0,97	0,0092	105,33	1,11	0,0096	116,27	0,15	0,0004	10,94	15,26	4,41	10,39
2	1,08	0,0094	114,91	1,23	0,0098	124,60	0,15	0,0005	9,70	13,66	4,82	8,44
3	1,19	0,0096	123,49	1,34	0,0110	121,31	0,15	0,0014	-2,18	12,47	14,49	-1,77
4	1,30	0,0108	120,72	1,45	0,0137	105,83	0,15	0,0029	-14,88	11,52	27,20	-12,33
5	1,41	0,0112	125,76	1,55	0,0140	110,94	0,14	0,0028	-14,81	10,13	24,83	-11,78
6	1,52	0,0169	90,21	1,66	0,0150	110,41	0,14	-0,0018	20,20	9,07	-10,88	22,39
7	1,63	0,0182	89,41	1,77	0,0159	111,58	0,14	-0,0024	22,17	8,47	-13,08	24,80
8	1,71	0,0200	85,53	1,88	0,0168	112,03	0,17	-0,0032	26,50	9,85	-16,13	30,99
9	1,81	0,0217	83,55	1,95	0,0186	104,72	0,14	-0,0031	21,17	7,56	-14,18	25,34
10	1,85	0,0246	75,11	2,01	0,0205	97,81	0,15	-0,0041	22,71	8,31	-16,83	30,23
11				2,09	0,0220	95,05						

			FX 63	8-158, Z	ZAREA 63	3-158; Re	= 3.000	0.000; Vfo	l 160pts.			
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd _M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,85	0,0063	133,80	1,00	0,0071	140,50	0,15	0,0008	6,70	17,76	12,15	5,00
1	0,96	0,0070	137,13	1,11	0,0073	152,54	0,15	0,0003	15,40	15,62	3,94	11,23
2	1,07	0,0071	150,45	1,22	0,0074	164,46	0,15	0,0003	14,01	13,98	4,27	9,31
3	1,18	0,0073	162,73	1,33	0,0084	159,07	0,15	0,0011	-3,66	12,70	15,29	-2,25
4	1,30	0,0082	158,14	1,45	0,0106	136,56	0,15	0,0024	-21,58	11,65	29,30	-13,65
5	1,41	0,0087	161,16	1,56	0,0111	140,93	0,15	0,0023	-20,24	10,63	26,52	-12,56
6	1,53	0,0137	111,39	1,67	0,0119	140,29	0,14	-0,0018	28,90	9,26	-13,25	25,94
7	1,63	0,0144	113,04	1,78	0,0125	142,32	0,15	-0,0019	29,28	9,02	-13,41	25,90
8	1,74	0,0155	112,66	1,89	0,0132	143,54	0,15	-0,0023	30,88	8,47	-14,87	27,41
9	1,85	0,0166	111,50	1,99	0,0139	143,12	0,14	-0,0027	31,62	7,67	-16,12	28,36
10	1,96	0,0188	104,10	2,10	0,0151	138,56	0,14	-0,0037	34,46	7,16	-19,49	33,11
11	2,03	0,0214	95,00	2,21	0,0165	133,32	0,17	-0,0049	38,32	8,44	-22,73	40,34
12	1,99	0,0238	83,63	2,28	0,0194	117,54	0,29	-0,0044	33,91	14,54	-18,51	40,55
13	1,84	0,0254	72,36									
14	1,90	0,0280	67,72									

	FX 66-17A-175, ZAREA 66-17A-175; Re= 500.000; Vfoil 280pts.											
α (deg)	Cl _B	Cd_B	ε _B	CIM	Cd_M	٤ _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,50	0,0107	46,76	0,64	0,0124	51,67	0,14	0,0017	4,91	28,05	15,87	10,51
1	0,61	0,0109	55,47	0,75	0,0125	59,70	0,14	0,0016	4,23	23,26	14,52	7,63
2	0,71	0,0114	62,70	0,86	0,0120	71,56	0,15	0,0006	8,86	20,42	5,51	14,13
3	0,82	0,0117	69,85	0,97	0,0125	77,59	0,15	0,0007	7,74	18,03	6,26	11,08
4	0,93	0,0121	76,39	1,07	0,0129	82,83	0,15	0,0008	6,44	15,68	6,69	8,43
5	1,03	0,0126	81,87	1,17	0,0134	87,40	0,14	0,0009	5,53	14,07	6,86	6,75
6	1,14	0,0132	86,30	1,28	0,0141	90,94	0,14	0,0009	4,64	12,77	7,02	5,38
7				1,38	0,0150	92,19						
8				1,45	0,0169	85,72						
9				1,51	0,0172	87,83						
10				1,54	0,0184	83,62						
11				1,58	0,0195	81,12						

Tabla 4.6.10.-Comparación entre las características aerodinámicas de los perfiles FX 66-17A-175 y la modificación ZAREA 66-17A-175 evaluados a diferentes Números de Reynolds.

		F	X 66-17A	-175, Z	ZAREA 66	6-17A-17	5; Re=	1.000.000	; Vfoil 28	0pts.		
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd_M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,50	0,0088	57,16	0,65	0,0104	62,33	0,14	0,0016	5,17	28,31	17,66	9,05
1	0,61	0,0090	67,89	0,75	0,0104	72,38	0,14	0,0014	4,49	23,44	15,77	6,62
2	0,72	0,0094	76,88	0,87	0,0098	88,25	0,15	0,0005	11,37	20,51	4,99	14,79
3	0,83	0,0096	85,90	0,98	0,0102	96,21	0,15	0,0005	10,30	18,09	5,44	11,99
4	0,94	0,0099	94,47	1,08	0,0105	103,20	0,15	0,0006	8,73	15,75	5,96	9,24
5	1,04	0,0102	101,85	1,19	0,0109	109,56	0,15	0,0006	7,71	14,14	6,10	7,57
6	1,15	0,0106	108,05	1,30	0,0113	115,04	0,15	0,0006	6,99	12,82	5,97	6,47
7	1,22	0,0188	64,79	1,40	0,0120	117,36	0,19	-0,0068	52,56	15,26	-36,37	81,12
8	1,26	0,0201	62,53	1,50	0,0136	110,28	0,24	-0,0065	47,75	19,11	-32,46	76,35
9	1,28	0,0217	59,06	1,60	0,0137	116,77	0,32	-0,0080	57,70	24,70	-36,92	97,70
10				1,68	0,0148	113,43						
11				1,75	0,0156	111,95						
12				1,77	0,0180	97,82						

		F	X 66-17A	-175, Z	AREA 66	6-17A-17	5; Re=	3.000.000	Vfoil 28	Opts.		
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd_M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,51	0,0068	75,24	0,65	0,0081	80,70	0,15	0,0013	5,46	28,61	19,92	7,25
1	0,62	0,0069	90,13	0,77	0,0081	94,26	0,15	0,0012	4,13	23,40	17,99	4,58
2	0,73	0,0072	101,62	0,88	0,0075	118,01	0,15	0,0003	16,40	20,87	4,08	16,14
3	0,84	0,0073	114,39	0,99	0,0077	128,80	0,15	0,0003	14,41	17,92	4,72	12,60
4	0,95	0,0075	126,13	1,10	0,0079	139,21	0,15	0,0004	13,08	16,08	5,17	10,37
5	1,06	0,0077	136,86	1,21	0,0081	148,63	0,15	0,0004	11,77	14,21	5,16	8,60
6	1,17	0,0080	146,60	1,32	0,0084	157,33	0,15	0,0004	10,73	12,90	5,20	7,32
7	1,27	0,0150	84,52	1,42	0,0088	161,70	0,16	-0,0062	77,19	12,42	-41,24	91,33
8	1,37	0,0163	84,25	1,53	0,0101	151,41	0,16	-0,0062	67,16	11,48	-37,97	79,72
9	1,44	0,0176	81,89	1,64	0,0099	165,41	0,19	-0,0078	83,52	13,23	-43,94	101,99
10	1,50	0,0185	81,38	1,74	0,0107	163,25	0,24	-0,0078	81,87	15,69	-42,32	100,59
11	1,52	0,0366	41,45	1,83	0,0132	139,02	0,32	-0,0234	97,57	20,89	-63,96	235,38
12				1,89	0,0153	123,28						

	FX 66-S-161, ZAREA 66-S-161; Re= 500.000; Vfoil 220pts.														
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd _M	ε _M	ΔCI	ΔCd	Δε	%CI	%Cd	%ε			
0	0,52	0,0100	52,55	0,67	0,0104	64,58	0,15	0,0004	12,03	28,23	4,33	22,90			
1	0,63	0,0102	61,97	0,78	0,0108	72,14	0,15	0,0006	10,17	23,31	5,92	16,41			
2	0,74	0,0105	69,86	0,88	0,0110	80,33	0,15	0,0004	10,47	19,87	4,25	14,98			
3	0,84	0,0109	77,86	0,99	0,0116	85,32	0,14	0,0007	7,46	16,83	6,62	9,58			
4	0,95	0,0111	85,47	1,09	0,0124	87,56	0,14	0,0013	2,08	14,80	12,06	2,44			
5	1,05	0,0117	89,89	1,21	0,0120	100,75	0,16	0,0003	10,86	14,73	2,37	12,08			
6	1,15	0,0127	90,63	1,31	0,0129	101,65	0,16	0,0002	11,02	14,25	1,86	12,16			
7	1,27	0,0126	100,63	1,36	0,0148	91,51	0,09	0,0022	-9,11	7,01	17,67	-9,06			
8	1,33	0,0146	91,34	1,39	0,0159	87,54	0,06	0,0014	-3,80	4,76	9,31	-4,17			
9				1,40	0,0167	84,07									

Tabla 4.6.11.-Comparación entre las características aerodinámicas de los perfiles FX 66-S-161 y la modificación ZAREA 66-S-161 evaluados a diferentes Números de Reynolds.

			FX 66-S	6-161, Z	ZAREA 66	6-S-161; I	Re= 1.0	00.000; V	'foil 220pt	s.		
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd_M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,53	0,0082	64,08	0,68	0,0085	79,30	0,15	0,0003	15,21	28,57	3,90	23,74
1	0,63	0,0084	75,84	0,79	0,0088	89,22	0,15	0,0004	13,38	23,97	5,37	17,65
2	0,74	0,0086	86,10	0,89	0,0089	99,94	0,15	0,0003	13,84	20,10	3,47	16,07
3	0,85	0,0089	96,01	1,00	0,0094	106,38	0,15	0,0005	10,36	17,50	6,05	10,79
4	0,96	0,0090	106,60	1,10	0,0101	109,23	0,14	0,0011	2,63	15,07	12,29	2,47
5	1,07	0,0095	112,53	1,23	0,0095	128,89	0,16	0,0001	16,36	15,16	0,54	14,54
6	1,17	0,0103	113,53	1,30	0,0103	126,08	0,14	0,0001	12,56	11,64	0,53	11,06
7	1,29	0,0100	129,06	1,41	0,0119	118,39	0,12	0,0019	-10,67	9,33	19,18	-8,27
8	1,37	0,0117	117,37	1,50	0,0129	115,46	0,13	0,0013	-1,90	9,17	10,97	-1,62
9				1,60	0,0137	116,98						

			FX 66-S	6-161, Z	AREA 66	6-S-161; I	Re= 3.0	000.000; V	foil 220p	ts.		
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd _M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,53	0,0063	83,98	0,68	0,0064	105,72	0,15	0,0002	21,74	29,34	2,74	25,89
1	0,64	0,0064	100,54	0,79	0,0067	118,24	0,15	0,0003	17,70	23,94	5,38	17,61
2	0,75	0,0066	113,74	0,90	0,0067	134,30	0,15	0,0001	20,56	20,67	2,20	18,07
3	0,86	0,0067	128,16	1,01	0,0071	143,02	0,15	0,0004	14,86	17,74	5,51	11,59
4	0,97	0,0068	143,76	1,12	0,0076	147,69	0,15	0,0009	3,93	15,68	12,61	2,73
5	1,08	0,0071	152,05	1,23	0,0073	168,61	0,15	0,0002	16,56	13,84	2,66	10,89
6	1,19	0,0077	153,94	1,33	0,0078	170,99	0,14	0,0001	17,05	12,06	0,88	11,08
7	1,28	0,0080	159,76	1,43	0,0088	161,63	0,14	0,0008	1,88	11,27	9,98	1,17
8	1,38	0,0098	140,13	1,53	0,0101	151,82	0,16	0,0003	11,69	11,38	2,80	8,34
9	1,41	0,0161	87,87	1,62	0,0121	133,78	0,20	-0,0040	45,91	14,44	-24,83	52,24
10	1,43	0,0177	80,82	1,69	0,0141	119,44	0,26	-0,0036	38,62	18,04	-20,13	47,79
11	1,45	0,0193	75,22	1,73	0,0153	113,08	0,28	-0,0040	37,86	19,40	-20,57	50,32
12				1,74	0,0165	105,26						
13				1,76	0,0184	95,99						

			FX 66-	S-196,	ZAREA 6	6-S-196;	Re= 50	00.000; Vf	oil 220pts	3.		
α (deg)	Cl _B	Cd_B	ε _B	CIM	Cd _M	ε _M	ΔCI	ΔCd	Δε	%CI	%Cd	%ε
0	0,35	0,0105	33,52	0,49	0,0109	44,85	0,14	0,0004	11,33	39,11	3,96	33,81
1	0,46	0,0106	42,76	0,58	0,0113	51,30	0,12	0,0006	8,53	27,17	6,01	19,95
2	0,55	0,0111	49,64	0,67	0,0116	58,11	0,12	0,0005	8,47	22,62	4,75	17,06
3	0,64	0,0113	56,81	0,75	0,0120	62,58	0,11	0,0007	5,77	17,02	6,23	10,16
4	0,73	0,0121	60,37	0,84	0,0128	65,71	0,11	0,0007	5,35	15,29	5,91	8,86
5	0,81	0,0125	65,33	0,90	0,0131	68,57	0,09	0,0007	3,25	10,62	5,38	4,97
6	0,89	0,0129	68,64	0,99	0,0137	72,26	0,10	0,0007	3,62	11,33	5,75	5,27
7	0,97	0,0135	71,71	1,08	0,0144	75,01	0,11	0,0008	3,30	11,15	6,26	4,61
8	1,04	0,0144	72,27	1,13	0,0152	74,64	0,09	0,0007	2,37	8,53	5,08	3,28
9	1,10	0,0150	73,24	1,21	0,0159	76,18	0,11	0,0009	2,94	10,17	5,92	4,01
10	1,12	0,0198	56,36									

Tabla 4.6.12.- Comparación entre las características aerodinámicas de los perfiles FX 66-S-196 y la modificación ZAREA 66-S-196 evaluados a diferentes Números de Reynolds.

			FX 66-S	5-196, Z	AREA 66	6-S-196; I	Re= 1.0	00.000; V	foil 220pt	s.		
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd _M	٤ _M	ΔCI	ΔCd	Δε	%CI	%Cd	%ε
0	0,37	0,0084	43,87	0,51	0,0084	60,95	0,14	0,0000	17,08	39,07	0,09	38,94
1	0,48	0,0086	56,12	0,62	0,0089	70,07	0,14	0,0003	13,95	29,07	3,37	24,86
2	0,58	0,0087	67,38	0,72	0,0091	79,15	0,14	0,0005	11,78	23,79	5,37	17,48
3	0,69	0,0089	77,31	0,81	0,0098	82,87	0,12	0,0009	5,55	18,00	10,09	7,18
4	0,79	0,0096	82,12	0,91	0,0104	87,21	0,12	0,0008	5,09	15,11	8,39	6,20
5	0,88	0,0101	86,40	1,00	0,0108	92,72	0,12	0,0006	6,31	13,74	5,99	7,31
6	0,97	0,0105	92,09	1,08	0,0111	97,34	0,12	0,0006	5,25	11,92	5,89	5,70
7	1,06	0,0109	96,71	1,18	0,0116	101,51	0,12	0,0007	4,80	11,43	6,17	4,96
8	1,14	0,0117	97,57	1,23	0,0123	100,25	0,09	0,0006	2,69	8,07	5,17	2,75
9	1,20	0,0125	96,09	1,31	0,0131	99,69	0,11	0,0006	3,61	9,04	5,09	3,75

			FX 66-S	5-196, Z	AREA 66	S-S-196;	Re= 3.0	000.000; V	foil 220p	s.		
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd_M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,39	0,0061	64,55	0,54	0,0063	85,71	0,15	0,0003	21,16	38,35	4,19	32,78
1	0,51	0,0062	81,71	0,66	0,0066	98,93	0,15	0,0004	17,22	29,59	7,04	21,07
2	0,62	0,0065	94,84	0,77	0,0068	112,87	0,15	0,0003	18,03	24,27	4,41	19,01
3	0,73	0,0066	109,73	0,87	0,0073	118,78	0,14	0,0007	9,05	19,38	10,29	8,25
4	0,83	0,0072	115,95	0,97	0,0078	125,30	0,14	0,0006	9,35	17,03	8,29	8,07
5	0,94	0,0076	123,74	1,08	0,0080	134,75	0,14	0,0004	11,01	14,97	5,58	8,90
6	1,04	0,0078	133,48	1,18	0,0083	143,13	0,14	0,0004	9,65	13,27	5,63	7,23
7	1,15	0,0081	142,02	1,28	0,0085	149,76	0,13	0,0004	7,75	11,25	5,50	5,46
8	1,22	0,0094	129,59	1,34	0,0100	134,29	0,12	0,0006	4,71	9,68	5,83	3,63
9	1,21	0,0144	83,98	1,40	0,0120	116,99	0,19	-0,0024	33,01	15,74	-16,92	39,31
10	1,25	0,0169	74,32	1,43	0,0140	102,12	0,18	-0,0029	27,80	14,10	-16,96	37,41
11				1,48	0,0157	94,46						
12				1,56	0,0169	92,01						

Tabla 4.6.13.- Comparación entre las características aerodinámicas de los perfiles FX L-V-152 y la modificación ZAREA L-V-152 evaluados a diferentes Números de Reynolds.

