TRABAJO ESPECIAL DE GRADO

INCLUSIÓN Y APLICACIÓN DE CORRELACIONES DE PROPIEDADES DE FLUIDOS EN EL MÓDULO GENERADOR DE PVT DEL SIMULADOR SYEP

Presentado ante la Ilustre Universidad Central de Venezuela Por el Br. Villarroel S., Rafael A. Para optar al Título de Ingeniero de Petróleo

Caracas, Mayo 2005

TRABAJO ESPECIAL DE GRADO

INCLUSIÓN Y APLICACIÓN DE CORRELACIONES DE PROPIEDADES DE FLUIDOS EN EL MÓDULO GENERADOR DE PVT DEL SIMULADOR SYEP

TUTOR ACADÉMICO: MS José R. Villa

Presentado ante la Ilustre Universidad Central de Venezuela Por el Br. Villarroel S., Rafael A. Para optar al Título de Ingeniero de Petróleo

Caracas, Mayo 2005

DEDICATORIA

A Dios por haberme dado la oportunidad de estar donde estoy y por haberme dado los ejemplares padres que me enseñaron los valores de la vida, a ellos por confiar y creer en mí, y por darme tanto amor, a la maravillosa esposa que tengo por estar en todo momento apoyándome y guiándome hacia el camino de la felicidad y a mi querido hermano Pablo Jesús.

AGRADECIMIENTOS

Agradezco a **Dios** por estar siempre conmigo, por darme la oportunidad de vivir, por la familia que tengo, y por ponerme donde estoy. Gracias.

Agradezco a mis **Padres**, a mi mamá por ser tan especial, generosa y comprensiva, no encuentro palabras que la describan, a mi papá por incentivarme al estudio, al trabajo y al progreso, a los dos los quiero mucho. Este logro es tan mío como de ustedes a quienes le dedico este esfuerzo. Gracias.

Agradezco a mi **Esposa**, por estar en todo momento apoyándome y guiándome hacia el camino de la felicidad. Gracias por estar allí, te amo.

Gracias a la **Facultad de Ingeniería y a la Escuela de Petróleo** de la Universidad Central de Venezuela por haberme dado la Educación y la oportunidad de formarme como profesional de carrera.

Quiero agradecer a todas aquellas personas que intervinieron de una u otra manera en la realización de esta tesis de grado. Dentro de ese grupo de personas debo hacer una mención especial a los profesores:

José R. Villa, mi amigo y tutor, cuyos conocimientos, apoyo y colaboración influyeron de manera directa en el feliz término de este trabajo.

Angel Da Silva, por darme la oportunidad de realizar la tesis en su simulador, por creer en mí y por su invalorable apoyo.

Leopoldo Farías, por la ayuda y colaboración incondicional, por regalarme su tiempo y por permitirme aprender de sus experiencias.

María Teresa Vives, por su apoyo metodológico para la elaboración de este Trabajo Especial de Grado, además de brindarme sus sabios consejos.

A mi amigo **Guillermo Montouto**, por tantos años de amistad y por su colaboración en el campo laboral cuando yo tenía clases.

A mi amiga Andrea Sartori, por su apoyo y valiosa ayuda para conseguir información en la Escuela de Petróleo de La Universidad del Zulia.

A mis amigos y alumnos de la Corporación Andina de Fomento: Claudia, Rebeca, Rosindira, Ana María, Jairo, Roberto y Marcos, gracias por estar pendiente del desarrollo del trabajo, por sus consejos y colaboración.

A **José Angel, Gabriel y Héctor** por su apoyo y colaboración, y en fin a todos mis compañeros y amigos que de una u otra forma me ayudaron a lo largo de estos años.

Rafael Angel Villarroel

Villarroel S., Rafael Angel

INCLUSIÓN Y APLICACIÓN DE CORRELACIONES DE PROPIEDADES DE FLUIDOS EN EL MÓDULO GENERADOR DE PVT DEL SIMULADOR SYEP

Tutor Académico: MS José R. Villa. Tesis. Caracas. U.C.V. Facultad de Ingeniería. Escuela de Ingeniería de Petróleo. Año 2005, 196 páginas.

Palabras Claves: Simulación de Yacimientos, Simulador SYEP, Análisis PVT, Correlaciones.