-			= 1/1			14.450		0.000.10				
			FX L-	V-152,	ZAREA L	V-152; I	Re= 50	0.000; Vto	il 220pts.			
α (deg)	Cl _B	Cd_{B}	ε _B	CIM	Cd _M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,04	0,0093	4,43	0,23	0,0092	25,44	0,19	-0,0001	21,01	466,62	-1,30	474,08
1	0,15	0,0090	16,62	0,34	0,0105	32,62	0,19	0,0015	16,00	129,85	17,12	96,25
2	0,26	0,0092	28,16	0,45	0,0116	38,95	0,19	0,0024	10,79	74,60	26,24	38,31
3	0,37	0,0095	38,52	0,56	0,0120	46,59	0,19	0,0025	8,06	52,18	25,84	20,94
4	0,47	0,0110	43,13	0,67	0,0125	53,21	0,19	0,0015	10,08	40,70	14,05	23,37
5	0,58	0,0118	48,94	0,77	0,0133	58,13	0,19	0,0014	9,19	33,27	12,21	18,77
6	0,57	0,0149	38,11	0,74	0,0139	53,58	0,17	-0,0010	15,47	30,84	-6,93	40,58
7	0,63	0,0161	39,10	0,79	0,0147	53,48	0,16	-0,0014	14,38	24,77	-8,78	36,78
8				0,80	0,0153	52,34						
9				0,84	0,0165	50,85						

			FX L-V	/-152, Z	ZAREA L-	V-152; R	e= 1.00	0.000; Vfc	oil 220pts			
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd_M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,04	0,0077	5,08	0,23	0,0074	31,45	0,19	-0,0002	26,37	499,05	-3,17	518,68
1	0,15	0,0072	20,45	0,34	0,0087	39,47	0,20	0,0015	19,03	132,99	20,68	93,07
2	0,26	0,0074	34,83	0,45	0,0096	47,31	0,20	0,0022	12,48	76,14	29,66	35,85
3	0,37	0,0077	47,57	0,56	0,0099	56,56	0,20	0,0022	8,99	53,26	28,89	18,91
4	0,48	0,0090	52,89	0,67	0,0105	64,05	0,19	0,0015	11,16	40,76	16,25	21,09
5	0,58	0,0098	59,73	0,78	0,0111	70,29	0,19	0,0013	10,56	33,11	13,11	17,69
6	0,70	0,0128	54,34	0,89	0,0116	76,35	0,19	-0,0012	22,00	27,15	-9,49	40,49
7	0,81	0,0139	57,85	0,99	0,0124	80,23	0,19	-0,0015	22,38	23,51	-10,94	38,69
8				0,96	0,0128	74,91						
9				1,00	0,0137	72,76						
10				1,00	0,0148	67,94						

			FX L-V	/-152, Z	AREA L-	V-152; R	e= 3.00	00.000; Vfc	oil 220pts			
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd_M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,04	0,0058	6,05	0,23	0,0056	41,35	0,20	-0,0002	35,31	565,70	-2,67	583,99
1	0,15	0,0055	26,55	0,34	0,0067	51,07	0,20	0,0013	24,52	136,55	22,96	92,38
2	0,26	0,0056	45,82	0,46	0,0075	60,70	0,20	0,0019	14,89	77,22	33,76	32,49
3	0,37	0,0065	56,49	0,57	0,0078	72,58	0,20	0,0013	16,10	54,00	19,85	28,50
4	0,48	0,0073	65,23	0,68	0,0081	83,87	0,20	0,0007	18,64	41,41	9,99	28,57
5	0,59	0,0083	71,11	0,79	0,0085	92,77	0,20	0,0002	21,65	33,49	2,34	30,45
6	0,70	0,0102	68,74	0,90	0,0090	100,09	0,19	-0,0013	31,35	27,58	-12,38	45,61
7	0,81	0,0110	73,64	1,01	0,0095	105,89	0,19	-0,0015	32,25	23,86	-13,86	43,79
8	0,92	0,0119	77,35	1,12	0,0097	115,26	0,19	-0,0022	37,91	21,08	-18,74	49,01
9	0,89	0,0134	66,41	1,23	0,0105	117,05	0,34	-0,0029	50,64	37,67	-21,90	76,26
10	0,93	0,0144	64,88									
11	0,93	0,0159	58,31									
12	0,96	0,0176	54,64									

			FX S 0	2-196,	ZAREA S	6 02-196;	Re= 50	00.000; Vfe	oil 220pts	6.		
α (deg)	Cl _B	Cd_B	ε _B	CIM	Cd _M	٤ _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,56	0,0105	53,58	0,65	0,0109	59,45	0,09	0,0004	5,87	15,52	4,11	10,96
1	0,66	0,0109	60,81	0,75	0,0112	67,00	0,09	0,0003	6,19	13,35	2,88	10,18
2	0,76	0,0111	68,33	0,85	0,0115	73,66	0,09	0,0004	5,33	11,25	3,21	7,80
3	0,78	0,0168	46,42	0,93	0,0122	76,14	0,15	-0,0046	29,72	19,51	-27,13	64,01
4	0,85	0,0179	47,59	1,00	0,0126	79,66	0,15	-0,0053	32,07	17,82	-29,61	67,39
5	0,93	0,0189	48,93	1,03	0,0166	61,74	0,10	-0,0023	12,81	11,05	-12,00	26,19
6	1,00	0,0200	49,95	1,10	0,0174	63,31	0,10	-0,0026	13,36	10,36	-12,93	26,74
7	1,08	0,0215	50,24	1,18	0,0184	64,47	0,10	-0,0031	14,24	9,63	-14,58	28,34
8	1,14	0,0229	49,96	1,25	0,0195	64,04	0,10	-0,0034	14,08	9,16	-14,83	28,17
9	1,20	0,0245	48,85	1,33	0,0206	64,42	0,13	-0,0039	15,57	10,83	-15,96	31,88
10	1,22	0,0265	46,08	1,39	0,0220	63,01	0,17	-0,0045	16,93	13,68	-16,87	36,75

Tabla 4.6.14.- Comparación entre las características aerodinámicas de los perfiles FX S 02-196 y la modificación ZAREA S 02-196 evaluados a diferentes Números de Reynolds.

			FX S 02	2-196, Z	ZAREA S	02-196; I	Re= 1.0	00.000; V [.]	foil 220pt	s.		
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd _M	٤ _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,57	0,0086	66,97	0,67	0,0089	74,87	0,09	0,0003	7,91	16,27	4,00	11,81
1	0,68	0,0089	76,53	0,77	0,0091	84,71	0,09	0,0002	8,18	13,78	2,79	10,69
2	0,78	0,0090	86,35	0,88	0,0093	94,12	0,10	0,0003	7,76	12,26	3,00	8,99
3	0,82	0,0145	56,38	0,97	0,0100	97,45	0,15	-0,0045	41,06	18,84	-31,24	72,83
4	0,89	0,0155	57,76	1,07	0,0103	103,82	0,17	-0,0052	46,06	19,29	-33,63	79,74
5	0,97	0,0164	59,31	1,08	0,0140	76,94	0,11	-0,0024	17,63	10,81	-14,59	29,73
6	1,05	0,0173	60,72	1,17	0,0147	79,35	0,12	-0,0026	18,63	11,31	-14,83	30,69
7	1,12	0,0185	60,74	1,25	0,0154	80,72	0,12	-0,0031	19,99	10,74	-16,68	32,91
8	1,15	0,0198	58,10	1,32	0,0164	80,24	0,17	-0,0034	22,14	14,52	-17,08	38,11
9	1,18	0,0213	55,49	1,40	0,0173	80,82	0,22	-0,0040	25,33	18,40	-18,71	45,65
10				1,41	0,0185	76,46						

			FX S 02	2-196, Z	AREA S	02-196; F	Re= 3.0	000.000; V	foil 220pt	s.		
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd _M	٤ _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,58	0,0064	89,74	0,68	0,0067	100,60	0,10	0,0003	10,85	17,57	4,88	12,09
1	0,69	0,0067	102,78	0,79	0,0069	115,62	0,10	0,0001	12,84	14,95	2,19	12,49
2	0,80	0,0068	117,80	0,90	0,0070	128,80	0,10	0,0002	11,00	12,57	2,96	9,33
3	0,87	0,0117	74,81	1,00	0,0075	133,67	0,13	-0,0041	58,86	15,08	-35,59	78,67
4	0,96	0,0125	76,61	1,11	0,0077	144,09	0,15	-0,0048	67,48	15,69	-38,49	88,09
5	1,04	0,0133	78,30	1,17	0,0111	105,57	0,13	-0,0022	27,27	12,13	-16,83	34,82
6	1,13	0,0140	80,40	1,26	0,0116	108,75	0,13	-0,0025	28,35	11,56	-17,52	35,27
7	1,21	0,0150	80,44	1,33	0,0120	110,56	0,12	-0,0030	30,12	10,16	-19,85	37,45
8	1,29	0,0161	80,06	1,41	0,0128	110,06	0,13	-0,0032	30,00	9,75	-20,17	37,48
9	1,36	0,0172	79,20	1,50	0,0135	111,41	0,14	-0,0037	32,21	10,43	-21,50	40,67
10	1,43	0,0183	77,99	1,58	0,0143	110,00	0,15	-0,0040	32,00	10,26	-21,82	41,03
11	1,44	0,0195	74,03	1,65	0,0154	107,09	0,20	-0,0042	33,06	13,87	-21,28	44,65
12	1,47	0,0211	69,74	1,71	0,0168	101,90	0,24	-0,0043	32,16	16,50	-20,27	46,11

			FX S 02/	/1-158,	ZAREA S	6 02/1-15	8; Re=	500.000; \	/foil 220p	ots.		
α (deg)	Cl _B	Cd_B	ε _B	CIM	Cd _M	٤ _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,56	0,0101	55,71	0,71	0,0110	64,33	0,14	0,0009	8,62	25,73	8,89	15,47
1	0,67	0,0103	65,25	0,81	0,0113	72,06	0,14	0,0010	6,81	21,31	9,85	10,43
2	0,78	0,0110	70,54	0,92	0,0116	78,97	0,14	0,0006	8,42	18,33	5,71	11,94
3	0,88	0,0114	77,65	1,03	0,0123	83,73	0,14	0,0009	6,07	16,38	7,94	7,82
4	0,99	0,0120	82,72	1,13	0,0128	88,74	0,14	0,0008	6,02	14,64	6,86	7,28
5	1,09	0,0125	87,86	1,24	0,0133	93,27	0,14	0,0008	5,41	13,23	6,66	6,16
6	1,20	0,0130	92,16	1,34	0,0151	88,90	0,14	0,0021	-3,26	12,05	16,15	-3,54
7				1,45	0,0178	81,59						

Tabla 4.6.15.- Comparación entre las características aerodinámicas de los perfiles FX S 02/1-158 y la modificación ZAREA S 02/1-158 evaluados a diferentes Números de Reynolds.

		F	X S 02/1	-158, Z	AREA S	02/1-158	; Re= 1	.000.000;	Vfoil 220	pts.		
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd _M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,56	0,0084	66,89	0,71	0,0091	77,32	0,15	0,0008	10,44	26,17	9,14	15,60
1	0,67	0,0085	78,85	0,81	0,0094	87,05	0,15	0,0009	8,19	21,94	10,46	10,39
2	0,78	0,0091	84,90	0,92	0,0096	95,96	0,15	0,0005	11,06	18,86	5,16	13,03
3	0,88	0,0094	94,09	1,03	0,0101	102,05	0,14	0,0007	7,96	16,30	7,22	8,46
4	0,99	0,0098	100,86	1,14	0,0104	108,84	0,14	0,0006	7,98	14,55	6,15	7,91
5	1,10	0,0102	107,59	1,24	0,0108	115,30	0,15	0,0006	7,71	13,36	5,77	7,17
6	1,20	0,0106	113,77	1,35	0,0123	109,40	0,15	0,0018	-4,38	12,14	16,63	-3,85
7	1,32	0,0176	75,02	1,46	0,0145	100,22	0,14	-0,0030	25,20	10,44	-17,33	33,60
8				1,55	0,0147	105,70						
9				1,66	0,0158	105,46						

		F	X S 02/1	-158, Z	ZAREA S	02/1-158	; Re= 3	3.000.000;	Vfoil 220	pts.		
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd _M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,55	0,0064	86,07	0,70	0,0071	99,71	0,15	0,0006	13,65	26,78	9,43	15,85
1	0,67	0,0065	102,20	0,81	0,0072	112,83	0,15	0,0007	10,63	22,38	10,84	10,40
2	0,78	0,0071	109,71	0,92	0,0074	125,01	0,15	0,0003	15,30	19,20	4,61	13,94
3	0,89	0,0072	122,26	1,03	0,0077	133,82	0,15	0,0005	11,55	16,81	6,72	9,45
4	0,99	0,0076	131,63	1,14	0,0080	143,82	0,15	0,0004	12,19	14,99	5,24	9,26
5	1,10	0,0078	141,89	1,25	0,0081	153,95	0,15	0,0004	12,06	13,52	4,63	8,50
6	1,21	0,0080	151,62	1,36	0,0094	144,94	0,15	0,0014	-6,68	12,06	17,23	-4,41
7	1,33	0,0139	95,67	1,47	0,0111	132,28	0,14	-0,0028	36,62	10,72	-19,92	38,27
8	1,43	0,0157	91,54	1,57	0,0110	142,66	0,13	-0,0047	51,11	9,35	-29,83	55,83
9	1,54	0,0172	89,49	1,68	0,0117	143,96	0,14	-0,0056	54,47	8,86	-32,33	60,87
10				1,79	0,0127	140,43						
11				1,89	0,0140	135,52						

			FX S	03-182	, ZAREA	03-182; I	Re= 500	0.000; Vfo	il 220pts.			
α (deg)	Cl _B	Cd _B	ε _B	CIM	Cd _M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,59	0,0096	61,14	0,73	0,0100	72,28	0,14	0,0004	11,14	23,31	4,30	18,22
1	0,69	0,0099	70,20	0,83	0,0103	80,83	0,14	0,0004	10,63	19,56	3,84	15,14
2	0,80	0,0101	79,02	0,93	0,0105	88,85	0,13	0,0004	9,84	16,71	3,79	12,45
3	0,90	0,0104	86,89	1,03	0,0110	93,76	0,13	0,0006	6,86	14,53	6,15	7,90
4	1,00	0,0108	91,94	1,12	0,0114	98,77	0,13	0,0005	6,83	12,81	5,00	7,43
5	1,10	0,0113	97,37	1,11	0,0165	67,07	0,01	0,0053	-30,30	1,00	46,64	-31,12
6	1,17	0,0121	96,88	1,19	0,0174	68,66	0,02	0,0053	-28,21	1,66	43,43	-29,12
7				1,26	0,0185	68,26						
8				1,32	0,0193	68,40						
9				1,40	0,0205	68,42						
10				1,46	0,0219	66,53						
11				1,45	0,0296	48,85						
12				1,49	0,0328	45,29						

Tabla 4.6.16.- Comparación entre las características aerodinámicas de los perfiles FX S 03-182 y la modificación ZAREA S 03-182 evaluados a diferentes Números de Reynolds.

			FX S 0	3-182,	ZAREA 0	3-182; R	e= 1.00	00.000; Vfo	oil 220pts			
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd_M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,60	0,0077	77,05	0,74	0,0081	91,54	0,14	0,0003	14,48	23,98	4,36	18,80
1	0,70	0,0079	88,71	0,85	0,0082	102,77	0,14	0,0003	14,06	20,11	3,68	15,85
2	0,81	0,0081	99,70	0,95	0,0084	113,60	0,14	0,0003	13,91	17,85	3,42	13,95
3	0,91	0,0083	110,19	1,06	0,0088	120,16	0,14	0,0005	9,97	15,61	6,02	9,05
4	1,02	0,0087	117,68	1,16	0,0091	128,03	0,14	0,0004	10,36	13,93	4,72	8,80
5	1,12	0,0089	125,53	1,19	0,0140	84,74	0,07	0,0051	-40,79	6,11	57,19	-32,50
6	1,20	0,0110	109,94	1,26	0,0147	85,69	0,05	0,0037	-24,25	4,23	33,73	-22,06
7	1,19	0,0181	65,53	1,33	0,0155	85,54	0,14	-0,0026	20,01	11,90	-14,27	30,53
8	1,24	0,0197	62,97	1,40	0,0162	86,17	0,16	-0,0035	23,20	12,59	-17,73	36,84
9	1,31	0,0214	61,09	1,48	0,0171	86,49	0,18	-0,0043	25,39	13,41	-19,89	41,57
10	1,37	0,0235	58,13	1,54	0,0183	84,23	0,18	-0,0052	26,11	12,98	-22,03	44,92

			FX S 0	3-182,	ZAREA ()3-182; R	e= 3.00	00.000; Vfe	oil 220pts	5.		
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd _M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,60	0,0057	103,86	0,75	0,0060	124,86	0,15	0,0002	21,00	25,26	4,20	20,22
1	0,71	0,0059	120,74	0,86	0,0061	141,73	0,15	0,0002	20,98	21,27	3,32	17,38
2	0,82	0,0060	137,07	0,97	0,0062	157,81	0,15	0,0002	20,73	18,25	2,72	15,12
3	0,93	0,0061	152,43	1,08	0,0065	166,50	0,14	0,0003	14,07	15,46	5,71	9,23
4	1,04	0,0064	163,65	1,18	0,0070	169,42	0,14	0,0006	5,77	13,65	9,78	3,53
5	1,13	0,0086	130,91	1,25	0,0110	113,87	0,12	0,0023	-17,04	10,43	26,95	-13,01
6	1,21	0,0114	105,95	1,35	0,0115	117,40	0,14	0,0000	11,45	11,22	0,38	10,81
7	1,27	0,0147	86,82	1,43	0,0122	117,77	0,16	-0,0025	30,94	12,62	-16,97	35,64
8	1,34	0,0161	83,07	1,51	0,0127	119,22	0,17	-0,0034	36,15	13,06	-21,22	43,51
9	1,40	0,0173	80,57	1,58	0,0138	114,30	0,18	-0,0036	33,72	12,78	-20,49	41,85
10	1,47	0,0191	76,82	1,63	0,0158	102,85	0,16	-0,0032	26,03	11,23	-16,92	33,88
11	1,53	0,0210	72,93	1,64	0,0208	78,77	0,11	-0,0002	5,84	7,19	-0,76	8,01
12	1,57	0,0228	68,68	1,70	0,0228	74,32	0,13	0,0000	5,64	8,15	-0,06	8,21

			ç	SZ2262	, SZ2262	M; Re= 5	500.000); Vfoil 220	pts.			
α (deg)	Cl _B	Cd_B	ε _B	CIM	Cd _M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,78	0,0097	80,34	0,93	0,0120	77,49	0,15	0,0023	-2,85	18,98	23,35	-3,55
1	0,88	0,0097	90,48	1,04	0,0127	81,84	0,16	0,0030	-8,65	18,41	30,92	-9,55
2	0,98	0,0104	94,67	1,11	0,0129	86,43	0,13	0,0025	-8,24	12,99	23,76	-8,70
3	1,09	0,0114	96,07	1,22	0,0136	89,79	0,13	0,0022	-6,27	11,56	19,35	-6,53
4	1,20	0,0124	96,76	1,32	0,0142	93,19	0,12	0,0018	-3,57	10,42	14,65	-3,69
5	1,31	0,0157	83,55	1,43	0,0151	94,50	0,12	-0,0006	10,96	8,77	-3,84	13,11
6	1,42	0,0169	84,03	1,54	0,0162	94,82	0,12	-0,0007	10,79	8,16	-4,15	12,84
7	1,53	0,0189	80,75	1,64	0,0174	94,15	0,11	-0,0015	13,39	7,47	-7,82	16,59
8	1,63	0,0204	79,76	1,74	0,0188	92,54	0,12	-0,0016	12,79	7,07	-7,72	16,03
9	1,73	0,0224	77,13	1,85	0,0205	90,07	0,12	-0,0019	12,94	6,68	-8,64	16,77
10	1,84	0,0258	71,17	1,95	0,0225	86,83	0,12	-0,0033	15,66	6,27	-12,90	22,01
11	1,92	0,0282	68,17	2,05	0,0253	81,23	0,13	-0,0029	13,06	6,93	-10,26	19,16

Tabla 4.6.17.- Comparación entre las características aerodinámicas de los perfiles SZ2262 y la modificación SZ2262M evaluados a diferentes Números de Reynolds.

			S	Z2262,	SZ2262N	И; Re= 1.	000.00	0; Vfoil 22	0pts.			
α (deg)	Cl _B	Cd_B	ε _B	CIM	Cd _M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,77	0,0083	92,49	0,91	0,0101	90,08	0,14	0,0018	-2,41	18,80	21,97	-2,60
1	0,86	0,0080	107,65	1,02	0,0107	95,12	0,16	0,0028	-12,53	18,87	34,53	-11,64
2	0,96	0,0085	113,15	1,10	0,0108	101,22	0,13	0,0023	-11,93	13,65	27,05	-10,54
3	1,07	0,0094	114,17	1,20	0,0114	105,50	0,13	0,0020	-8,68	12,02	21,23	-7,60
4	1,18	0,0103	114,84	1,31	0,0119	109,99	0,13	0,0016	-4,85	10,81	15,70	-4,22
5	1,30	0,0134	97,08	1,42	0,0127	111,91	0,12	-0,0007	14,83	9,13	-5,34	15,28
6	1,41	0,0143	98,11	1,52	0,0135	112,77	0,12	-0,0008	14,66	8,47	-5,63	14,94
7	1,51	0,0161	94,24	1,63	0,0145	112,55	0,12	-0,0016	18,31	7,75	-9,77	19,42
8	1,62	0,0173	93,77	1,74	0,0156	111,30	0,12	-0,0017	17,53	7,32	-9,59	18,70
9	1,72	0,0188	91,42	1,84	0,0169	109,08	0,12	-0,0020	17,66	6,90	-10,41	19,32
10	1,83	0,0216	84,76	1,94	0,0184	105,91	0,12	-0,0032	21,15	6,37	-14,87	24,95
11	1,93	0,0237	81,35	2,05	0,0205	99,86	0,12	-0,0032	18,50	6,09	-13,56	22,74
12	2,01	0,0263	76,52	2,15	0,0231	92,98	0,14	-0,0032	16,46	6,79	-12,11	21,51

			S	Z2262,	SZ2262N	Л; Re= 3.	000.00	0; Vfoil 22	0pts.			
α (deg)	Cl _B	Cd_B	٤ _B	Cl _M	Cd _M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,75	0,0072	105,40	0,89	0,0081	109,98	0,13	0,0009	4,57	17,90	12,99	4,34
1	0,86	0,0072	119,35	1,00	0,0084	119,05	0,14	0,0012	-0,29	16,75	17,04	-0,25
2	0,95	0,0073	130,58	1,08	0,0085	127,14	0,12	0,0012	-3,43	13,13	16,18	-2,63
3	1,06	0,0079	133,55	1,19	0,0089	132,92	0,13	0,0010	-0,63	12,33	12,86	-0,47
4	1,17	0,0089	130,53	1,29	0,0093	139,31	0,13	0,0004	8,77	10,97	3,98	6,72
5	1,28	0,0106	120,66	1,40	0,0099	142,24	0,12	-0,0007	21,58	9,66	-6,98	17,88
6	1,39	0,0113	122,52	1,51	0,0105	143,84	0,12	-0,0008	21,32	8,93	-7,21	17,40
7	1,50	0,0127	117,44	1,62	0,0112	144,15	0,12	-0,0015	26,71	8,17	-11,87	22,74
8	1,60	0,0136	117,70	1,73	0,0121	143,30	0,12	-0,0016	25,60	7,69	-11,55	21,75
9	1,71	0,0148	115,55	1,83	0,0130	141,32	0,12	-0,0018	25,77	7,23	-12,32	22,30
10	1,82	0,0169	107,44	1,94	0,0144	135,22	0,12	-0,0026	27,78	6,78	-15,16	25,86
11	1,92	0,0184	104,41	2,05	0,0160	128,27	0,12	-0,0025	23,86	6,46	-13,34	22,85
12	2,03	0,0205	98,92	2,15	0,0179	120,47	0,12	-0,0026	21,55	6,14	-12,85	21,78
13	2,13	0,0225	94,55	2,26	0,0239	94,41	0,13	0,0014	-0,14	6,06	6,22	-0,15
14	2,21	0,0245	90,22	2,34	0,0262	89,29	0,13	0,0017	-0,92	5,78	6,88	-1,02
15	2,32	0,0271	85,40									

			ç	SZ2264	, SZ2264	M; Re= 5	500.000); Vfoil 220	pts.			
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd_M	٤ _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,41	0,0101	40,83	0,53	0,0095	55,18	0,11	-0,0006	14,35	27,10	-5,96	35,15
1	0,51	0,0095	54,14	0,63	0,0102	62,32	0,12	0,0007	8,18	23,44	7,23	15,11
2	0,63	0,0100	62,36	0,75	0,0123	61,29	0,13	0,0022	-1,07	20,11	22,20	-1,71
3	0,73	0,0104	70,51	0,86	0,0129	67,13	0,13	0,0025	-3,38	18,06	24,01	-4,80
4	0,83	0,0123	67,36	0,96	0,0139	68,71	0,13	0,0016	1,35	15,26	13,00	2,00
5	0,94	0,0136	69,39	1,07	0,0148	72,13	0,13	0,0012	2,74	13,33	9,02	3,95
6	1,06	0,0163	65,04	1,18	0,0156	75,61	0,12	-0,0007	10,57	11,26	-4,29	16,25
7	1,17	0,0181	64,71	1,29	0,0167	77,07	0,12	-0,0014	12,36	10,03	-7,61	19,10
8	1,28	0,0196	65,13	1,40	0,0178	78,64	0,12	-0,0019	13,51	9,16	-9,59	20,74
9	1,39	0,0213	65,18	1,50	0,0189	79,49	0,12	-0,0023	14,31	8,50	-11,03	21,95
10				1,61	0,0207	78,06						

Tabla 4.6.18.- Comparación entre las características aerodinámicas de los perfiles SZ2264 y la modificación SZ2264M evaluados a diferentes Números de Reynolds.

			S	Z2264,	SZ2264N	1; Re= 1.	000.00	0; Vfoil 22	Opts.			
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd _M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,39	0,0085	45,96	0,50	0,0077	65,74	0,11	-0,0009	19,78	28,52	-10,15	43,05
1	0,50	0,0081	60,92	0,61	0,0083	74,40	0,12	0,0001	13,48	24,00	1,52	22,14
2	0,60	0,0081	73,43	0,73	0,0102	71,66	0,14	0,0021	-1,77	22,80	25,83	-2,41
3	0,71	0,0084	84,32	0,85	0,0108	78,70	0,14	0,0023	-5,62	19,07	27,57	-6,66
4	0,83	0,0097	85,21	0,96	0,0112	85,70	0,13	0,0015	0,49	15,76	15,10	0,57
5	0,94	0,0107	87,80	1,07	0,0118	90,39	0,13	0,0011	2,59	13,74	10,49	2,95
6	1,04	0,0137	75,82	1,16	0,0129	89,98	0,12	-0,0008	14,16	11,80	-5,79	18,68
7	1,15	0,0153	75,41	1,27	0,0138	92,22	0,12	-0,0015	16,80	10,50	-9,64	22,28
8	1,26	0,0166	76,32	1,38	0,0146	94,80	0,12	-0,0020	18,48	9,56	-11,80	24,22
9	1,37	0,0178	77,04	1,49	0,0155	96,65	0,12	-0,0024	19,61	8,85	-13,24	25,46
10	1,48	0,0195	75,95	1,60	0,0168	95,75	0,12	-0,0028	19,80	8,22	-14,16	26,08
11	1,59	0,0225	70,74	1,71	0,0179	95,78	0,12	-0,0046	25,05	7,52	-20,60	35,41
12				1,82	0,0200	90,83						

			S	Z2264,	SZ2264N	/; Re= 3.	000.00	0; Vfoil 22	Opts.			
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd_M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,37	0,0071	52,06	0,49	0,0068	72,43	0,12	-0,0003	20,38	33,64	-3,95	39,14
1	0,48	0,0071	67,54	0,59	0,0064	92,75	0,11	-0,0007	25,21	23,31	-10,21	37,33
2	0,59	0,0070	83,42	0,71	0,0079	89,86	0,12	0,0009	6,44	21,16	12,48	7,72
3	0,69	0,0071	97,73	0,83	0,0083	99,16	0,14	0,0013	1,43	19,84	18,11	1,46
4	0,81	0,0078	103,96	0,94	0,0087	108,55	0,13	0,0009	4,59	16,58	11,64	4,42
5	0,92	0,0086	106,66	1,05	0,0092	114,23	0,13	0,0005	7,57	13,75	6,21	7,09
6	1,03	0,0102	100,99	1,16	0,0096	121,28	0,13	-0,0006	20,29	12,48	-6,34	20,09
7	1,13	0,0121	93,48	1,27	0,0102	125,05	0,15	-0,0019	31,56	12,85	-15,64	33,76
8	1,24	0,0131	95,13	1,37	0,0112	122,12	0,13	-0,0018	26,99	10,19	-14,16	28,37
9	1,35	0,0140	96,82	1,48	0,0118	125,57	0,13	-0,0022	28,75	9,39	-15,65	29,70
10	1,46	0,0152	96,21	1,59	0,0130	122,53	0,13	-0,0022	26,32	8,70	-14,65	27,36
11	1,58	0,0175	90,02	1,70	0,0151	112,94	0,13	-0,0024	22,93	8,01	-13,92	25,47
12	1,69	0,0191	88,21	1,81	0,0172	105,45	0,13	-0,0019	17,24	7,56	-10,03	19,55
13	1,79	0,0214	83,99									

			Ş	SZ2266	, SZ2266	M; Re= 5	500.000	; Vfoil 220	pts.			
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd_M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,59	0,0099	60,30	0,71	0,0104	68,36	0,12	0,0006	8,06	20,08	5,92	13,37
1	0,70	0,0100	70,26	0,82	0,0106	77,52	0,12	0,0006	7,27	16,90	5,94	10,34
2	0,81	0,0105	76,74	0,94	0,0128	73,03	0,13	0,0023	-3,71	15,85	21,73	-4,83
3	0,92	0,0114	80,46	1,04	0,0135	77,58	0,13	0,0021	-2,88	13,83	18,05	-3,58
4	1,03	0,0123	83,19	1,15	0,0140	82,04	0,12	0,0017	-1,15	12,15	13,71	-1,38
5	1,14	0,0155	73,88	1,26	0,0149	84,41	0,12	-0,0006	10,53	10,17	-3,57	14,25
6	1,25	0,0166	75,49	1,37	0,0159	85,78	0,12	-0,0006	10,29	9,26	-3,84	13,63
7	1,36	0,0183	74,32	1,47	0,0168	87,45	0,11	-0,0014	13,13	8,42	-7,86	17,67
8	1,45	0,0201	72,04	1,58	0,0182	86,78	0,13	-0,0019	14,74	9,18	-9,37	20,46
9	1,55	0,0220	70,63	1,66	0,0195	85,30	0,11	-0,0025	14,67	7,19	-11,24	20,76
10	1,65	0,0248	66,72	1,77	0,0213	83,04	0,12	-0,0035	16,32	7,02	-14,01	24,45
11				1,87	0,0234	79,97						

Tabla 4.6.19.- Comparación entre las características aerodinámicas de los perfiles SZ2266 y la modificación SZ2266M evaluados a diferentes Números de Reynolds.

			S	Z2266,	SZ2266N	/l; Re= 1.	000.00	0; Vfoil 22	0pts.			
α (deg)	Cl _B	Cd_B	ε _B	CIM	Cd _M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,57	0,0081	70,52	0,69	0,0086	80,60	0,12	0,0005	10,07	21,58	6,38	14,28
1	0,68	0,0081	83,12	0,80	0,0087	92,21	0,12	0,0006	9,09	18,46	6,78	10,94
2	0,79	0,0087	90,91	0,92	0,0108	85,31	0,13	0,0021	-5,60	16,68	24,34	-6,16
3	0,90	0,0094	95,30	1,03	0,0113	91,00	0,13	0,0019	-4,31	14,49	19,91	-4,52
4	1,01	0,0102	98,55	1,13	0,0117	96,82	0,13	0,0015	-1,73	12,42	14,44	-1,76
5	1,13	0,0131	85,82	1,24	0,0124	99,97	0,12	-0,0007	14,15	10,39	-5,24	16,49
6	1,23	0,0140	88,06	1,35	0,0132	102,08	0,12	-0,0007	14,03	9,72	-5,35	15,93
7	1,34	0,0155	86,64	1,46	0,0139	104,73	0,12	-0,0015	18,09	8,82	-9,98	20,88
8	1,45	0,0167	86,53	1,57	0,0150	104,53	0,12	-0,0017	18,01	8,26	-10,38	20,81
9	1,54	0,0185	83,04	1,67	0,0159	105,24	0,14	-0,0026	22,20	8,92	-14,06	26,74
10	1,64	0,0208	79,02	1,78	0,0173	102,97	0,14	-0,0035	23,95	8,33	-16,86	30,31
11	1,75	0,0231	75,75	1,87	0,0190	98,33	0,12	-0,0041	22,58	6,84	-17,69	29,80
12	1,85	0,0259	71,45	1,98	0,0223	88,54	0,12	-0,0036	17,08	6,56	-14,00	23,91

			S	Z2266,	SZ2266N	/l; Re= 3.	000.00	0; Vfoil 22	Opts.			
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd _M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,54	0,0065	83,79	0,67	0,0067	100,39	0,13	0,0002	16,60	23,05	2,71	19,81
1	0,65	0,0067	97,39	0,78	0,0069	112,55	0,12	0,0002	15,17	18,82	2,81	15,57
2	0,76	0,0070	108,30	0,89	0,0084	106,49	0,13	0,0014	-1,81	17,29	19,28	-1,67
3	0,87	0,0076	114,21	1,00	0,0088	114,13	0,13	0,0012	-0,08	15,19	15,28	-0,07
4	0,99	0,0085	116,49	1,12	0,0091	122,18	0,13	0,0007	5,70	13,20	7,92	4,89
5	1,10	0,0104	106,33	1,23	0,0097	126,78	0,13	-0,0007	20,45	11,35	-6,60	19,23
6	1,21	0,0110	109,77	1,34	0,0103	130,16	0,12	-0,0008	20,39	10,28	-6,99	18,57
7	1,32	0,0122	108,09	1,44	0,0107	134,68	0,12	-0,0015	26,59	9,11	-12,43	24,60
8	1,43	0,0132	108,55	1,55	0,0115	135,13	0,12	-0,0017	26,57	8,49	-12,85	24,48
9	1,54	0,0143	107,51	1,66	0,0121	137,18	0,12	-0,0022	29,66	8,11	-15,26	27,59
10	1,65	0,0161	102,40	1,77	0,0137	129,12	0,13	-0,0024	26,72	7,60	-14,67	26,10
11	1,74	0,0180	96,28	1,88	0,0156	120,40	0,14	-0,0024	24,11	8,26	-13,42	25,05
12	1,84	0,0200	92,16	1,97	0,0173	114,04	0,13	-0,0027	21,88	6,84	-13,66	23,74
13	1,95	0,0220	88,78									

			ç	SZ2274	, SZ2274	M; Re= 5	500.000	; Vfoil 220	pts.			
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd_M	٤ _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,55	0,0098	56,09	0,71	0,0107	66,30	0,16	0,0009	10,21	29,51	9,56	18,21
1	0,66	0,0100	66,01	0,83	0,0128	64,95	0,17	0,0028	-1,06	25,82	27,87	-1,60
2	0,78	0,0107	72,80	0,95	0,0133	71,29	0,17	0,0026	-1,51	21,25	23,81	-2,07
3	0,90	0,0117	76,88	1,06	0,0140	75,76	0,16	0,0023	-1,13	18,10	19,86	-1,47
4	1,01	0,0126	79,98	1,17	0,0148	79,13	0,16	0,0022	-0,85	16,35	17,61	-1,06
5	1,13	0,0157	71,80	1,28	0,0155	82,48	0,15	-0,0002	10,68	13,55	-1,16	14,88
6	1,24	0,0168	73,62	1,39	0,0166	83,89	0,16	-0,0002	10,27	12,64	-1,15	13,95
7	1,35	0,0187	72,31	1,50	0,0178	84,29	0,15	-0,0009	11,97	11,09	-4,69	16,55
8	1,46	0,0201	72,52	1,61	0,0192	83,59	0,15	-0,0008	11,06	10,45	-4,17	15,25
9	1,54	0,0221	69,91	1,72	0,0209	82,01	0,17	-0,0011	12,11	11,24	-5,18	17,32
10	1,65	0,0248	66,36	1,80	0,0228	79,26	0,16	-0,0021	12,91	9,42	-8,40	19,45

Tabla 4.6.20.- Comparación entre las características aerodinámicas de los perfiles SZ2274 y la modificación SZ2274M evaluados a diferentes Números de Reynolds.

			S	Z2274,	SZ2274	И; Re= 1.	000.00	0; Vfoil 22	0pts.			
α (deg)	Cl _B	Cd_B	ε _B	CIM	Cd _M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,51	0,0079	64,27	0,68	0,0087	78,13	0,17	0,0008	13,86	34,21	10,41	21,56
1	0,63	0,0081	76,79	0,81	0,0107	75,22	0,18	0,0026	-1,57	29,21	31,91	-2,05
2	0,74	0,0087	84,84	0,92	0,0111	83,04	0,18	0,0023	-1,81	23,94	26,63	-2,13
3	0,86	0,0096	89,73	1,03	0,0117	88,54	0,17	0,0021	-1,19	20,15	21,76	-1,32
4	0,97	0,0104	93,77	1,15	0,0123	92,85	0,17	0,0020	-0,92	17,72	18,88	-0,98
5	1,10	0,0133	82,56	1,26	0,0129	97,38	0,16	-0,0003	14,81	14,88	-2,59	17,94
6	1,21	0,0142	85,28	1,37	0,0138	99,43	0,16	-0,0004	14,15	13,29	-2,83	16,59
7	1,32	0,0158	83,52	1,48	0,0147	100,51	0,16	-0,0011	17,00	12,16	-6,80	20,35
8	1,43	0,0169	84,44	1,59	0,0158	100,26	0,16	-0,0010	15,83	11,42	-6,17	18,74
9	1,54	0,0184	83,52	1,70	0,0171	99,05	0,16	-0,0012	15,53	10,59	-6,75	18,60
10	1,63	0,0208	78,15	1,81	0,0187	96,85	0,18	-0,0022	18,70	10,97	-10,46	23,93
11	1,73	0,0231	75,17	1,89	0,0203	93,18	0,16	-0,0027	18,01	9,28	-11,84	23,96
12	1,84	0,0254	72,39	2,00	0,0224	89,56	0,16	-0,0031	17,17	8,79	-12,07	23,72

			S	Z2274,	SZ2274	/; Re= 3.	000.00	0; Vfoil 22	0pts.			
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd _M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,47	0,0059	78,80	0,65	0,0067	97,93	0,19	0,0007	19,13	39,65	12,37	24,27
1	0,59	0,0064	91,46	0,78	0,0083	93,13	0,19	0,0019	1,66	32,31	29,95	1,82
2	0,71	0,0071	99,90	0,89	0,0086	103,64	0,18	0,0015	3,73	26,17	21,63	3,74
3	0,82	0,0077	106,71	1,01	0,0091	110,89	0,18	0,0013	4,18	22,07	17,47	3,92
4	0,94	0,0085	110,28	1,12	0,0096	116,66	0,18	0,0011	6,39	19,38	12,84	5,79
5	1,06	0,0104	101,54	1,23	0,0100	123,23	0,17	-0,0004	21,69	16,25	-4,21	21,36
6	1,17	0,0111	105,43	1,35	0,0107	126,31	0,17	-0,0005	20,88	14,66	-4,29	19,80
7	1,29	0,0125	103,26	1,46	0,0114	128,32	0,17	-0,0011	25,06	13,10	-8,98	24,27
8	1,40	0,0133	105,25	1,57	0,0122	128,79	0,17	-0,0011	23,54	12,23	-8,28	22,37
9	1,51	0,0144	104,73	1,68	0,0131	127,92	0,17	-0,0013	23,20	11,31	-8,87	22,15
10	1,62	0,0162	100,13	1,79	0,0142	125,94	0,17	-0,0020	25,81	10,44	-12,19	25,78
11	1,73	0,0178	97,11	1,90	0,0154	123,21	0,17	-0,0024	26,10	9,94	-13,35	26,88
12	1,82	0,0196	92,81	2,01	0,0168	119,42	0,19	-0,0028	26,62	10,31	-14,28	28,68
13	1,93	0,0218	88,36	2,10	0,0180	116,50	0,17	-0,0038	28,14	8,78	-17,49	31,84
14	2,04	0,0240	84,76									

			Ś	SZ2279	, SZ2279	M; Re= 5	500.000	; Vfoil 220	pts.			
α (deg)	Cl _B	Cd_B	ε _B	CIM	Cd_M	٤ _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,41	0,0109	38,10	0,59	0,0103	56,94	0,17	-0,0005	18,84	42,13	-4,89	49,44
1	0,52	0,0104	49,62	0,68	0,0114	60,11	0,17	0,0009	10,49	32,21	9,13	21,14
2	0,63	0,0108	58,03	0,79	0,0118	66,71	0,16	0,0010	8,68	25,69	9,33	14,96
3	0,74	0,0113	65,71	0,90	0,0136	66,21	0,16	0,0024	0,49	22,00	21,09	0,75
4	0,85	0,0119	70,91	1,01	0,0145	70,18	0,17	0,0025	-0,74	20,04	21,30	-1,04
5	0,96	0,0125	76,26	1,13	0,0152	74,09	0,17	0,0027	-2,18	17,76	21,22	-2,85
6	1,07	0,0137	78,07	1,24	0,0160	77,26	0,17	0,0023	-0,81	15,71	16,92	-1,04
7	1,18	0,0148	79,67	1,35	0,0172	78,20	0,17	0,0024	-1,47	14,29	16,44	-1,85
8	1,29	0,0163	78,84	1,46	0,0205	71,23	0,17	0,0041	-7,61	13,26	25,36	-9,65
9	1,41	0,0232	60,64	1,57	0,0220	71,27	0,16	-0,0013	10,64	11,16	-5,43	17,54

Tabla 4.6.21.- Comparación entre las características aerodinámicas de los perfiles SZ2279 y la modificación SZ2279M evaluados a diferentes Números de Reynolds.