Resumen: La simulación numérica de yacimientos es la principal herramienta utilizada para determinar el comportamiento del flujo de fluidos bajo diversas condiciones de explotación. Esta herramienta considera implícitamente la variación de las propiedades físicas de los fluidos a través del vacimiento y a lo largo del tiempo de producción. Actualmente la Escuela de Ingeniería de Petróleo cuenta con el recientemente desarrollado simulador de vacimientos SYEP, desarrollado como alternativa a los costosos simuladores comerciales. Esta herramienta consta de un modulo generador de propiedades físicas de fluidos con base en correlaciones empíricas (GPVT). En este modulo se encuentra implementada una sola correlación para cada propiedad de fluidos, lo cual limita su aplicabilidad para diferentes condiciones de vacimientos. El objetivo de este Trabajo Especial de Grado es implementar las correlaciones de PVT mas utilizadas a nivel mundial considerando sus rangos de aplicabilidad de acuerdo a las características de fluidos y vacimiento. Las correlaciones implementadas permitieron el desarrollo de un modulo generador de propiedades PVT mejorado, dando origen a GPVT2.0. En este nuevo programa se introducen las características básicas de los fluidos y yacimiento, se seleccionan las correlaciones apropiadas para esas características de acuerdo sus rangos de aplicabilidad y se generan las propiedades de fluidos en forma tabular y gráfica. La importancia pedagógica radica en educar al usuario acerca de los rangos de aplicabilidad de las correlaciones allí implementadas, y su correcta selección dependiendo de las características del yacimiento al cual se le quieran calcular las propiedades PVT, y cómo ésta selección influye en el resultado generado. Se validaron las correlaciones implementadas en GPVT2.0 mediante la comparación con otro programa generador de propiedades de fluidos desarrollado por Amoco Corp. Adicionalmente se validaron los resultados generados por GPVT2.0 realizando una comparación con un análisis de fluidos de un vacimiento de crudo mediano del occidente de Venezuela, el cual fue desarrollado por CoreLab. Estas comparaciones indicaron que los resultados generados por GPVT2.0 fueron completamente satisfactorios, con lo cual se puede proceder a su utilización inmediata en **SYEP**.

,		
TNU	nt	OF
1111	$\boldsymbol{\nu}$	CL.

INTRODUCC	CIÓN	xiii
CAPÍTULO I		
1 MARCO T	EÓRICO	15
1.1 Aı	nálisis PVT	15
1.1.1	Pruebas que se le practican a las muestras	15
1.1.2	Limitaciones de las Pruebas de Laboratorio	24
1.2 Co	orrelaciones Matemáticas	24
1.3 Pr	opiedades de los Fluidos	25
1.3.1	Propiedades Físicas del Petróleo	25
1.3.2	Propiedades Físicas del Gas	33
1.3.3	Propiedades Físicas del Agua	39
CAPÍTULO I	I	
2 CORRELA	CIONES IMPLEMENTADAS	43
2.1 Pr	opiedades Físicas del Petróleo	43
2.1.1	Presión de Burbujeo, P _b	43
2.1.2	Solubilidad del Gas en el Petróleo, R _s	55
2.1.3	Factor Volumétrico de Formación, β _o	60
2.1.4	Compresibilidad del petróleo, Co	66
2.1.5	Viscosidad del petróleo, µ ₀	69
2.1.6	Densidad del petróleo, ρ_0	77
2.2 Pr	opiedades Físicas del Agua	79
2.2.1	Solubilidad del Gas en el Agua, R _{sw}	79
2.2.2	Factor Volumétrico del Agua, β _w	81
2.2.3	Compresibilidad del Agua, C _w	83
2.2.4	Viscosidad del Agua, μ_w	86
2.2.5	Densidad del Agua, ρ_w	89
2.3 Pr	opiedades Físicas del Gas	89
2.3.1	Presión y Temperatura Seudocríticas de Gases, Psc y Tsc	89
2.3.2	Presión y Temperatura Seudocríticas del Componente Pesado.	92
2.3.3	Factor de Compresibilidad del Gas, Z	94
2.3.4	Factor Volumétrico del Gas, ßg	102
2.3.5	Compresibilidad del Gas, Cg	104
2.3.6	Viscosidad del Gas, μ_g	107
2.3.7	Densidad del Gas, pg	110
2.4 Co	ompilación de las correlaciones	111
CAPÍTULO I	II ,	