			S	Z2279,	SZ2279N	/l; Re= 1.	000.00	0; Vfoil 22	0pts.			
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd_M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,41	0,0088	46,98	0,57	0,0085	67,14	0,16	-0,0003	20,16	37,67	-3,66	42,90
1	0,52	0,0084	61,29	0,68	0,0089	76,22	0,16	0,0005	14,93	31,36	5,63	24,36
2	0,60	0,0088	68,52	0,79	0,0093	85,62	0,19	0,0004	17,09	31,02	4,86	24,95
3	0,71	0,0092	77,55	0,89	0,0114	78,07	0,17	0,0022	0,52	24,50	23,67	0,67
4	0,83	0,0097	84,70	1,00	0,0120	83,11	0,17	0,0023	-1,59	21,07	23,39	-1,88
5	0,94	0,0102	91,59	1,11	0,0126	88,23	0,17	0,0024	-3,36	18,58	23,09	-3,67
6	1,05	0,0112	93,80	1,22	0,0132	92,61	0,17	0,0020	-1,19	16,37	17,87	-1,27
7	1,16	0,0125	93,02	1,33	0,0142	94,20	0,17	0,0017	1,19	14,78	13,33	1,28
8	1,27	0,0143	89,39	1,45	0,0170	84,96	0,17	0,0028	-4,43	13,57	19,49	-4,95
9	1,40	0,0197	70,99	1,56	0,0182	85,69	0,16	-0,0015	14,70	11,60	-7,54	20,71
10	1,50	0,0217	69,31	1,67	0,0198	84,13	0,16	-0,0019	14,82	10,79	-8,73	21,38
11	1,61	0,0239	67,35	1,78	0,0213	83,37	0,16	-0,0026	16,02	10,10	-11,06	23,79

			S	Z2279,	SZ2279N	/l; Re= 3.	000.00	0; Vfoil 22	0pts.			
α (deg)	Cl _B	Cd_{B}	ε _B	Cl _M	Cd_M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,39	0,0073	53,24	0,55	0,0070	79,13	0,16	-0,0003	25,90	41,98	-4,48	48,64
1	0,50	0,0071	70,23	0,66	0,0068	97,20	0,16	-0,0004	26,96	31,42	-5,04	38,39
2	0,61	0,0069	88,11	0,77	0,0071	109,51	0,17	0,0002	21,40	27,34	2,45	24,29
3	0,71	0,0066	108,15	0,89	0,0084	105,92	0,18	0,0018	-2,23	25,52	28,16	-2,06
4	0,82	0,0071	116,83	1,00	0,0088	113,57	0,18	0,0018	-3,25	21,83	25,32	-2,78
5	0,92	0,0083	110,24	1,09	0,0097	112,37	0,17	0,0014	2,13	18,82	16,57	1,93
6	1,03	0,0095	109,14	1,20	0,0101	118,75	0,17	0,0007	9,62	16,42	6,99	8,81
7	1,15	0,0111	103,71	1,32	0,0109	121,39	0,17	-0,0002	17,68	14,60	-2,09	17,05
8	1,26	0,0124	101,49	1,43	0,0132	108,44	0,18	0,0008	6,95	13,99	6,68	6,85
9	1,37	0,0155	88,45	1,54	0,0140	110,23	0,17	-0,0015	21,79	12,31	-9,89	24,63
10	1,49	0,0171	87,08	1,65	0,0152	109,06	0,17	-0,0019	21,98	11,40	-11,05	25,24
11	1,60	0,0186	85,56	1,77	0,0162	109,25	0,17	-0,0025	23,69	10,64	-13,35	27,68
12	1,70	0,0205	83,25	1,88	0,0173	108,67	0,17	-0,0032	25,42	9,98	-15,74	30,53
13	1,81	0,0238	76,40	1,98	0,0185	107,36	0,17	-0,0053	30,95	9,35	-22,18	40,51

			Ş	SZ2288	, SZ2288	M; Re= 5	500.000	; Vfoil 220	pts.			
α (deg)	Cl _B	Cd_B	٤ _B	Cl _M	Cd_M	٤ _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,60	0,0104	57,32	0,76	0,0112	67,84	0,16	0,0007	10,52	26,67	7,02	18,36
1	0,71	0,0108	65,82	0,87	0,0118	74,36	0,16	0,0009	8,54	22,87	8,76	12,97
2	0,82	0,0112	73,78	0,99	0,0136	73,03	0,17	0,0024	-0,75	20,36	21,60	-1,02
3	0,94	0,0118	79,69	1,10	0,0143	77,02	0,17	0,0026	-2,67	17,82	21,90	-3,35
4	1,05	0,0123	85,13	1,21	0,0149	81,26	0,17	0,0026	-3,87	15,76	21,27	-4,55
5	1,16	0,0132	87,46	1,32	0,0157	84,50	0,16	0,0024	-2,96	14,22	18,22	-3,39
6	1,27	0,0142	89,18	1,43	0,0165	86,92	0,17	0,0023	-2,26	13,12	16,06	-2,53
7	1,36	0,0158	85,72	1,52	0,0197	77,29	0,17	0,0039	-8,43	12,24	24,48	-9,83
8	1,48	0,0220	67,12	1,63	0,0210	77,65	0,15	-0,0010	10,54	10,28	-4,69	15,70
9	1,59	0,0243	65,48	1,74	0,0229	75,96	0,15	-0,0014	10,48	9,39	-5,69	16,00

Tabla 4.6.22.- Comparación entre las características aerodinámicas de los perfiles SZ2288 y la modificación SZ2288M evaluados a diferentes Números de Reynolds.

			S	Z2288,	SZ2288N	/l; Re= 1.	000.00	0; Vfoil 22	Opts.			
α (deg)	Cl _B	Cd _B	ε _B	CIM	Cd _M	ε _M	ΔCI	ΔCd	Δε	%CI	%Cd	%ε
0	0,56	0,0085	66,05	0,73	0,0092	80,06	0,17	0,0006	14,01	30,18	7,40	21,21
1	0,68	0,0088	76,65	0,85	0,0097	87,84	0,17	0,0008	11,19	25,41	9,44	14,59
2	0,79	0,0092	86,51	0,97	0,0114	85,28	0,18	0,0022	-1,23	22,13	23,89	-1,42
3	0,91	0,0097	93,79	1,08	0,0120	90,29	0,18	0,0023	-3,50	19,40	24,02	-3,73
4	1,02	0,0101	100,85	1,19	0,0124	95,82	0,17	0,0023	-5,03	17,11	23,26	-4,99
5	1,13	0,0109	103,76	1,30	0,0130	100,15	0,17	0,0021	-3,62	15,29	19,45	-3,49
6	1,24	0,0119	104,57	1,41	0,0136	103,71	0,17	0,0018	-0,86	13,82	14,76	-0,82
7	1,35	0,0134	100,88	1,53	0,0165	92,67	0,17	0,0031	-8,21	12,78	22,77	-8,14
8	1,46	0,0188	77,42	1,61	0,0176	91,86	0,15	-0,0013	14,44	10,62	-6,77	18,65
9	1,56	0,0206	75,94	1,72	0,0190	90,52	0,16	-0,0016	14,58	10,12	-7,62	19,20
10	1,67	0,0225	74,24	1,83	0,0203	89,94	0,16	-0,0022	15,70	9,52	-9,60	21,15
11	1,78	0,0256	69,50	1,94	0,0218	88,70	0,16	-0,0037	19,20	9,09	-14,52	27,62
12				2,04	0.0235	86,80						

			S	Z2288,	SZ2288	/l; Re= 3.	000.00	0; Vfoil 22	Opts.			
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd _M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,52	0,0064	81,79	0,70	0,0069	101,52	0,18	0,0005	19,74	34,10	8,03	24,13
1	0,64	0,0067	95,97	0,82	0,0074	111,50	0,18	0,0007	15,53	28,23	10,37	16,18
2	0,76	0,0069	109,07	0,94	0,0088	106,35	0,18	0,0019	-2,72	24,41	27,59	-2,49
3	0,87	0,0073	118,85	1,05	0,0093	113,30	0,18	0,0020	-5,55	21,09	27,02	-4,67
4	0,99	0,0081	122,22	1,17	0,0097	120,90	0,18	0,0016	-1,32	18,20	19,49	-1,08
5	1,10	0,0089	123,95	1,28	0,0101	127,16	0,18	0,0012	3,21	16,37	13,43	2,59
6	1,22	0,0103	117,56	1,39	0,0105	132,70	0,17	0,0001	15,14	14,32	1,28	12,88
7	1,33	0,0118	112,47	1,51	0,0129	117,21	0,17	0,0010	4,74	13,12	8,55	4,21
8	1,45	0,0147	98,53	1,62	0,0136	119,19	0,17	-0,0012	20,66	11,44	-7,88	20,97
9	1,54	0,0164	93,91	1,73	0,0146	118,03	0,19	-0,0017	24,12	12,32	-10,63	25,69
10	1,65	0,0178	92,68	1,81	0,0157	115,76	0,17	-0,0021	23,08	10,11	-11,84	24,90
11	1,76	0,0201	87,39	1,92	0,0167	115,37	0,17	-0,0034	27,98	9,39	-17,14	32,01
12	1,87	0,0222	83,99	2,03	0,0177	114,43	0,16	-0,0045	30,43	8,83	-20,12	36,23
13	1,97	0,0246	79,93									

			Ş	SZ2289	, SZ2289	M; Re= 5	500.000	; Vfoil 220	pts.			
α (deg)	Cl _B	Cd_B	٤ _B	Cl _M	Cd_M	ε _M	ΔCI	ΔCd	Δε	%CI	%Cd	%ε
0	0,57	0,0103	55,62	0,73	0,0111	66,00	0,16	0,0008	10,38	27,87	7,76	18,66
1	0,69	0,0107	64,47	0,85	0,0117	72,83	0,16	0,0010	8,36	23,01	8,90	12,96
2	0,81	0,0111	72,73	0,97	0,0135	72,02	0,16	0,0024	-0,71	20,16	21,34	-0,97
3	0,92	0,0117	78,61	1,08	0,0142	76,23	0,16	0,0025	-2,38	17,91	21,60	-3,03
4	1,03	0,0122	84,49	1,19	0,0148	80,44	0,16	0,0027	-4,05	16,02	21,86	-4,79
5	1,14	0,0131	86,80	1,30	0,0156	83,80	0,16	0,0024	-3,01	14,28	18,38	-3,46
6	1,25	0,0141	88,71	1,41	0,0164	86,31	0,16	0,0023	-2,40	12,95	16,09	-2,70
7	1,34	0,0158	85,05	1,50	0,0196	76,76	0,16	0,0038	-8,28	12,29	24,40	-9,74
8	1,46	0,0219	66,78	1,61	0,0209	77,16	0,15	-0,0010	10,38	10,42	-4,43	15,54
9	1,57	0,0239	65,54	1,72	0,0228	75,54	0,15	-0,0011	10,01	9,83	-4,72	15,27

Tabla 4.6.23.- Comparación entre las características aerodinámicas de los perfiles SZ2289 y la modificación SZ2289M evaluados a diferentes Números de Reynolds.

			S	Z2289,	SZ2289N	И; Re= 1.	000.00	0; Vfoil 22	0pts.			
α (deg)	Cl _B	Cd _B	ε _B	Cl _M	Cd _M	ε _M	ΔCI	ΔCd	Δε	%CI	%Cd	%ε
0	0,54	0,0084	63,73	0,71	0,0091	77,65	0,17	0,0007	13,92	31,84	8,21	21,84
1	0,65	0,0088	74,38	0,82	0,0096	85,80	0,17	0,0008	11,42	26,17	9,38	15,36
2	0,77	0,0091	84,48	0,94	0,0112	83,90	0,17	0,0021	-0,58	22,74	23,59	-0,68
3	0,88	0,0096	92,01	1,06	0,0118	89,16	0,17	0,0023	-2,85	19,68	23,50	-3,10
4	0,99	0,0100	99,59	1,17	0,0124	94,59	0,18	0,0024	-5,00	17,69	23,91	-5,02
5	1,11	0,0108	102,40	1,28	0,0129	99,13	0,17	0,0021	-3,27	15,73	19,55	-3,20
6	1,22	0,0118	103,58	1,39	0,0135	102,83	0,17	0,0018	-0,75	14,07	14,90	-0,72
7	1,33	0,0131	101,56	1,48	0,0165	90,13	0,15	0,0034	-11,43	11,47	25,61	-11,26
8	1,44	0,0187	76,87	1,59	0,0175	91,17	0,16	-0,0012	14,30	11,07	-6,35	18,60
9	1,54	0,0203	76,05	1,70	0,0189	89,92	0,16	-0,0013	13,88	10,39	-6,65	18,25
10	1,65	0,0224	73,85	1,81	0,0202	89,45	0,16	-0,0021	15,60	9,66	-9,46	21,12
11	1,76	0,0246	71,44	1,92	0,0217	88,40	0,16	-0,0029	16,96	9,05	-11,87	23,74
12				2,02	0,0234	86,51						

			S	Z2289,	SZ2289N	/l; Re= 3.	000.00	0; Vfoil 22	Opts.			
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd_M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,49	0,0063	78,49	0,67	0,0068	98,51	0,18	0,0006	20,02	36,96	9,12	25,51
1	0,61	0,0066	92,68	0,79	0,0073	108,92	0,18	0,0007	16,25	29,90	10,52	17,53
2	0,73	0,0068	106,21	0,91	0,0087	104,73	0,19	0,0019	-1,48	25,47	27,24	-1,39
3	0,84	0,0072	116,34	1,03	0,0092	111,87	0,18	0,0019	-4,47	21,87	26,74	-3,84
4	0,96	0,0079	120,66	1,14	0,0096	119,35	0,18	0,0016	-1,31	19,00	20,30	-1,08
5	1,07	0,0088	122,18	1,25	0,0100	125,84	0,18	0,0012	3,66	16,91	13,51	3,00
6	1,19	0,0101	117,90	1,37	0,0104	131,47	0,18	0,0003	13,57	14,78	2,93	11,51
7	1,31	0,0116	112,88	1,48	0,0127	116,56	0,18	0,0011	3,67	13,44	9,86	3,25
8	1,42	0,0145	98,09	1,59	0,0135	118,52	0,17	-0,0011	20,42	11,97	-7,32	20,82
9	1,51	0,0161	94,10	1,70	0,0145	117,60	0,19	-0,0016	23,50	12,52	-9,97	24,97
10	1,63	0,0176	92,12	1,79	0,0156	115,06	0,17	-0,0021	22,94	10,29	-11,70	24,90
11	1,74	0,0192	90,16	1,90	0,0166	114,94	0,17	-0,0027	24,77	9,61	-14,02	27,47
12	1,84	0,0220	83,77	2,01	0,0176	114,00	0,17	-0,0044	30,23	9,15	-19,79	36,09
13	1,95	0,0244	79,93									

			ŝ	SZ2290	, SZ2290	M; Re= 5	500.000	; Vfoil 220	pts.			
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd _M	٤ _M	ΔCI	ΔCd	Δε	%CI	%Cd	%ε
0	1,03	0,0109	93,88	1,13	0,0114	99,05	0,10	0,0004	5,17	9,61	3,90	5,50
1	1,13	0,0112	101,09	1,23	0,0117	104,73	0,10	0,0006	3,65	8,90	5,11	3,61
2	1,23	0,0117	105,51	1,33	0,0123	108,06	0,10	0,0007	2,55	8,13	5,58	2,42
3	1,33	0,0123	108,38	1,43	0,0129	111,09	0,10	0,0006	2,70	7,48	4,87	2,49
4	1,43	0,0129	111,47	1,54	0,0140	110,09	0,10	0,0011	-1,39	7,10	8,45	-1,25
5	1,54	0,0140	109,92	1,64	0,0163	100,71	0,11	0,0023	-9,21	6,85	16,63	-8,38
6	1,64	0,0155	105,74	1,74	0,0172	101,41	0,11	0,0017	-4,33	6,44	10,98	-4,09
7	1,76	0,0216	81,43	1,85	0,0185	99,87	0,09	-0,0031	18,45	5,09	-14,33	22,66
8	1,86	0,0242	76,82	1,95	0,0220	88,47	0,09	-0,0021	11,66	4,98	-8,85	15,18
9	1,96	0,0270	72,50	2,05	0,0241	85,19	0,09	-0,0029	12,70	4,71	-10,89	17,51
10	2,06	0,0306	67,26	2,15	0,0284	75,80	0,10	-0,0022	8,54	4,71	-7,09	12,70

Tabla 4.6.24.- Comparación entre las características aerodinámicas de los perfiles SZ2290 y la modificación SZ2290M evaluados a diferentes Números de Reynolds.

			S	Z2290,	SZ2290N	/l; Re= 1.	000.00	0; Vfoil 22	0pts.			
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd _M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	1,00	0,0091	109,32	1,10	0,0095	116,10	0,10	0,0003	6,78	10,13	3,70	6,20
1	1,10	0,0093	118,53	1,20	0,0098	123,32	0,10	0,0005	4,79	9,33	5,08	4,04
2	1,21	0,0097	124,12	1,31	0,0102	127,73	0,10	0,0005	3,61	8,52	5,45	2,91
3	1,31	0,0103	127,85	1,41	0,0107	131,91	0,10	0,0005	4,05	7,82	4,51	3,17
4	1,41	0,0107	132,45	1,52	0,0116	130,78	0,10	0,0009	-1,67	7,38	8,75	-1,26
5	1,52	0,0120	126,95	1,62	0,0137	118,58	0,11	0,0017	-8,36	7,01	14,55	-6,59
6	1,62	0,0137	118,68	1,73	0,0144	120,08	0,11	0,0007	1,40	6,48	5,24	1,18
7	1,74	0,0185	94,21	1,83	0,0154	118,92	0,09	-0,0031	24,70	5,30	-16,57	26,22
8	1,84	0,0207	89,01	1,94	0,0185	104,66	0,10	-0,0022	15,65	5,16	-10,56	17,58
9	1,94	0,0229	84,87	2,04	0,0201	101,44	0,10	-0,0028	16,57	4,98	-12,17	19,53
10	2,04	0,0256	79,87	2,14	0,0237	90,46	0,10	-0,0019	10,59	4,87	-7,40	13,26
11	2,15	0,0290	74,09	2,25	0,0262	85,56	0,10	-0,0027	11,48	4,68	-9,36	15,49

SZ2290, SZ2290M; Re= 3.000.000; Vfoil 220pts.												
α (deg)	Cl _B	Cd _B	ε _B	CIM	Cd _M	ε _M	ΔCI	ΔCd	Δε	%Cl	%Cd	%ε
0	0,96	0,0070	136,97	1,07	0,0073	145,52	0,11	0,0003	8,55	11,00	4,48	6,25
1	1,07	0,0072	148,63	1,18	0,0076	155,52	0,11	0,0004	6,89	9,94	5,07	4,63
2	1,18	0,0076	153,86	1,28	0,0081	159,09	0,11	0,0004	5,23	9,05	5,47	3,40
3	1,28	0,0082	156,41	1,39	0,0086	161,99	0,11	0,0004	5,58	8,27	4,55	3,57
4	1,39	0,0091	152,65	1,50	0,0093	160,59	0,11	0,0002	7,95	7,58	2,26	5,20
5	1,50	0,0108	138,40	1,60	0,0107	149,24	0,10	-0,0001	10,84	6,92	-0,85	7,83
6	1,61	0,0124	129,59	1,71	0,0112	152,23	0,10	-0,0012	22,64	6,36	-9,46	17,47
7	1,72	0,0148	116,09	1,81	0,0120	151,65	0,10	-0,0028	35,55	5,65	-19,12	30,63
8	1,82	0,0166	109,83	1,92	0,0145	132,47	0,10	-0,0021	22,64	5,46	-12,57	20,61
9	1,93	0,0182	105,83	2,03	0,0157	129,34	0,10	-0,0025	23,51	5,24	-13,89	22,22
10	2,03	0,0201	100,95	2,13	0,0185	115,23	0,11	-0,0016	14,28	5,17	-7,86	14,14
11	2,13	0,0224	95,30	2,24	0,0203	110,21	0,10	-0,0021	14,91	4,90	-9,30	15,65
12	2,23	0,0251	89,00	2,34	0,0224	104,31	0,11	-0,0027	15,31	4,73	-10,64	17,20
13	2,34	0,0285	82,05	2,44	0,0250	97,82	0,11	-0,0035	15,77	4,53	-12,32	19,22

4.7. COMENTARIOS

Analizando las tablas de la sección anterior se puede observar que la influencia de la modificación del borde de ataque genera un patrón de variación de las características aerodinámicas para la mayoría de los perfiles estudiado.

Al comparar los coeficientes de sustentación entre el perfil base y su modificación correspondiente, se puede observar que para la mayoría de los casos el coeficiente del perfil modificado esta por encima del evaluado para el perfil base en un valor de incremento absoluto constante que se mantiene hasta que uno de los dos alcanza el ángulo de sustentación máxima. El incremento porcentual en el coeficiente se sustentación para el ángulo de incidencia de 10° y Re = 1.000.000, varia entre 4,87% hasta 14.79%. Si graficáramos estos valores para un mismo Número de Reynolds se visualizarían la curva de sustentación del perfil modificado casi paralela a la del perfil base pero por encima de esta a una distancia igual a la del incremento promedio. Para la mayoría de los perfiles base y modificados el incremento entre de los coeficientes de sustentación es relativamente constante a los diferentes Números de Reynolds evaluados.

Para ángulos de 5° el incremento del valor de C_L en los perfiles modificados es del mismo orden de magnitud que para $\alpha = 10^\circ$. Para ángulos de incidencia menores de 5°, en la mayoría de los casos el incremento porcentual es mayor. Para cada perfil estudiado los valores están reportados en las tablas de comparación.

Comparando únicamente los coeficientes de sustentación máximos entre los perfiles base y modificado, se puede observar que los todos los modificados mostraron un incremento significativo. Para el Número de Reynolds de referencia (Re = 1.000.000) el valor de este incremento osciló entre 4% y 49%. Estas variaciones se deben a que la mayoría de los perfiles modificados alcanzaron el coeficiente de sustentación máximo a valores de ángulo de ataque diferentes a los de los perfiles base. Particularmente, 13/24 de los perfiles modificados alcanzaron la sustentación máxima en valores de ángulos de ataque entre 3 y 1 grado por encima del perfil base. Para 30% de los perfiles el coeficiente de sustentación máxima se alcanzó para el mismo valor de ángulo de ataque que el perfil base. Aproximadamente 12% de los perfiles modificados alcanzaron el valor máximo de C_L en ángulos un grado menor en referencia con el perfil base.

El coeficiente de arrastre para la mayor parte de los perfiles modificados aumenta para ángulos de ataque comprendidos entre 0° y 7°, pero una vez superado este rango, adquieren valores por debajo de los del perfil base. En la mayoría de los casos esto se traduce en un incremento en la curva de fineza para los ángulos próximos al de sustentación máxima superando los valores de fineza del perfil base. El porcentaje de incremento para estos ángulos a Re = 1.000.000 varia entre los valores 3,75% y 55,04%.

En la mayoría de los casos se apreció que al aumentar el numero de Reynolds las características aerodinámicas del perfil modificado se mejoraban con respecto al perfil base homologo. Sin embargo, particularmente para los perfiles de la serie SZ modificados el aumento del Número de Reynolds se tradujo en una disminución del ángulo de incidencia para el cual se obtiene la sustentación máxima, alrededor de 1° con respecto al perfil base. Esta variación no comprometió el buen comportamiento de características aerodinámicas como sustentación, arrastre y fineza, pero si implica que los mismos pueden alcanzar el Stall en ángulos de ataque inferiores al de los perfiles base.

La explicación del incremento de C_L de los perfiles modificados consiste en el aumento de la flecha máxima de estos perfiles como consecuencia del cambio del borde de ataque.

En base a los resultados obtenidos en la evaluación computacional de los perfiles base de la serie FX y SZ2200 y de los perfiles modificados se puede inferir que el procedimiento de modificación del bode de ataque utilizado conlleva a un mejoramiento de las características aerodinámicas. Por ser un procedimiento fácil de implementar y que no afecta la geometría global del perfil se puede considerar que puede presentar interés para los diseñadores de turbomáquinas, planeadores, aviones, etc.

5. CAPITULO 5: SIMULACIÓN COMPUTACIONAL DEL FLUJO ALREDEDOR DE DOS PERFILES UTILIZANDO EL PROGRAMA ANSYS CFX

En este capitulo se muestra el comportamiento del flujo alrededor de los perfiles FX 66-17A-175, y su modificación respectiva ZAREA 66-17A-175. Para realizar dicha simulación se utilizo la herramienta computacional CFX con la cual se logro obtener valores de coeficientes de sustentación y coeficientes de arrastre, además de, la visualización grafica del comportamiento del flujo a través de gráficos de; distribución de presión, distribución de velocidades, vectores de velocidad del flujo alrededor del perfil, y vectores de fuerza sobre la superficie del perfil.

Para la redacción de este texto se utilizo el manual de CFX, las clases impartidas por el Prof. Julio Segura sobre este tema e incluso las explicaciones prácticas guiadas por el Ing. Miguel Baritto y su tesis de grado (Baritto, M., 2007).

La primera parte ofrece un enfoque general sobre la estructura del programa CFX, nombra el método fundamental de cálculo que utiliza, y las funciones y alcances del mismo.

La segunda parte del Capitulo se encuentra completamente dedicada a la metodología de trabajo seguida. El programa CFX se encuentra estructurado de tal manera que hace necesario el cumplimiento de las siguientes 5 tareas fundamentales:

- Diseño de la geometría.
- Diseño y generación de la malla.
- Pre-procesamiento.
- Calculador (Solver).
- Post-procesamiento.

Cada una de estas tareas será explicada con gran detalle en esta sección del capitulo 5.

En las tercera parte de este capitulo se muestran los resultados obtenidos de las simulaciones realizadas para ambos perfiles en forma de tablas e imágenes producto del post-procesamiento.

Finalmente se muestran comentarios referentes a la comparación entre los resultados del perfil base y modificado.

5.1. NOCIONES BÁSICAS

El conjunto de expresiones matemáticas que describen los procesos de momentum, transferencia de calor y masa son conocidas como las ecuaciones de Navier-Stokes. Este agregado de ecuaciones diferenciales parciales que fueron obtenidas a principios de siglo XIX no tienen una solución general analítica, pero pueden ser discretizadas y resueltas por métodos numéricos.

Otros procesos, como el de la combustión, pueden ser descritos con otras ecuaciones que se resuelven en conjunto con las de Navier-Stokes. A menudo es utilizado un modelo aproximado para generar estas ecuaciones adicionales. Un claro ejemplo de esto son los modelos de turbulencia.

Existen diferentes métodos de solución en los códigos CFD. El más común es el conocido como "Método de volúmenes finitos" en el cual esta basado el software ANSYS CFX.

El método de volúmenes finitos consiste en dividir la región de interés en pequeñas subregiones, llamadas volúmenes de control. Las ecuaciones son discretizadas y resueltas de forma iterativa para cada elemento de volumen finito, obteniéndose como resultado un valor aproximado de cada variable en cualquier lugar del dominio. De este modo, se puede obtener una imagen del comportamiento del flujo dentro de la región estudiada.

5.1.1. ESTRUCTURA DEL SOFTWARE ANSYS CFX

ANSYS CFX consta de cinco módulos de software que intercambian la información requerida para realizar un análisis CFD:

Fig. 5.1.1.- Estructura del software ANSYS CFX.

- Software generador de malla ó CFX CAD2Mesh: Es el módulo de software encargado de generar una malla de acuerdo a una geometría (la del volumen de control) siguiendo ciertos parámetros que pueden ser establecidos por el usuario, tales como, forma, tamaño, separación, orientación, factores de expansión, entre otros, de los elementos de volumen finito.
- Pre-procesador físico: ANSYS CFX-Pre permite la importación de diferentes tipos de malla con el fin de que las geometrías más complejas puedan ser procesadas. En este modulo el usuario selecciona aspectos físicos del flujo, las condiciones de borde, valores iniciales y parámetros de cálculo.
- Calculador: ANSYS CFX-Solver resuelve todas las variables de solución para la simulación del problema de acuerdo a las especificaciones establecidas en el preprocesador físico.
- Administrador de trabajo CFD: ANSYS CFX-Solver Manager provee un mayor control para el manejo de las tareas CFD. Sus funciones mas importantes son:

- o Especificación de los archivos de entrada del ANSYS CFX-Solver.
- Iniciar y detener el calculador.
- o Monitoreo del proceso iterativo.
- o Configuración del calculador para cálculos en paralelo.
- Post-procesador: ANSYS CFX-Post provee a través de una interfaz grafica herramientas para analizar y presentar los resultados de la simulación. Las características mas importantes incluidas en este modulo son:
 - Post procesamiento cuantitativo.
 - o Generación de reportes.
 - o Líneas de comando y estado de los archivos de entrada.
 - Variables definidas por el usuario.
 - Generación de una variedad de gráficos donde la visibilidad, trasparencia y precisión de las líneas pueden ser controlada por el usuario.

5.2. METODOLOGÍA DE TRABAJO Y PARÁMETROS ESTABLECIDOS

La metodología seguida para simular el flujo alrededor de los perfiles seleccionados consta de 5 pasos fundamentales que serán desarrollados a continuación en el orden de aplicación:

Diseño de la geometría

Antes de generar la malla es necesario crear una geometría sólida y cerrada. Esta puede ser creada utilizando el software modelador de geometría de ANSYS (desing modeller), o cualquier otro programa de dibujo asistido por computadora que permita generar sólidos.

La geometría sólida debe representar el espacio que ocupara el fluido en el proceso a simular. Por ejemplo, si se desea evaluar el flujo dentro de una tubería de sección circular, la geometría creada debería ser un cilindro macizo de diámetro igual al interno del conducto.

En este caso se desea simular el flujo alrededor de un perfil aerodinámico, por lo tanto, la geometría creada para esta situación está representada por una placa plana rectangular de muy poco espesor (debido a que se simulara un problema en 2D) agujereada con la forma del contorno del perfil. Las dimensiones empleadas para la lámina delgada variaron desde un valor mínimo de

15000mm x 7000mm x 10mm donde el contorno del perfil (orificio) está situado aproximadamente en el centro, hasta valores de 35000mm x 7000mm x10mm con el perfil ubicado en el mismo punto, es decir, prolongando en 20000mm el volumen de control después del borde de fuga. La razón de esta variación en la geometría se debe a que para las simulaciones con alto valor de ángulo de ataque y Número de Reynolds es necesaria una mayor extensión del dominio aguas abajo del perfil para lograr que la perturbación generada en el flujo se disipe completamente antes de llegar a la salida.

El contorno del perfil fue trazado basándose una longitud de cuerda de 1000mm. Para cada ángulo de ataque evaluado fue necesaria la generación de un nuevo sólido, con el fin de que la misma cumpliera con las condiciones necesarias para la simulación.

Todos estos modelos fueron diseñados y generados con el software de dibujo AutoCAD 2006.

Diseño y generación de la malla.

En esta etapa se utilizó el módulo CFX-Mesh incluido en el software ANSYS CFX, el cual genera mallas con elementos no estructurados.

Al importar la geometría del volumen de control al generador de malla, la misma debió ser dividida en 6 regiones correspondientes a las siete superficies que la forman y que fueron identificadas como muestra la figura:

Fig. 5.2.1.- Dibujo de la geometría e identificación de sus regiones.

A continuación se enumeran ciertos parámetros de diseño que debieron ser aplicados con el fin de obtener una malla de superficie más refinada alrededor del perfil:

- Puntos de control: Es un parámetro que limita el tamaño de los elementos de volumen finito que se encuentran dentro de un radio definido a partir de un punto céntrico ubicado por el usuario. En la malla generada se establecieron 4 puntos de control distribuidos en el borde de ataque, borde de fuga, extradós e intradós respectivamente con el fin de incluir completamente los alrededores del perfil. El radio de alcance establecido para los puntos de control fue de 350mm con una longitud de aristas (length Scale) de 5mm y un factor de expansión de 1.1.
- Expansión (inflation): Este parámetro permite definir la cantidad de capas de elementos alrededor de una superficie en una región perpendicular a la misma, con el fin de cuantificar los efectos de capa límite. En la malla generada se aplicó este parámetro sobre la superficie del perfil definiendo 14 capas de elementos en una región de 5 milímetros perpendicular a la misma.

En la siguiente figura se puede visualizar claramente el efecto de estos dos parámetros establecidos sobre la malla de superficie generada:

Fig. 5.2.2.- Influencia de los puntos de control y expansión sobre la malla de superficie.

Para generar la malla de volumen se utilizó un parámetro recomendado para simulaciones bidimensionales denominado extrusión 2D, el cual permite extrudir entre dos planos una cantidad

determinada de capas de malla superficial. Este parámetro fue aplicado entre las superficies frontal y trasera, limitando a 5 el numero de capas extruidas.

En función de los parámetros discutidos anteriormente se generaron 4 mallas con diferentes cantidades de elementos que van desde 97680 hasta 509880, las cuales presentan la estructura explicada en los párrafos anteriores e ilustrada en la figura 5.5.2. Entre las mallas 1 y 4 la concentración de elementos alrededor del perfil se fue incrementando disminuyendo el tamaño de cada elemento, todo esto con el fin de hallar una concentración de elementos alrededor del perfil para la cual el resultado de los coeficientes aerodinámicos obtenidos a partir de las simulaciones CFD fuera independiente de la cantidad de elementos dentro del dominio.

5.2.3.- Sensibilidad de la malla.

En la figura 5.2.3 se observa la influencia que tiene la cantidad de elementos dentro del volumen de control sobre los valores de coeficientes de sustentación y arrastre del perfil. A medida que aumentamos la cantidad de elementos estos valores disminuyen y de seguir incrementando la concentración, los puntos graficados tenderían a una asíntota paralela al eje X.

Para todas las simulaciones realizadas en este trabajo se generaron mallas con números de elementos superiores a 300.000 hasta 800.000 elementos en el caso de las simulaciones donde el volumen de control debió ser ampliado.

Pre-procesamiento.

El módulo de pre-procesamiento CFX-Pre permite al usuario establecer los modelos físicos del problema, las propiedades del fluido, y las condiciones necesarias para realizar la simulación CFD.

En esta etapa lo primero que debe realizarse es importar la malla generada y crear el dominio, el cual esta comprendido por el volumen que abarcara el fluido en la simulación del problema. Este paso permite entre otras cosas especificar el fluido trabajo y sus propiedades. Para el caso en estudio se seleccionó aire a condiciones estándar (T = 25 °C. y P = 1 atm.).

Otro aspecto de importancia que debe seleccionarse en el dominio es el modelo de turbulencia. El módulo de pre-procesamiento posee una amplia librería de modelos de turbulencia aplicables a una gran variedad de situaciones. Para todas las simulaciones realizadas se utilizó el modelo de turbulencia k-épsilon. Este es un modelo matemático que debido a sus características de robustez y estabilidad se ha convertido en el más popular empleado por los códigos CFD (CFX, Fluent, entre otros).

Una vez creado el dominio y definidas sus propiedades, deben identificarse las condiciones de borde en función de las regiones creadas anteriormente.

La condición de entrada del volumen de control, se encuentra definida por la región con este mismo nombre, y consiste en un campo de velocidades constante en dirección X, cuyo valor viene dado por el Número de Reynolds al cual se desea realizar la simulación.

La condición de salida del volumen de control, se encuentra delimitada por la región del dominio con este mismo nombre, a la cual se le asigna como valor de presión relativa de salida 0 Pa. constante en toda la sección.

Debido a que en este caso se esta simulando un problema en 2D, se asigna a las regiones frontal y trasera condiciones de borde de simetría.

A los plano de superficie superior e inferior agrupados en la región llamada sup_inf, se les definió la condición de pared con una interacción entre el flujo y las mismas de libre deslizamiento.

Como última condición de borde se le asignó a la región comprendida por la superficie del perfil, la condición de pared, con una interacción entre el fluido y la misma de no deslizamiento. Para finalizar la etapa de pre-procesamiento es necesario establecer los parámetros de inicialización, los cuales pueden ser definidos automáticamente por el programa, ó ser especificados manualmente por el usuario. En este caso se utilizó para todas las corridas las condiciones de inicialización establecidas automáticamente por el software.