3	METOD	OLOGÍA E IMPLEMENTACIÓN	114
	3.1	Revisión bibliográfica de las principales correlaciones	115

3.2	Programación de las correlaciones e implementación en GPTV 116
3.3	Validación de las correlaciones implementadas en GPVT2.0116
3.4	Validación de las propiedades PVT con un análisis de laboratorio 117
3.5	Diagrama de flujo de GPVT 119
3.6	Diagrama de flujo para desarrollar GPVT2.0
CAPÍTUI	LO IV
4 RESUL	TADOS
4.1	Programación e inclusión de GPVT2.0
4.2	Validación de las correlaciones implementadas en GPVT2.0 125
4.3	Validación de las propiedades PVT con un análisis de laboratorio 132
CONCLU	SIONES 144
RECOM	ENDACIONES 146
REFERE	NCIAS
BIBLIOG	RAFÍAS 154
ANEXOS	

ÍNDICE DE TABLAS

CAPÍTULO I

Tabla 1.1	Comparación entre las tres Liberaciones	21
CAPÍTULC		
Tabla 2.1	Rango de los datos para la ec.(2.2)	44
Tabla 2.2	Valores de las constantes según los °API para la ec.(2.3)	45
Tabla 2.3	Rango de los datos para la ec. (2.3)	45
Tabla 2.4	Rango de los datos para la ec. (2.4)	46
Tabla 2.5	Rango de los datos para la ec. (2.5)	47
Tabla 2.6	Valores de las constantes según los °API para la ec. (2.13)	49
Tabla 2.7	Rango de los datos para la ec. (2.14)	50
Tabla 2.8	Rango de los datos para la ec. (2.15)	51
Tabla 2.9	Rango de los datos para la ec. (2.16)	52
Tabla 2.10	Valores de las constantes según los °API para la ec. (2.18)	53
Tabla 2.11	Rango de los datos para la ec. (2.18)	54
Tabla 2.12	Rango de los datos para la ec. (2.19)	54
Tabla 2.13	Valores de las constantes según los °API para la ec. (2.25)	57
Tabla 2.14	Valores de las constantes según los °API para la ec. (2.34)	61
Tabla 2.15	Rango de los datos para la ec. (2.48)	67
Tabla 2.16	Rango de los datos para la ec. (2.51)	69
Tabla 2.17	Rango de los datos para la ec. (2.53)	70
Tabla 2.18	Rango de los datos para la ec. (2.54)	71
Tabla 2.19	Rango de los datos para la ec. (2.56)	72
Tabla 2.20	Rango de los datos para la ec. (2.57)	73
Tabla 2.21	Valores de <i>A</i> y <i>b</i> usados en la ec. (2.57)	74
Tabla 2.22	Rango de los datos para la ec. (2.66)	76
Tabla 2.23	Rango de los datos para la ec. (2.67)	77

Tabla 2.24	Rango de los datos para la ec. (2.114 - 115)	93
Tabla 2.25	Valores de los coeficientes <i>A</i> _{ij}	96
Tabla 2.26	Valores de las constantes A_{1-8}	99
Tabla 2.27	Valores de las constantes <i>A</i> ₁₋₁₁	101
Tabla 2.28	Ecuaciones desarrolladas por Gopal según <i>P</i> _{sr} y <i>T</i> _{sr}	102
Tabla 2.29	Polinomios de Legendre	103
Tabla 2.30	Ecuaciones desarrolladas por Gopal según P_{sr} y T_{sr}	107
Tabla 2.31	Constantes para hallar el cociente μ_g/μ_{gl}	109
Tabla 2.32	Correlaciones incluidas en SYEP para el petróleo	112
Tabla 2.33	Correlaciones incluidas en SYEP para el gas	112
Tabla 2.34	Correlaciones incluidas en SYEP para el agua	113
Tabla 2.35	Correlaciones que estaban implementadas en GPVT	113

CAPÍTULO III

Tabla 3.1	Características del yacimiento	117
CAPÍTULO) IV	
Tabla 4.1	Comparación entre la P_b calculada por varias correlaciones	125
Tabla 4.2	Comparación entre la R_s de Amoco y la de GPVT2.0	126
Tabla 4.3	Comparación entre el β_o de Amoco y el de GPVT2.0	127
Tabla 4.4	Comparación entre la μ_o de Amoco y la de GPVT2.0	127
Tabla 4.5	Correlaciones usadas por Amoco y por GPVT2.0	130
Tabla 4.6	Comparación entre la P_b calculada por varias correlaciones	133
Tabla 4.7	Comparación entre la R_{sb} calculada por las correlaciones válidas	134
Tabla 4.8	Comparación entre el β_{ob} calculado por las correlaciones válidas	137
Tabla 4.9	Comparación entre la μ_{ob} calculada por las correlaciones válidas	141
Tabla 4.10	Comparación entre la μ_o (24500	141