Calculador (Solver).

El modulo calculador CFX-Solver, es el encargado de resolver el problema CFD a partir de los parámetros establecidos en la etapa de pre-procesamiento. Este produce los resultados requeridos en un proceso no interactivo. El calculador determina el valor de las variables de la siguiente forma:

- Las ecuaciones diferenciales parciales son integradas sobre todo el volumen de control. Esto es equivalente a la aplicación de las leyes básicas de conservación (por ejemplo, para masa y momento) a cada elemento de volumen de control.
- Estas ecuaciones integrales son convertidas en un sistema de ecuaciones algebraicas por medio de la generación de un conjunto de términos aproximados para las ecuaciones integrales.
- Las ecuaciones algebraicas son resueltas de forma iterativa.

Se requiere un enfoque iterativo debido a la naturaleza no lineal de las ecuaciones algebraicas, y a medida que la solución aproximada se acerca a la exacta, se dice que el proceso esta convergiendo. Por cada iteración, es reportado un error o residuo, como medida de la conservación global de las propiedades del flujo. La cercanía entre la solución final y la exacta depende de un número de factores, tales como, el tamaño y la forma de los volúmenes de control, y la magnitud de los residuos finales. Procesos físicos complejos, como la combustión y la turbulencia, son a menudo modelados usando relaciones empíricas. Las aproximaciones inherentes en estos modelos también contribuyen a las diferencias entre la solución CFD y la del flujo real.

El proceso de solución no requiere la intervención del usuario y es generalmente realizado como un procesamiento por lotes. Finalmente el calculador genera un archivo de resultados que posteriormente es pasado al post-procesador.

Durante este trabajo fueron realizadas aproximadamente 24 corridas efectivas, donde cada una empleo un tiempo promedio de cálculo cercano a 75 min.

Post-procesamiento.

El post-procesador es el componente utilizado para analizar, visualizar y presentar los resultados interactivamente. Este modulo permite representar desde la obtención de valores puntuales hasta la realización de complejas secuencias animadas.

Algunos rasgos importantes del post-procesador son:

- Visualización de la geometría y el volumen de control.
- Gráficos vectoriales que permiten visualizar la dirección y magnitud del flujo.
- Visualización de la variación de variables escalares (variables únicamente con valores de magnitud, sin dirección, tales como temperatura, presión y velocidad) dentro del dominio.
- Cálculos numéricos cuantitativos.
- Animaciones.
- Trazado de graficas que muestran el comportamiento de las variables.
- Salida de impresión.

En esta etapa se tomaron imágenes de líneas de corriente, variación de presión y velocidad, y gráficos vectoriales del flujo alrededor de los perfiles, para varios ángulos de ataque diferentes (0, 5, 8 y 10 grados). Además se graficaron y cuantificaron las fuerzas ejercidas sobre la superficie de los perfiles bajo estas mismas condiciones con diferentes Números de Reynolds. Todos estos resultados se encuentran representados en las siguientes secciones de este capitulo.

5.3. SIMULACIÓN COMPUTACIONAL DEL FLUJO ALREDEDOR DEL PERFIL FX 66-17A-175

Para la simulación CFD se seleccionaron los perfiles FX 66-17A-175 junto a la modificación correspondiente ZAREA 66-17A-175 como casos de estudio, por dos motivos diferentes. En primer lugar, los resultados obtenidos para este contorno con el software VisualFoil 4.1. reportaron errores relativos aceptables en compararon con los resultados experimentales (ver Tabla 3.4.13); En segundo lugar, entre el perfil base FX 66-17A-175 y la modificación ZAREA 66-17A-175 se aprecia el mayor incremento del coeficiente de sustentación máxima para el Número de Reynolds de referencia, Re = 1.000.000 (Tabla 4.6.10.).

Los resultados de la simulación del flujo alrededor del perfil FX 66-17A-175 son presentados en función del Número de Reynolds evaluado. A continuación se muestra una tabla con los parámetros de simulación definidos. Seguidamente se exponen las imágenes generadas bajo estas condiciones de simulación con el fin de observar claramente el comportamiento del fluido a diferentes valores de ángulo de ataque del perfil y el mismo valor de Número de Reynolds.

Resultados para Re = 1.000.000

Parámetro	Valor		
Cuerda del perfil	1000 mm.		
Velocidad de entrada	15.6 m/s		
Fluid	Aire		
Temperatura	25°C		
Número de Reynolds	1.00E+06		
Número de Mach	0.046		
Modelo de Transferencia de Calor	Isotérmico		
Modelo de Turbulencia	k-ε		
Perfil	Pared (no deslizamiento)		
Salida del volumen de control	Presión estática promedio		

Tabla 5.3.1 Parámetros de simulación establecidos para el perfi	1
FX 66-17A-175. Re= 1.000.000.	

21	8
- 1	U.

Fig. 5.3.1.- Líneas de corriente sobre el perfil FX 66-17A-175, $\alpha = 0^{\circ}$, Re = 1E6.

Fig. 5.3.2.- Líneas de corriente sobre el perfil FX 66-17A-175, $\alpha = 5^{\circ}$, Re = 1E6.

Fig. 5.3.3.- Líneas de corriente sobre el perfil FX 66-17A-175, $\alpha = 10^{\circ}$, Re = 1E6.

En las figura 5.3.1 y 5.3.2 se puede observar que para ángulos de ataque de 0° y 5° no se aprecia separación del flujo alrededor del perfil aerodinámico. Sin embargo, cuando el ángulo de ataque es de 10° (Fig. 5.3.3.) se puede observar posible desprendimiento del fluido que empieza en la región del extradós proyectada sobre el 55% de la cuerda.

Fig. 5.3.4.- Distribución de presión sobre el perfil FX 66-17A-175, $\alpha = 0^{\circ}$, Re = 1E6.

Fig. 5.3.5.- Distribución de presión sobre el perfil FX 66-17A-175, $\alpha = 5^{\circ}$, Re = 1E6.

Fig. 5.3.6.- Distribución de presión sobre el perfil FX 66-17A-175, $\alpha = 10^{\circ}$, Re = 1E6.

En la figura 5.3.4 se puede observar que la distribución de presión sobre el perfil presenta variaciones violentas alcanzando su valor mínimo de -167,3 Pa. en la región del extradós proyectada sobre el 30% de la cuerda. La presión máxima es de 149 Pa. y se alcanza en el borde de ataque dando referencia de la ubicación del punto de estancamiento. En el intradós se puede observar una pequeña región de presión negativa en la zona donde el perfil alcanza su espesor máximo.

En la figura 5.3.5. se puede observar que para un ángulo de ataque de 5° la zona de presión negativa sobre el intradós desaparece. El punto de presión máxima se traslada hacia la parte inferior del borde de ataque y disminuye en valor hasta 143,4 Pa. La región de succión en el extradós aumenta en tamaño, y el punto de presión minima se desplaza hacia el borde de ataque y disminuye hasta -233,6 Pa.

En la figura 5.3.6. se ve como el punto de presión máxima sigue desplazándose por el intradós en dirección x positiva y disminuye su valor hasta 140,7 Pa. la distribución en todo el intradós va disminuyendo de forma gradual hasta el borde de fuga. La región de succión en el extradós alcanza el borde de ataque y aumenta en extensión. La zona de presión minima alcanza valores menores a -325,8 Pa.

Fig. 5.3.7.- Distribución de velocidad sobre el perfil FX 66-17A-175, $\alpha = 0^{\circ}$, Re = 1E6.

Fig. 5.3.8.- Distribución de velocidad sobre el perfil FX 66-17A-175, $\alpha = 5^{\circ}$, Re = 1E6.

Fig. 5.3.9.- Distribución de velocidad sobre el perfil FX 66-17A-175, $\alpha = 10^{\circ}$, Re = 1E6.

En la figura 5.3.7. se puede observar que el punto de estancamiento se ubica en el borde de ataque y que existe una región de baja velocidad en el borde de fuga. A lo largo de intradós del perfil para ángulo de ataque de 0° la velocidad del fluido va aumentando hasta el punto donde alcanza el espesor máximo a partir del cual la velocidad vuelve a disminuir hasta el borde de fuga. Se puede observar un campo de altas velocidades que alcanza su velocidad máxima de 22.45 m/s. aproximadamente en la región del extradós proyectada en el 30% de la cuerda. Esta región coincide en ubicación con la zona de baja presión observada en la figura 5.3.4.

Cuando el ángulo de ataque del perfil es de 5° (Fig. 5.3.8.), se observa un desplazamiento del punto de estancamiento hacia la parte inferior del borde de ataque. La variación de la velocidad a lo largo del intradós es suave y permanece casi constante con valores cercanos a los de corriente libre. Se puede observar que el campo de velocidades elevadas sobre el extradós abarca aproximadamente la misma extensión, pero desplazado ligeramente hacia el borde de ataque. El punto de velocidad máxima alcanza el valor de 24,56 m/s. También se puede observar como empieza a desarrollarse la estela del perfil a partir del borde de fuga.

En la figura 5.3.8. se puede observar que el punto de estancamiento se encuentra claramente desplazado hacia el intradós del perfil y alejado del borde de ataque, aproximadamente a un 5% de la cuerda. Este punto coincide con el de presión máxima observada en la figura 5.3.6. La variación de velocidad a partir de este punto es violenta. En dirección X positiva alcanza valores de 14,41 m/s. antes de llegar al 30% de la cuerda, y si nos desplazamos en dirección X negativa, justo al llegar al borde de ataque se nota como la velocidad aumenta bruscamente para alcanzar valores cercanos a 25, 93 m/s. En el extradós el campo de velocidades elevadas alcanza el borde de ataque y se desarrolla hasta llegar al 50% de la cuerda, con valores máximos de 27,37 m/s. A partir de este punto empieza a desarrollarse la estela donde la velocidad

Fig. 5.3.10.- Distribución vectorial de la velocidad del flujo alrededor del perfil FX 66-17A-175. $\alpha = 0^{\circ}$, Re = 1E6.

Fig. 5.3.11.- Distribución vectorial de la velocidad del flujo alrededor del perfil FX 66-17A-175. $\alpha = 5^{\circ}$, Re = 1E6.

Fig. 5.3.12.- Distribución vectorial de la velocidad del flujo alrededor del perfil FX 66-17A-175.

 $\alpha = 10^{\circ}$, Re = 1E6.

Las figuras 5.3.10., 5.3.11., y 5.3.12. tienen como finalidad mostrar de forma vectorial la magnitud y dirección de los vectores de velocidad del fluido en las proximidades del perfil aerodinámico a diferentes valores de ángulos de ataque. Para 0° y 5° se puede observar que la dirección del flujo alrededor del perfil sigue aproximadamente el contorno del perfil, no se denota ninguna región de separación, ni se evidencian cambios bruscos de dirección del mismo. Para $\alpha = 10^{\circ}$ se puede resaltar una ligera perturbación en la dirección del campo de velocidades en las proximidades del extradós en el borde de fuga, que pueden significar el inicio de la separación del flujo y que permite predecir que para ángulos de ataque superiores existe la posibilidad de la formación de vórtice.

Fig. 5.3.13. Representación vectorial de la fuerza, proyectada en el eje Y, generada por el fluido sobre la superficie del perfil FX 66-17A-175. $\alpha = 0^{\circ}$, Re = 1E6.

ANSYS

Fig. 5.3.14. Representación vectorial de la fuerza, proyectada en el eje Y, generada por el fluido sobre la superficie del perfil FX 66-17A-175. $\alpha = 5^{\circ}$, Re = 1E6.

Fig. 5.3.15. Representación vectorial de la fuerza, proyectada en el eje Y, generada por el fluido sobre la superficie del perfil FX 66-17A-175. $\alpha = 10^{\circ}$, Re = 1E6.

En las figuras 5.3.13., 5.3.14., y 5.3.15., se puede observar de forma grafica la fuerza proyectada en la dirección Y (de sustentación) que ejerce el fluido sobre el perfil y la variación de su distribución y magnitud en función del ángulo de ataque.

Para $\alpha = 0^{\circ}$ (Fig. 5.3.13.) se observa que el fluido ejerce una fuerza de succión en dirección Y positiva la cual es la principal responsable de la sustentación del perfil. En el intradós la magnitud de la fuerza y dirección de la misma varía al avanzar en dirección X positiva. Desde el borde de ataque hasta alcanzar el espesor máximo se observa que el fluido ejerce una fuerza favorable a la sustentación, pero una vez cruzado este punto hasta el borde de fuga dirección de esta fuerza cambia y empieza a ser desfavorable.

A medida que se incrementa el ángulo de ataque (Fig. 5.3.14 y 5.3.15.), se puede apreciar como aumenta el efecto de succión sobre el extradós del perfil, extendiéndose hasta el borde de ataque del mismo. En el intradós se observa que para toda su extensión la presión dinámica del fluido en movimiento se convierte en un aporte para la sustentación del perfil.

5.4. SIMULACIÓN COMPUTACIONAL DEL FLUJO ALREDEDOR DEL PERFIL ZAREA 66-17A-175

Los resultados de la simulación del flujo alrededor del perfil ZAREA 66-17A-175 serán presentados de la misma forma en que fueron presentados para el perfil base.

Resultados para Re = 1.000.000

Tabla 5.4.1	Parámetros	de simu	lación	para el	perfil

Parámetro	Valor
Cuerda del perfil	1000 mm.
Velocidad de entrada	15.6 m/s
Fluid	Aire
Temperatura	25°C
Numero de Reynolds	1.00E+06
Numero de Mach	0.046
Modelo de Transferencia de Calor	Isotérmico
Modelo de Turbulencia	k-ε
Perfil	Pared (no deslizamiento)
Salida del volumen de control	Presión estática promedio

ZAREA 66-17A-175. Re= 1.000.000.

En la tabla 5.4.1., los parámetros de simulación presentan los mismos valores empleados para el las simulaciones realizadas para el perfil base.

Fig. 5.4.1.- Líneas de corriente sobre el perfil ZAREA 66-17A-175, $\alpha = 0^{\circ}$, Re = 1E6.

Fig. 5.4.2.- Líneas de corriente sobre el perfil ZAREA 66-17A-175, $\alpha = 5^{\circ}$, Re = 1E6.

Fig. 5.4.3.- Líneas de corriente sobre el perfil ZAREA 66-17A-175, $\alpha = 10^{\circ}$, Re = 1E6.

En las situaciones representadas en las figuras 5.4.1. y 5.4.2. no se observa ninguna perturbación apreciable del perfil sobre el comportamiento del flujo. Para los valores de ángulo de ataque de 0° y 5° no se aprecia desprendimiento del flujo en ninguna zona alrededor del perfil.

Para 10° (Fig. 5.4.3.) se puede apreciar que las líneas de corriente cercanas al intradós se encuentran mas separadas pero aun así no se evidencia mayor perturbación del flujo. Tampoco se observa ninguna región próxima al perfil donde pueda existir separación a diferencia de lo observado en el perfil base para este ángulo de ataque.

Fig. 5.4.4.- Distribución de presión sobre el perfil ZAREA 66-17A-175, $\alpha = 0^{\circ}$, Re = 1E6.

Fig. 5.4.5.- Distribución de presión sobre el perfil ZAREA 66-17A-175, $\alpha = 5^{\circ}$, Re = 1E6.

Fig. 5.4.6.- Distribución de presión sobre el perfil ZAREA 66-17A-175, $\alpha = 10^{\circ}$, Re = 1E6.

En la figura 5.4.4. se puede observar que la distribución de presión sobre el perfil presenta variaciones violentas alcanzando su valor mínimo de -190,7 Pa. en la región del extradós proyectada sobre el 30% de la cuerda. La presión máxima es de 142,9 Pa. y se alcanza justo encima del borde de ataque dando referencia de la ubicación del punto de estancamiento. En el intradós se puede observar dos pequeñas regiones de presión negativa una puntual y de gran magnitud justo bajo la nariz del perfil, y la otra mucho más leve donde el mismo alcanza su espesor máximo.

En la figura 5.4.5. se puede observar que para un ángulo de ataque de 5° las zonas de presión negativa sobre el intradós desaparecen. El punto de presión máxima se ubica justo en el borde de ataque y aumenta su valor hasta 143,1 Pa. La región de succión en el extradós abarca un espacio mayor, y el punto de presión minima se desplaza ligeramente hacia el borde de ataque y disminuye hasta -264,2 Pa.

En la figura 5.4.6. se ve como el punto de presión máxima se convierte en una región que abarca una extensión importante del borde de ataque dentro del intradós y que alcanza valores de 141,0 Pa. A partir de esta región la distribución de presión en todo el intradós va disminuyendo

de forma gradual hasta el borde de fuga. La región de succión en el extradós alcanza el borde de ataque y aumenta en extensión. La zona de presión minima alcanza valores menores a -336,1 Pa.

Fig. 5.4.7.- Distribución de velocidad sobre el perfil ZAREA 66-17A-175, $\alpha = 0^{\circ}$, Re = 1E6.

Fig. 5.4.8.- Distribución de velocidad sobre el perfil ZAREA 66-17A-175, $\alpha = 5^{\circ}$, Re = 1E6.

Fig. 5.4.9.- Distribución de velocidad sobre el perfil ZAREA 66-17A-175, $\alpha = 10^{\circ}$, Re = 1E6.

En la figura 5.4.7. se puede observar que el punto de estancamiento se ubica por encima del borde de ataque (justo en el punto de presión máxima) y que existe una región de baja velocidad en el borde de fuga. Está un punto en el intradós del borde de ataque en el cual se produce un aumento brusco de la velocidad motivado por un cambio violento en la geometría del perfil donde la velocidad del fluido puede alcanzar valores de 17,14 m/s. Después de este punto la velocidad disminuye gradualmente hasta el borde de fuga. Se puede observar un campo de altas velocidades que alcanza su valor máximo de 23,26 m/s. aproximadamente en la región del extradós proyectada en el 30% de la cuerda.

Cuando el ángulo de ataque del perfíl es de 5° (Fig. 5.4.8.), se observa un desplazamiento del punto de estancamiento que apenas alcanza la parte inferior del borde de ataque. Desaparece el punto de elevada velocidad que se observaba en el intradós después del borde de ataque para 0° y la velocidad aumenta muy levemente hasta llegar al punto del intradós donde el espesor es máximo, a partir de aquí hasta el borde de fuga la velocidad desciende lentamente. La velocidad es casi constante y con valores cercanos a los de corriente libre. Se puede observar que el campo de velocidades elevadas sobre el extradós abarca aproximadamente la misma extensión, desplazado ligeramente hacia el borde de ataque. La velocidad máxima alcanza el valor de 25,59 m/s. También se puede observar como empieza a desarrollarse la estela del perfil a partir del borde de fuga.

En la figura 5.4.9. el punto de estancamiento se encuentra desplazado hacia el intradós cerca del borde de ataque. Éste coincide con el punto de presión máxima observado en la figura 5.4.6. A partir de este punto, siguiendo hacia el borde de fuga por el intradós, la velocidad del fluido aumenta bruscamente hasta alcanzar velocidades aproximadas a la de corriente libre en la zona de espesor máximo y que luego desciende hasta llegar a bajas velocidades en la estela. En el extradós el campo de velocidades elevadas alcanza el borde de ataque y se desarrolla hasta llegar al 50% de la cuerda con valores máximos de 28,32 m/s. A partir del 70% de la cuerda, sobre el extradós empieza a desarrollarse la estela donde la velocidad del fluido empieza a disminuir hasta alcanzar los valores más bajos en el borde de fuga.

Fig. 5.4.10.- Distribución vectorial de la velocidad del flujo alrededor del perfil ZAREA 66-17A-175. $\alpha = 0^{\circ}$, Re = 1E6.

Fig. 5.4.11.- Distribución vectorial de la velocidad del flujo alrededor del perfil ZAREA 66-17A-175. $\alpha = 5^{\circ}$, Re = 1E6.

Fig. 5.4.12.- Distribución vectorial de la velocidad del flujo alrededor del perfil ZAREA 66-17A-175. $\alpha = 10^{\circ}$, Re = 1E6.

Fig. 5.4.13.- Distribución vectorial de la velocidad del flujo alrededor borde de fuga del perfil ZAREA 66-17A-175. $\alpha = 10^{\circ}$, Re = 1E6.

En la figura 5.4.10. se puede observar en la región cerrada dentro del círculo como la dirección de los vectores de velocidad no sigue el contorno del perfil. A pesar de esto no se evidencia separación. Si se sigue avanzando en el intradós en la dirección del flujo, los vectores de velocidad permanecen tangentes a la silueta de la superficie del perfil, y no se aprecia separación en ninguna región del intradós. En el extradós del perfil, para $\alpha = 0^{\circ}$, la dirección de los vectores de velocidad del flujo siguen el contorno del perfil y no se presenta ninguna perturbación en los alrededores.

En la figura 5.4.11. el detalle más importante es la desaparición de la región de velocidad elevada en la parte del intradós del borde de ataque. Del resto el comportamiento del fluido en las proximidades del perfil no presenta ninguna anormalidad.

Para $\alpha = 10^{\circ}$ en la figura 5.4.12. se pueden resaltar dos aspectos importantes. El primero es que la baja velocidad del flujo en la región ubicada por debajo del intradós del perfil abarca un gran extensión, lo que da a entender que la intervención del perfil en la corriente libre genera que en esa zona la presión puntual aumente, señal de que gran parte de la energía cinética con la que circulaba el flujo se transforma en energía de presión que es aprovechada por el perfil para generar fuerza de sustentación. El segundo aspecto relevante viene dado por que la estela inicia en la región del extradós ubicada por encima del 65% del la cuerda.

Dentro del círculo recalcado en la figura 5.4.12, se encuentra una región (ampliada en la figura 5.4.13.) donde la velocidad del fluido tiende a valores muy cercanos a cero. A partir de esta información se puede inferir que para Números de Reynolds mayores a este mismo ángulo de ataque, en ese punto se puede desarrollar un vórtice.

Fig. 5.4.14. Representación vectorial de la fuerza, proyectada en el eje Y, generada por el fluido sobre la superficie del perfil ZAREA 66-17A-175. $\alpha = 0^{\circ}$, Re = 1E6.

Fig. 5.4.15. Representación vectorial de la fuerza, proyectada en el eje Y, generada por el fluido sobre la superficie del perfil ZAREA 66-17A-175. α = 5°, Re = 1E6.

Fig. 5.4.16. Representación vectorial de la fuerza, proyectada en el eje Y, generada por el fluido sobre la superficie del perfil ZAREA 66-17A-175. $\alpha = 10^{\circ}$, Re = 1E6.

En la figura 5.4.14. se puede observar el comportamiento las fuerza en dirección Y que ejerce el fluido en movimiento sobre el perfil para $\alpha = 0^{\circ}$. En el extradós se observa claramente que el efecto de la succión sobre esta región es el principal contribuyente a la fuerza de sustentación resultante sobre el perfil. También se destaca en el intradós el efecto negativo sobre la misma generada por el punto de elevada velocidad cercano al borde de ataque resaltado en la figura 5.4.10.

Para valores de ángulos de ataque mayores (Fig. 5.4.15 y 5.4.16.), se puede apreciar como aumenta el efecto de succión sobre el extradós del perfil, extendiéndose hasta el borde de ataque del mismo. Este efecto del flujo es el principal aporte a la fuerza de sustentación resultante sobre el perfil. En el intradós se observa que para toda su extensión la presión dinámica del fluido en movimiento se traduce en un aporte para la sustentación.

5.5. TABLAS COMPARATIVAS

También fueron realizadas simulaciones para los mismos ángulos de ataque a diferentes Números de Reynolds, 1.500.000, 2.000.000 y 3.000.000, para estas condiciones no se muestran imágenes del comportamiento del flujo. Si embargo, en esta sección se muestran los coeficientes aerodinámicos calculados en estas simulaciones.

El único parámetro de simulación que debió ser modificado en el pre-procesador para lograr compilar estas simulaciones en el calculador, fue el valor de la velocidad de corriente libre en la condición de borde de entrada. A continuación se muestra una tabla con los valores de esta velocidad en función del Número de Reynolds, y como consecuencia la variación del Número de Mach.

Número de Reynolds	Velocidad de entrada (m/s)	Número de Mach
1.000.000	15.6	0.046
1.500.000	23.4	0.069
2.000.000	31.2	0.092
3.000.000	46.8	0.138

Tabla 5.5.1. Valores de velocidad de entrada en función del Número de Reynolds.

La tabla 5.5.2. compara los resultados de los coeficientes aerodinámicos obtenidos de las simulaciones CFD con los coeficientes aerodinámicos experimentales extraídos del Catalogo de Miley (1982) para el perfil FX 66-17A-175.

Las tablas 5.5.3. y 5.5.4 comparan los resultados de los coeficientes aerodinámicos obtenidos de las simulaciones CFD con los coeficientes aerodinámicos computacionales obtenidos con el software VisualFoil 4.1. para los perfiles FX 66-17A-175 y la modificación ZAREA 66-17A-175 respectivamente.

Todas estas tablas mencionadas muestran los errores absolutos y relativos. Las expresiones utilizadas para cuantificar los errores son las mismas que se definieron en el capitulo 3. Para la tabla 5.5.2 se tomaron como valores reales los coeficientes experimentales, mientras que, para las tablas 5.5.3. y 5.5.4. se establecieron como valores reales los coeficiente aerodinámicos obtenidos con el software VisualFoil 4.1.

La tabla 5.5.5. compara los coeficientes aerodinámicos entre el perfil FX 66-17A-175 y la modificación ZAREA 66-17A-175 calculados a partir de las simulaciones CFD a diferentes Números de Reynolds. Muestra la diferencia absoluta entre los coeficientes y la variación

porcentual de estas características con respecto las del perfil base. Las expresiones utilizadas para cuantificar estos parámetros son las mismas definidas en el Capitulo 4.

Comparación entre las características aerodinámicas experimentales y las computacionales	simulaciones CFD para el perfil FX 66-17A-175 a diferentes Números de Reynolds
5.5.2 Compara	idas por simulaci
Tabl	obtei

					ш	:X 66-17/	4-175 (M	liley), Re:	1.000.000	(
		CFD			Miley		ш	rror Absolu	uto	E _{R1} (%)=	= (1- C _e /C	c)x 100	E _{R2} (%)=	= (1- C _c /C)x 100
a (deg)	C _{Lc}	C _{Dc}	ε	C _{Le}	C _{De}	ε _e	ΔC_L	ΔC_D	Δε	E _{CL1}	E _{cD1}	E_{ϵ_1}	E _{CL2}	E _{CD2}	$E_{\epsilon 2}$
0,0	0,46	0,0174	26,21	0,50	0,0101	49,50	-0,04	0,0073	-23,30	-9,8	41,9	-88,9	8,9	-72,1	47,1
5,0	0,97	0,0311	31,32	1,04	0,0110	94,55	-0,07	0,0201	-63,22	-6,7	64,6	-201,9	6,3	-182,8	66,9
8,0	1,31	0,0382	34,36	1,35	0,0121	111,57	-0,04	0,0261	-77,21	-2,7	68,4	-224,7	2,7	-216,0	69,2
10,0	1,47	0,0468	31,47	1,43			0,04			2,9			-3,0		
					ш	X 66-17/	4-175 (M	liley), Re:	1.500.000	-					

					4	-X 66-17/	A-175 (N	liley), Re:	1.500.000	(
		CFD			Miley		E	rror Absolu	uto	E _{R1} (%)=	: (1- C _e /C	c)x 100	E _{R2} (%)=	= (1- C _c /C	»)x 100
a (deg)	CLc	c_{Dc}	ε _c	CLe	C _{De}	ε _e	ΔC_L	ΔC_D	Δε	E _{CL1}	E _{cD1}	E_{ϵ_1}	E _{CL2}	E _{cD2}	E _{ε2}
0,0	0,46	0,0163	28,42	0,51	0,0091	56,04	-0,05	0,0072	-27,62	-10,3	44,0	-97,2	9,4	-78,7	49,3
5,0	0,99	0,0280	35,44	1,07	0,0096	111,46	-0,08	0,0184	-76,02	-7,7	65,8	-214,5	7,1	-192,1	68,2
8,0	1,33	0,0334	39,93	1,37	0,0106	129,25	-0,04	0,0228	-89,31	-2,7	68,3	-223,7	2,6	-215,1	69,1
10,0	1,49	0,0440	33,89	1,41			0,08			5,5			-5,8		
					1	-X 66-17	A-175 (N	liley), Re:	2.000.000	(

		CFD			Miley		Ξ	ror Absol	uto	E _{R1} (%)⊧	= (1- C _e /0	c)x 100	E _{R2} (%)	= (1- C _c /C	_e)x 100
a (deg)	C C	C _{Dc}	ε _c	CLe	C _{De}	٤ _e	ΔC_L	ΔC_D	Δε	E _{cL1}	E _{cD1}	Е ₆₁	E _{CL2}	E _{CD2}	Е _{ε2}
0'0	0,47	0,0154	30,34	0,50	0,0077	64,94	-0,03	0,0077	-34,59	-6,8	50,1	-114,0	6,4	-100,4	53,3
5,0	1,00	0,0276	36,12	1,07	0,0090	118,89	-0,07	0,0186	-82,76	-7,4	67,4	-229,1	6,9	-206,4	69,6
8,0	1,34	0,0338	39,52	1,38	0,0097	142,27	-0,04	0,0241	-102,75	-3,2	71,3	-260,0	3,1	-248,7	72,2
10,0	N/N	N/N	N/V	1,38											
						X 66-17/	3-175 (N	ilev) Re	3 000 000						

			α (deg) C	0,0 0,	5,0 1,	8,0 N	10 0
			C LC	,48	,01	Ş	
		CFD	$c_{\rm Dc}$	0,0145	0,0259	NV	NN
		ε	32,99	38,86	N≥	NN	
		CLe	0,49	1,08	1,39	1.37	
	ш	Miley	C _{De}	0,0074	0,0080	0,0093	
	X 66-17/		ε _e	66,22	135,00		
	A-175 (M	Er	ΔC_L	-0,01	-0,07		
	iley), Re:	ror Absol	ΔC_D	0,0071	0,0179		
	3.000.000	uto	Δε	-33,23	-96,14		
	C	E _{R1} (%)=	E _{CL1}	-2,5	-7,4		
		= (1- C _e /C	E _{cD1}	48,9	69,1		
		c)x 100	E_{ϵ_1}	-100,7	-247,4		
		E _{R2} (%)=	E _{CL2}	2,4	6,9		
		= (1- C _c /C	E _{CD2}	-95,8	-223,6		
		●)x 100	$E{\epsilon 2}$	50,2	71,2		

Tabla 5.5.3.- Comparación entre las características aerodinámicas computacionales obtenidas con el software VisualFoil y las obtenidas mediante simulaciones CFD para el perfil FX 66-17A-175 a diferentes Números de Reynolds.

						FX 66	-17A-175	5, Re: 1.0(000.00						
		CFD			Vfoil		ш	rror Absoli	uto	E _{R1} (%)=	: (1- C _e /(C _c)x 100	E _{R2} (%)=	= (1- C _o /C _i	_e)x 100
α (deg)	C _L c	c_{Dc}	ε _c	CLe	CDe	ε _e	ΔC_L	ΔC_D	Δε	E _{CL1}	E _{cD1}	E _{E1}	E _{CL2}	E _{CD2}	$E_{\epsilon 2}$
0'0	0,46	0,0174	26,21	0,50	0,0088	57,16	-0,05	0,0086	-30,95	-10,5	49,3	-118,1	9,5	-97,4	54,1
5,0	0,97	0,0311	31,32	1,04	0,0102	101,85	-0,07	0,0209	-70,53	-7,0	67,1	-225,2	6,6	-203,8	69,2
8,0	1,31	0,0382	34,36	1,26	0,0201	62,53	0,05	0,0181	-28,17	4,1	47,3	-82,0	-4,3	-89,8	45,1
10,0	1,47	0,0468	31,47												

						FX 66	-17A-175	5, Re: 2.00	000.00						
		CFD			Vfoil		Ū	rror Absolu	uto	E _{R1} (%)=	= (1- C _e /C	C _c)x 100	E _{R2} (%)⁼	= (1- C _c /C _c	₅)x 100
a (deg)	CLc	c_{Dc}	ε	C _{Le}	C _{De}	٤ _e	ΔC_L	ΔC_D	Δε	E _{cL1}	E _{cD1}	E_{ϵ_1}	E _{CL2}	E _{CD2}	$E_{\epsilon 2}$
0'0	0,47	0,0154	30,34	0,51	0,0074	68,55	-0,04	0,0080	-38,20	-8,4	52,0	-125,9	7,7	-108,4	55,7
5,0	1,00	0,0276	36,12	1,05	0,0085	123,69	-0,06	0,0191	-87,56	-5,7	69,1	-242,4	5,4	-223,8	70,8
8,0	1,34	0,0338	39,52	1,34	0,0176	76,29	-0,01	0,0162	-36,77	-0,6	47,9	-93,1	0,5	-92,0	48,2
10,0	≥N	NV	NV	1,44	0,0199	72,36									

						FX 66	-17A-175	5, Re: 3.0(000.00						
		CFD			Vfoil		Ш	ror Absolu	uto	E _{R1} (%)=	= (1- C _e /C	c)x 100	E _{R2} (%);	= (1- C _c /C ₆)x 100
a (deg)	C _L c	C _{Dc}	ε _c	C _{Le}	C _{De}	ε _e	ΔCL	ΔC_D	Δε	E _{cL1}	E _{cD1}	E_{ϵ_1}	E _{CL2}	E _{CD2}	$E_{\epsilon 2}$
0,0	0,48	0,0145	32,99	0,51	0,0068	75,24	-0,03	0,0077	-42,26	-6,5	53,3	-128,1	6,1	-114,1	56,2
5,0	1,01	0,0259	38,86	1,06	0,0077	136,86	-0,05	0,0182	-98,00	-5,2	70,1	-252,2	4,9	-234,8	71,6
8,0	N≥	N/S	NV	1,37	0,0163	84,25									
10,0	N≥	NV	NV	1,50	0,0185	81,38									

Tabla 5.5.4.- Comparación entre las características aerodinámicas computacionales obtenidas con el software VisualFoil y las obtenidas mediante simulaciones CFD para el perfil ZAREA 66-17A-175 a diferentes Números de Reynolds.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		00	5	N,	ò	33	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		C _e)x 1	ш	54	65	58	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $)= (1- C _c /C	E _{CD2}	-102,6	-176,8	-138,5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		E _{R2} (%)	E _{CL2}	7,2	3,2	0,5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		c)x 100	E_{e1}	-118,3	-186,1	-139,8	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		= (1- C _e /C	E _{cD1}	50,6	63,9	58,1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		E _{R1} (%)=	E _{CL1}	-7,7	-3,3	-0,5	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $.000.000.	uto	Δε	-33,77	-71,26	-66,13	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	ror Absolt	ΔC_D	0,0106	0,0192	0,0205	
CFD Vfoil α (deg) C _{Lc} C _{Dc} ε _c Vfoil 0,0 0,60 0,0210 28,56 0,65 0,0104 62,33 5,0 1,15 0,0333 38,30 1,19 0,0109 109,56 10,0 1,67 0,3353 47,30 1,68 0,0148 113,43	1-H/1-00	Ē	ΔC_L	-0,05	-0,04	-0,01	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	VULLY V	Vfoil	ε _e	62,33	109,56	113,43	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			C _{De}	0,0104	0,0109	0,0148	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			C _{Le}	0,65	1,19	1,68	
α (deg) CFD 0,0 0,60 0,0210 5,0 1,15 0,0301 10,0 1,67 0,0353			ε	28,56	38,30	47,30	
α (deg) C _{Lc} 0,0 0,60 5,0 1,15 10,0 1,67		CFD	C _{Dc}	0,0210	0,0301	0,0353	
α (deg) 0,0 5,0 10,0			CLc	0,60	1,15	1,67	
			a (deg)	0'0	5,0	10,0	

	ZAREA 66-17A-175, Re: 2.000.000	foil Error Absoluto $E_{R_1}(\%) = (1 - C_e/C_c)x \ 100 \ E_{R_2}(\%) = (1 - C_e/C_e)x \ 100$	De se AC _L AC _D As E _{CL1} E _{CD1} E _{c1} E _{CL2} E _{CD2} E _{c2}	088 73,80 -0,04 0,0097 -40,59 -5,9 52,4 -122,2 5,5 -109,9 55,0	000 133,75 -0,04 0,0186 -91,35 -3,0 67,3 -215,5 2,9 -206,3 68,3	7120 144,40 -0.03 0.0201 -91.56 -1.9 62.7 -173.3 1.9 -168.2 63.4
	0	E _{R1} (%)⊧	E _{CL1}	-5,9	-3,0	-1,9
	2.000.000	oluto	3Δ	-40,59	-91,35	-91,56
	·175, Re:	Error Abso	ΔC_D	0,0097	0,0186	0,0201
	. 66-17A-	ш	ΔC_L	-0,04	-0,04	-0,03
	ZAREA		ε _e	73,80	133,75	144,40
		Vfoil	CDe	0,0088	0,0090	0,0120
			CLe	0,65	1,20	1,73
			εc	33,21	42,39	52,84
		CFD	C _{Dc}	0,0185	0,0275	0,0321
			0	62	17	69
			ບັ	Ó.	Ļ,	Ĺ,

						ZAREA (36-17A-	175, Re: 3	000.000.						
		CFD			Vfoil		Ē	rror Absol	uto	E _{R1} (%)⁼	= (1- C _e /C	ζ _c)x 100	E _{R2} (%):	= (1- C _c /C	_e)x 100
α (deg)	CLc	C _{Dc}	ε _c	C _{Le}	C _{De}	ε _e	ΔC_L	ΔC_D	Δε	E _{CL1}	E _{CD1}	E_{ϵ_1}	E _{CL2}	E _{CD2}	Е ₂
0,0	0,63	0,0168	37,40	0,65	0,0081	80,70	-0,03	0,0087	-43,30	-4,2	51,7	-115,8	4,0	-107,1	53,7
5,0	1,18	0,0244	48,63	1,21	0,0081	148,63	-0,02	0,0162	-100,01	-2,0	66,6	-205,7	2,0	-199,6	67,3
10.0	1.71	0.0340	50.23	1.74	0.0107	163.25	-0.03	0.0233	-113.02	-2.0	68.6	-225.0	1.9	-218.7	69.2

Tabla 5.5.5.- Comparación entre las características aerodinámicas de los perfiles FX 66-17A-175 y la modificación ZAREA 66-17A-175 obtenidas a partir de las simulaciones CFD.