ÍNDICE DE FIGURAS

CAPÍTULO I

Figura 1.1	Diagrama del proceso de Liberación Instantánea	17
Figura 1.2	Diagrama del proceso de Liberación Diferencial	19
Figura 1.3	Diagrama del proceso de Liberación a Volumen Constante	21
Figura 1.4	Comportamiento de <i>R_s</i> vs. presión a temperatura constante	27
Figura 1.5	Comportamiento de β_o vs. presión a temperatura constante	28
Figura 1.6	Comportamiento de β_o y β_t vs. presión a temperatura constante	30
Figura 1.7	Comportamiento de μ_o vs. presión a temperatura constante	31
CAPÍTULO	III	
Figura 3.1	Diagrama de Flujo de GPVT	119
Figura 3.2	Diagrama de Flujo de GPVT2.0	120
CAPÍTULO	IV	
Figura 4.1	Ventana principal de la Aplicación SYEP	121
Figura 4.2	Menú Aplicaciones Adicionales – Botón generador de PVT	122
Figura 4.3	Ventana principal de GPVT2.0	122
Figura 4.4	Ventana activa para la introducción de los datos	123
Figura 4.5	Ventana con el rango de aplicabilidad de cada correlación	124
Figura 4.6	Gráfico comparativo entre la R_s de Amoco y la de GPVT2.0	127
Figura 4.7	Gráfico comparativo entre el β_o de Amoco y el de GPVT2.0	128
Figura 4.8	Gráfico comparativo entre la μ_o de Amoco y la de GPVT2.0	129
Figura 4.9	Ventana de GPVT2.0 con la tabla PVT generada	130
Figura 4.10	Ventana de GPVT2.0 con los rangos de aplicabilidad	133
Figura 4.11	Gráfico comparativo entre la R_s de CoreLab. y la de GPVT2.0	135
Figura 4.12	Error relativo entre los valores de R_s de CoreLab. y de GPVT2.0.	136
Figura 4.13	Gráfico comparativo entre el β_o de CoreLab. y el de GPVT2.0	137
Figura 4.14	Error relativo entre los valores de β_o de CoreLab. y de GPVT2.0.	138
Figura 4.15	Ventana de GPVT2.0 con los rangos de aplicabilidad	139
Figura 4.16	Ventana de GPVT2.0 con los rangos de aplicabilidad	140
Figura 4.17	Ventana de GPVT2.0 con los rangos de aplicabilidad	140
Figura 4.18	Gráfico comparativo entre la μ_o de CoreLab. y la de GPVT2.0	142
Figura 4.19	Error relativo entre los valores de μ_o de CoreLab. y de GPVT2.0.	142

INTRODUCCIÓN

El desarrollo del Simulador de Yacimientos Escuela de Petróleo (SYEP) se encuentra en su fase inicial, en proceso de incorporarle nuevos módulos que puedan llevar a cabo funciones y trabajos que realizan actualmente los simuladores comerciales similares.

Actualmente el simulador posee la aplicación Generador de PVT (**GPVT**) que incluye sólo dos correlaciones para el cálculo de las propiedades físicas del petróleo, tres correlaciones para las propiedades físicas del gas y dos para las propiedades físicas del agua. Estas correlaciones tienen un rango de aplicabilidad reducido, lo que disminuye la precisión y confiabilidad de los PVT's generados si las condiciones del yacimiento son diferentes al rango de aplicabilidad para las cuales fueron desarrolladas.

El desarrollo de este Trabajo Especial de Grado tiene importancia desde el punto de vista técnico y pedagógico. La importancia técnica radica en que se podrá evidenciar las diferencias que existen en los resultados de un proceso de generación de propiedades PVT cuando se usan correlaciones sin tomar en cuenta el rango de aplicabilidad. También se podrá constatar la consistencia de los datos PVT generados.

La importancia pedagógica de este trabajo es que la Escuela de Petróleo de la U.C.V. contaría con una herramienta de simulación numérica de yacimientos que incluye un módulo Generador de PVT (**GPVT2.0**) consistente, probado y con un amplio rango de aplicabilidad, disminuyendo la dependencia de paquetes comerciales de simulación numérica de yacimientos que implican la utilización de recursos económicos, que pudieran ser destinados para otro fin en beneficio del estudiantado.

La simulación numérica permite por medio de sistemas de ecuaciones fundamentadas

en la ecuación de balance de masa y en la Ley de Darcy, relacionar:

- Las propiedades geométricas y petrofísicas de la roca como: porosidad, permeabilidad, arcillosidad (net-to-gross), profundidades y espesores.
- Los datos PVT, de petróleo negro (black-oil) proporcionan: factores volumétricos de formación (β_o, β_w y β_g), relación gas-petróleo y viscosidades (μ_o, μ_w y μ_g).
- Las condiciones de borde, locales y globales, tales como: condiciones operacionales de los pozos (BHP min., THP min.), así como el número y arquitectura de los pozos (vertical u horizontal).

El resultado de este proceso genera la distribución de presiones y saturaciones de fluidos a través del yacimiento.

Luego del acoplamiento con el modelo del pozo (Peaceman⁵⁷) con la simulación numérica, se va a obtener las tasas de fluidos considerando las condiciones anteriormente mencionadas, y como resultado final la producción acumulada de petróleo, agua y gas.

El objetivo de este Trabajo Especial de Grado es mejorar el módulo de Generador de PVT para petróleo, gas y agua a partir de la inclusión de correlaciones con amplio rango de aplicación, creando así el nuevo módulo generador de propiedades de fluidos **GPVT2.0.**

Los objetivos específicos de este trabajo son:

- Seleccionar, programar e implantar las correlaciones de propiedades PVT de petróleo, agua y gas en SYEP.
- Demostrar la importancia de la aplicación correcta de las correlaciones, dependiendo de las condiciones del yacimiento.
- Mejorar el proceso de visualización de gráficos y generador de tablas de propiedades PVT del SYEP.

CAPÍTULO I

1 MARCO TEÓRICO

1.1 Análisis PVT

Los Análisis de PVT son resultados de pruebas de laboratorio que se practican a muestras representativas de los fluidos de un yacimiento petrolífero para simular su comportamiento ante los cambios de presión y temperatura que experimentan en su tránsito desde el medio poroso hasta el tanque de almacenamiento.

Estas pruebas deben simular el proceso de liberación de gas – petróleo desde el yacimiento hasta los separadores.

1.1.1 Pruebas que se le practican a las muestras

- Composición de la Muestra
- Liberación Instantánea
- Liberación Diferencial
- Volumen Constante
- Liberación Compuesta
- Prueba de Separadores
- Variación de la Viscosidad

Para poder realizar las pruebas antes mencionadas, es necesario contar con muestras representativas del yacimiento en estudio.

A continuación se presenta una breve descripción de las pruebas de laboratorio que se le practican a las muestras de fluidos de yacimientos.

1.1.1.1 Composición de la Muestra

El análisis composicional de los fluidos nos permite determinar el porcentaje molar de los componentes. Las técnicas usadas en la determinación de la composición de una mezcla de hidrocarburos incluyen cromatografía y destilación. Muestras gaseosas son analizadas únicamente por cromatografía desde el C_I hasta el C_{II} . Muchas veces el análisis sólo alcanza hasta el C_{6+0} C_{7+} .

La composición de una muestra de fondo o recombinada se puede obtener haciendo una liberación instantánea (flash) en el laboratorio, y el gas liberado es analizado separadamente del líquido remanente. En este caso es necesario hacer recombinaciones para obtener la composición de la muestra de yacimiento. El informe muestra el análisis composicional del fluido del yacimiento. Usualmente, se reporta la composición de la muestra individual de líquido y de gas del separador junto con la composición del fluido recombinado.

La recombinación de la muestra de gas y petróleo debe basarse en la RGP del separador. Si la RGP disponible es la de gas del separador con respecto al líquido de tanque, entonces debe determinarse el factor de merma del líquido del separador para saber cuanto de este se debe utilizar en la recombinación.

1.1.1.2 Liberación Instantánea

La prueba consiste en llevar una muestra de fluido del yacimiento a una celda PVT en el laboratorio, con una presión mayor o igual a la del yacimiento y a temperatura del yacimiento. La presión se va reduciendo por etapas produciendo incrementos en el volumen, los cuales son medidos, como se puede apreciar en la Figura 1.1.