			F	X 66-17A	-175, ZARE	EA 66-17A	-175; Re	= 1.000.000				
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd_M	ε _M	ΔCI	ΔCd	Δε	%CI	%Cd	%ε
0	0,46	0,0174	26,21	0,60	0,0210	28,56	0,14	0,0036	2,35	31,59	20,77	8,96
5	0,97	0,0311	31,32	1,15	0,0301	38,30	0,18	-0,0010	6,98	18,23	-3,31	22,28
8	1,31	0,0382	34,36									
10	1,47	0,0468	31,47	1,67	0,0353	47,30	0,20	-0,0115	15,83	13,44	-24,53	50,31

			F	X 66-17A	-175, ZARE	EA 66-17A	-175; Re	= 1.500.000				
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd_M	ε _M	ΔCI	ΔCd	Δε	%CI	%Cd	%ε
0	0,46	0,0163	28,42	0,61	0,0210	28,97	0,15	0,0047	0,55	31,58	29,07	1,95
5	0,99	0,0280	35,44	1,16	0,0280	41,59	0,17	-0,0001	6,15	17,12	-0,21	17,36
8	1,33	0,0334	39,93									
10	1,49	0,0440	33,89	1,68	0,0324	51,93	0,19	-0,0116	18,03	12,96	-26,27	53,21

			F	X 66-17A	-175, ZARI	EA 66-17 <i>A</i>	A-175; Re	= 2.000.000)			
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd_M	ε _M	ΔCΙ	ΔCd	Δε	%CI	%Cd	%ε
0	0,47	0,0154	30,34	0,62	0,0185	33,21	0,15	0,0031	2,87	31,56	20,21	9,45
5	1,00	0,0276	36,12	1,17	0,0275	42,39	0,17	0,0000	6,27	17,22	-0,12	17,35
8	1,34	0,0338	39,52									
10	N/V	N/V	N/V	1.69	0.0321	52.84						

			F	X 66-17A	-175, ZARE	EA 66-17A	-175; Re	= 3.000.000)			
α (deg)	Cl _B	Cd_B	ε _B	Cl _M	Cd_M	ε _M	ΔCI	ΔCd	Δε	%CI	%Cd	%ε
0	0,49	0,0074	66,22	0,63	0,0168	37,40	0,14	0,0094	-28,82	28,27	127,09	-43,52
5	1,01	0,0259	38,86	1,18	0,0244	48,63	0,18	-0,0015	9,77	17,75	-5,90	25,14
8	N/V	N/V	N/V									
10	N/V	N/V	N/V	1,71	0,0340	50,23						

5.6. COMENTARIOS

En principio fueron realizadas simulaciones de flujo alrededor de los perfiles únicamente para los ángulos de ataque de 0°, 5° y 10°, pero como se puede apreciar en la tabla 5.5.2. para las simulaciones llevadas a cabo a Números de Reynolds superiores a 1.500.000 con el perfil base y ángulo de incidencia igual a 10° representaron errores en los resultados de las corridas. Por esta razón, se decidió realizar una corrida con una malla que contuviera el perfil base con un ángulo de ataque de 8°.

Comparando los valores de coeficientes de sustentación obtenidos a partir de las simulaciones CFD con los experimentales extraídos del catalogo de Miley los mismos son considerados como aceptables para el rango de ángulos de ataque y Números de Reynolds estudiado. Se puede apreciar como en la tabla 5.5.2 los errores relativos a los resultados experimentales no exceden el 10%. Sin embargo, para el cálculo de los coeficientes de arrastre por este mismo medio se obtuvo que los valores de los mismos exceden el doble de los extraídos del Catalogo de Miley (1982). Los valores de fineza que pueden ser calculados por este medio se ven afectados por los elevados valores de los coeficientes de arrastre.

Las tablas 5.5.3 y 5.5.4 muestran una buena afinidad entre los valores de coeficientes de sustentación obtenido con ambos programas computacionales (VisualFoil 4.1. y CFX). Para los coeficientes de arrastre y la fineza aerodinámica, la diferencia entre los valores calculados es excesiva, debido a los elevados valores de coeficientes de arrastre calculados con el código CFD.

En líneas generales los resultados obtenidos a partir de las simulaciones CFD se consideran pesimistas en comparación con los valores experimentales extraídos de la literatura. En la tabla 5.5.5. se puede apreciar como el perfil modificado ZAREA 66-17A-175 presenta mejores valores de coeficientes de sustentación que los calculados para el perfil base FX 66-17A-175 en el rango comparable de ángulos de ataque. Se cuantificaron para los diferentes Números de Reynolds incrementos en estos coeficientes que van desde 12, 96% hasta 31,19%, dependiendo del ángulo de incidencia del perfil.

Comparando los coeficientes de arrastres entre ambos perfiles se puede observar que las diferencias entre el perfil modificado y base se invierten a medida que aumenta el ángulo de ataque. Para $\alpha = 0^{\circ}$, los coeficientes de arrastre para el perfil modificado son superiores a los calculados para el perfil base independientemente del Numero de Reynolds. Pero los valores

obtenidos para 5° y 10° muestran que el arrastre del perfil modificado es menor que el que el del perfil base para los diferentes Números de Reynolds simulados.

Con respecto a la Fineza aerodinámica en todo el rango estudiado los valores obtenidos para el perfil modificado fueron superiores a los del perfil base, lo que evidencia que la modificación del borde de ataque realizada sobre el perfil FX 66-17A-175 mejora las características aerodinámicas del perfil bajo las condiciones simuladas en el rango de Números de Reynolds estudiado.

CONCLUSIONES Y RECOMENDACIONES

El estudio realizado permite formular las siguientes conclusiones:

1. A fin de mejorar el comportamiento aerodinámico de los perfiles, se implantó un procedimiento ideado por el Prof. Stefan Zarea que consiste en obtener un nuevo perfil a partir de uno ya existente al sustituir el borde de ataque por curvas semejantes a parábolas asimétricas (patente pendiente). Esta modificación geométrica incrementa la flecha máxima del perfil y causa cambios en el campo de presiones y velocidades incrementando el coeficiente de sustentación del perfil.

2. Este procedimiento fue implantado metódicamente a 16 perfiles de la serie clásica FX y 8 perfiles de la serie SZ2200 obteniéndose un mejoramiento del comportamiento aerodinámico.

3. Fue evaluada la capacidad de predicción de los coeficientes aerodinámicos para algunos perfiles serie FX con el software VisualFoil 4.1. De la comparación de los resultados obtenidos a partir del software con datos experimentales extraídos del catalogo de Miley resultó que solo para 3 de los 19 perfiles evaluados se obtuvieron resultados con errores relativos inferiores a 15%. Estos resultados demuestran que el Programa VisualFoil 4.1. no es adecuado para la evaluación computacional de todos los perfiles de la serie FX.

4. Para cuantificar las diferencias relativas entre los perfiles base y modificados, los valores de coeficientes aerodinámicos empleados en el análisis fueron calculados con el programa VisualFoil 4.1. (basándose en el método panel y considerando la capa limite sobre el perfil) y se usaron para trazar las curvas características: Cp vs. x, C₁ vs. C_d (Curva polar), C₁/C_d, C₁, C_d y C_m vs. α . de un segundo grupo de 16 perfiles FX y de 8 de la serie SZ2200.

5. Con el fin de cuantificar las variaciones de los coeficientes aerodinámicos, los valores obtenidos tanto para los perfiles base como para los modificados, se presentan tablas que incluyen parámetros de comparación tales como, diferencia entre los coeficientes y porcentaje de variación de los coeficientes característicos.

6. Todos los perfiles modificados presentan un incremento del coeficiente de sustentación respecto a los perfiles base en todo el rango de ángulos de ataque evaluado. El valor del incremento promedio del coeficiente de sustentación oscila entre 4,87% y 14,79%. Los valores de incremento de coeficientes de sustentación máximos fluctúan entre 4,80% y 49%. El mayor aumento en coeficientes de sustentación máximos corresponde a los perfiles de la serie FX en 17.33%, mientras que el incremento promedio logrado para los perfiles de la serie SZ2200 es de 10.22%.

7. El coeficiente de arrastre de los perfiles modificados es superior al de los perfiles base para ángulos de ataque relativamente bajos ($\alpha < 7^{\circ}$). Pero para ángulos de ataque elevados el valor de los coeficientes de arrastre disminuye en comparación con los perfiles base.

8. Como consecuencia de lo anterior, la fineza de los perfiles modificados aumenta en relación con la de los perfiles base para ángulos de ataque elevados hasta alcanzar el ángulo de sustentación máxima. El incremento porcentual para estos ángulos a Re = 1.000.000 varia entre los valores 3,75% y 55,04%.

9. Por su buen comportamiento aerodinámico, los perfiles modificados estudiados pueden ser utilizados en el diseño de turbomáquinas axiales, planeadores, etc.

10. La utilización del software CFX permitió la simulación del flujo alrededor de un perfil serie FX y del perfil modificado ofreciéndose el espectro aerodinámico y la distribución de presiones y velocidades para cuatro valores de ángulos de incidencia. Cabe mencionar que los valores de C_L calculados son inferiores a los valores experimentales mientras que el coeficiente de arrastre calculado tiene un valor dos veces mayor que el experimental, lo que pone en evidencia las ventajas y limitaciones de este software.

Para investigaciones futuras en esta área, modestamente, se recomienda.

• Utilizar mallas estructuradas para la simulación del flujo. La versión del software utilizada solo ofrece la generación de mallas no estructuradas.

- Refinar las mallas hasta que los valores de los parámetros evaluados se acerquen asintóticamente al valor real.
- Utilizar equipos de computación más performantes que faciliten reducir el tiempo de maquina en comparación con las computadoras existentes actualmente en la sala de tesitas.

REFERENCIAS BIBLIOGRAFICAS

- ABBOTT, I. H., & VON DOENHOFF, A. E., 1959, *Theory of Wing Sections*, Dover Publications, Inc. New York, USA.
- ANDERSON, Jr., 2006, *Fundamentals of Aerodynamics*, Mcgraw-Hill Series in Aeronautical and Aerospace Engineering, Fourth Edition, USA.
- ANDERSON, J. y BARLOW, B. J., 1979, A Study of the Dropped Leading Edge Airfoil, University of Maryland, College Park Department of Aerospace Engineering, pp. 41
- APARICIO, G. J. A., 2006, Influencia del Borde de Fuga Romo Sobre Las Curvas Características de Perfiles Aerodinámicos GOE, NACA y FX, Tesis, Ing. Mec., Universidad Central de Venezuela, Caracas.
- BARITTO, M., 2007, Ascenso de Burbujas de Taylor en Mini-Conductos verticales de sección No-Circular: Estudio Numérico, Tesis, Ing. Mec., Universidad Central de Venezuela, Caracas.
- BRAGG, M. B., AND JACOBS, J. J., 2006, Particle Image Velocimetry Measurements of the Separation Bubble on an Iced Airfoil, 24th AIAA Applied Aerodynamics Conference, San Francisco, CA, pp.14
- BRAGG, M. B., AND JACOBS, J. J., 2007, Two- and Three-Dimensional Iced Airfoil Separation Bubble Measurements by Particle Image Velocimetry, 45th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, pp. 16.
- CHANDRASEKHARA, M. S., et al, 1997, Design and Development of Dynamically Deforming Leading Edge Airfoil for Unsteady Flow Control, NAVY-NASA, pp. 10.
- CHANDRASEKHARA, M. S., et al, 2003, *Dynamic Stall Measurements and Computations for a VR-*12 Airfoil with a Variable Droop Leading Edge, American Helicopter Society 59th Annual Forum, Phoenix, Arizona.
- CHANDRASEKHARA, M. S. y TUNG, P. B., 2004, Aerodynamic Flow Control using a Variable Droop Leading Edge Airfoil, Navy-NASA, pp. 19.
- DE ACEVEDO, H. y ROJAS, M., 2003, Curvas Características de Perfiles Aerodinámicos Serie SZ-2000, Tesis, Ing. Mec., Universidad Central de Venezuela, Caracas.
- DURAND, F., 1935, Aerodynamic Theory, Springer, Berlin.

- EKATERINARIS, J. A., 2004, Prediction of active flow control performance on airfoils and wings, Institute of Applied & Computational Mathematics.
- FERRER, C., 2007, Características geométricas y aerodinámicas de perfiles utilizados en el diseño de turbomáquinas hidráulicas, Trabajo de ascenso, Ing. Mec., Universidad Central de Venezuela, Caracas.
- FIGUEIRA, N. J. y VILASECA, U. M., 1981, Generación de Perfiles Aerodinámicos Utilizando Funciones Polinómicas, Tesis, Ing. Mec., Universidad Simón Bolívar, Caracas.
- FRANK, E., 1987, Calculo de la Capa Límite sobre Perfiles Eppler y Zarea, Tesis, Ing. Mec., Universidad Simón Bolívar, Caracas.
- GETAN, E., 1981, Estudio de Perfiles Aerodinámicos Definidos por Seis Parámetros, Tesis, Ing. Mec., Universidad Simón Bolívar, Caracas.
- GOMEZ, A. y PINILLA A., 2006, Aerodynamic Characteristics of Airfoils with Blunt Trailing Edge, *Revista de Ingenieria*, Universidad de los Andes. No 24. pp. 11.
- HANLEY, P., 1989, Aerodynamic and Airfoil Analysis Software, MIT Course.
- HUEBSCH, W. W. y ROTHMAYER, A. P., 2002, Effect of surface ice roughness on dynamic stall, *Journal of Aircraft*, Vol. 39, No. 6, pag. 45.
- KUETHE, A. M. y CHOW, CH., 1976, *Foundation of Aerodynamics*, John Wiley & Sons, Third Edition.
- LA GRECA, A., 1983, Flujo Rotacional Alrededor de un Perfil Aerodinámico, Tesis, Ing. Mec., Universidad Simón Bolívar, Caracas.
- MARTINS, F. y MONTOYA, L. J. L., 1991, Calculo de las Características Aerodinámicas de Perfiles Zarea Modificados, Tesis, Ing. Mec., Universidad Central de Venezuela, Caracas.
- MCCROSKEY, W. J., 1981, The Phenomenon of Dynamic Stall, NASA.
- MILEY, S. J., 1982, A Catalog of Low Reynolds Number Airfoil Data for Wind Turbine Applications, Texas A&M University, Texas, USA.
- MILNE-THOMPSON, L. M., 1968, Theoretical Hydrodynamic, McMillan, London.
- PANTIN, A. M. y ROJAS, H., 1978, Estudio Teórico Practico Sobre Perfiles Aerodinámicos, Tesis, Ing. Mec., Universidad Simón Bolívar, Caracas.
- PELAEZ, U. F. A., 1985, Desarrollo de Perfiles Aerodinámicos Mediante Dos Curvas Generatrices Cerradas, Tesis, Ing. Mec., Universidad Central de Venezuela, Caracas.
- RIEGELS, F. W., 1961, Airfoil Sections, Butterworths, London.

- RODRIGUEZ, R. J. E., 1978, Generación de Perfiles Aerodinámicos, Tesis, Ing. Mec., Universidad Simón Bolívar, Caracas.
- RODRÍGUEZ, I., 1983, Generación de Perfiles Aerodinámicos Mediante el Método Zarea, Tesis, Ing. Mec., Universidad Central de Venezuela, Caracas.
- SACKS, I. y URRESH, I., 1982, Estudio del flujo Alrededor de Perfiles Aerodinámicos Obtenidos por inversión Compleja, Tesis, Ing. Mec., Universidad Simón Bolívar, Caracas.
- SHOLZ, P. et al, 2006, Leading edge separation control by means of pulsed jet actuators, 3rd *AIAA* Flow Control Conference, 5-8 June, San Francisco.
- SARKAR S., VENKATRAMAN K., 2005, Influence of Pitching angle of incidence on the dynamic stall behavior of a symmetric airfoil, *European Journal of* Mechanics, Vol. 40, No. 16, pp. 20.
- SOMERS, D. M., AND MAUGHMER, M.D., 2003, Theoretical Aerodynamic Analyses of Six Airfoils for Use on Small Wind Turbines, NERL Subcontractor Report.
- STAFF OF LANGLEY RESEARCH CENTER, 1979, Exploratory Study of the Effects of Wing Leading Edge Modifications on the Stall/Spin Behavior of a Light General Aviation Airplane, NASA TP 1589.
- TUCK, J. SORIA, 2004 Active Flow Control over a NACA 0015 Airfoil using a ZNMF Jet,15th Australasian Fluid Mechanics Conference, The University of Sydney, Australia.
- VON-MISES, R., 1959, Theory of flight, Dover Publications INC, New York.
- WINDTE J., SCHOLZ U., 2006, Validation of the RANS-simulation of laminar separation bubbles on airfoils, *Aerospace Science and Technology*.
- WILSON P. G., PAULEY L., 1998, Two and Three Dimensional Large-Eddy Simulation of a Transitional Separation Bubbles, *Physics Fluids*, Vol. 11, No 11, pp. 55.
- WORTMANN, F. X., 1977, Aerofoil Design for Man Powered Aircraft, Second Man Powered Aircraft Group Symposium, The Royal Aeronautical Society.

WORTMANN, F. X., 1978, Drag Reduction for Gliders, NASA TM 75293, May.

- ZAREA, S., 1995, New Methods in Aero- hydrodynamic Profile Generation, III Congress on Fluid Mechanics, USB.
- ZAREA, S., 2001 Periodic Beltrami flows around cylindrical obstacles, Recent Developments in Fluid Mechanics, Proceedings of LACAFLUM, pag. 131-137, Caracas.

- ZAREA, S., IRAUSQUIN. 2002. Evaluación computacional de tres perfiles aerodinámicos serie SZ-1500, Memorias del V Congreso Iberoamericano de Ingeniería Mecánica, Chile.
- ZAREA, S., IRAUSQUIN. 2002. Evaluación experimental de tres perfiles aerodinámicos serie SZ-1500 con borde de ataque modificado, Memorias del V Congreso Iberoamericano de Ingeniería Mecánica, Chile.
- ZAREA, S., et al, 2003, Evaluación experimental de ocho perfiles aerodinámicos serie SZ-1500 para bajos números de Reynolds, *Revista de la Fac. de Ingeniería*, UCV. Vol. 18, Nº 3, pp. 11.

ANEXOS

Imagen extraída de la sección de ayuda del software ANSYS CFX, donde son mostradas las ecuaciones que se resuelven numéricamente para cada elemento de volumen finito:

The Continuity
Equation
$$\frac{\partial \rho}{\partial t} + \nabla \bullet (\rho U) = 0$$
(Eqn. 77)The Momentum
Equations $\frac{\partial (\rho U)}{\partial t} + \nabla \bullet (\rho U \otimes U) = -\nabla p + \nabla \bullet \tau + S_M$ (Eqn. 78)Where the stress tensor, τ , is related to the strain rate by $\tau = \mu \Big(\nabla U + (\nabla U)^T - \frac{2}{3} \delta \nabla \bullet U \Big)$ (Eqn. 79)The Total
Energy Equation $\frac{\partial (\rho h_{tot})}{\partial t} - \frac{\partial p}{\partial t} + \nabla \bullet (\rho U h_{tot}) = \nabla \bullet (\lambda \nabla T) + \nabla \bullet (U \bullet \tau) + U \bullet S_M + S_E$ (Eqn. 80)Where h_{tot} is the total enthalpy, related to the static enthalpy $h(T, p)$ by: $h_{tot} = h + \frac{1}{2}U^2$ (Eqn. 81)

The term $\nabla \bullet (U \bullet \tau)$ represents the work due to viscous stresses and is called the viscous work term.

The term $U \bullet S_M$ represents the work due to external momentum sources and is currently neglected.