Durante la prueba la composición del fluido se mantiene constante, debido a que en ningún momento el gas liberado es retirado de la celda. El comportamiento de la

presión con respecto al volumen es casi lineal para presiones altas (fluido monofásico), al disminuir la presión se produce un cambio en la pendiente, este cambio de pendiente corresponde al cambio de fase ó aparición de una segunda fase.

Para el caso de yacimientos de gas condensado o yacimientos de petróleo volátil (alto encogimiento y mayor vaporización) se utilizan celdas visuales, y para yacimientos de petróleo negro (bajo encogimiento y menor vaporización) se usa una celda no visual.

Características resaltantes de la Liberación Instantánea:

- Se realiza a temperatura constante
- Se inicia con una presión mayor a la presión de burbujeo (P_b)
- Se va disminuyendo la presión en varias etapas
- Se va midiendo el volumen total (gas + líquido)

La liberación de gas en la superficie es de tipo instantánea, ya que el gas y el líquido se mantienen en contacto en la tubería de producción, las líneas de flujo y en los separadores, no existen cambios de la composición total del sistema, hay agitación permanente y equilibrio entre las fases. Cuando el gas liberado en el yacimiento no llega a la saturación de gas crítica (S_{gc}) se está produciendo una Liberación Instantánea.

Figura 1.1 Diagrama del Proceso de Liberación Instantánea

De la prueba de liberación instantánea se obtienen los siguientes resultados:

- Presión de burbujeo
- Volumen relativo de la muestra en función de la presión (V/V_b)
- Compresibilidad del petróleo (por encima del punto de burbujeo) en función de la presión

1.1.1.3 Liberación Diferencial

Es un estudio a composición variable, el cual se realiza en el laboratorio para simular el comportamiento de los fluidos en el yacimiento, durante la disminución de la presión. El proceso comienza con una presión igual a la presión de burbujeo y a temperatura de yacimiento.

Luego se expande la muestra hasta una presión inferior manteniendo la temperatura de yacimiento constante. La celda es agitada hasta alcanzar el equilibrio entre las fases. El gas liberado es desplazado de la celda a presión constante, como se aprecia en la Figura 1.2.

El gas liberado es medido utilizando un gasómetro y posteriormente es analizado para obtener su composición y gravedad específica. También se toman medidas de los volúmenes de muestra antes (líquido y gas) y después de liberar el gas (líquido) a la presión a la cual se realizó la liberación diferencial.

El proceso es repetido por etapas hasta alcanzar la presión atmosférica. Posteriormente la temperatura es reducida a 60 °F y el volumen remanente de líquido es medido, y se le denomina petróleo residual.

La diferencia que existe entre la prueba de liberación diferencial y la prueba de liberación instantánea es que en la prueba diferencial el gas que sale de solución es

removido de la celda de prueba. El fluido remanente en la celda va perdiendo progresivamente componentes livianos, lo que origina una variación de la composición del sistema y por ello una variación del diagrama de fases.

La liberación de gas en el yacimiento se considera intermedia entre diferencial e instantánea aunque se acerca más a diferencial, debido a la elevada caída de presión en la cercanía a los pozos.

Características resaltantes:

- Agotamiento de presión a través de varias separaciones gas petróleo
- Se retira el gas que se libera en cada etapa de despresurización, lo que implica una variación en la composición del fluido
- Temperatura constante hasta alcanzar la P_{atm}
- Se inicia la prueba con una presión mayor que la presión de burbujeo
- Luego de cada disminución de presión hay que esperar el equilibrio para que se libere todo el gas a esa presión.

Figura 1.2 Diagrama del Proceso de Liberación Diferencial

De la prueba diferencial se obtiene:

- Relación gas petróleo en solución (R_s)
- Factor volumétrico del petróleo (β_o)

- Factor volumétrico total (β_t)
- Densidad del petróleo (ρ_o)
- Factor de compresibilidad del gas,(*Z*)
- Factor volumétrico del gas, (β_g)
- Gravedad específica del gas, (γ_g)
- Gravedad API del crudo residual, (°*API*)

1.1.1.4 Liberación a Volumen Constante

En la prueba diferencial se desaloja todo el gas que se libera de solución a cada etapa de despresurización, (como se aprecia en la Figura 1.3), esto implica que todo el gas que se libera en el yacimiento es inmediatamente producido y que la respuesta del yacimiento depende de la fase líquida, así que no describe adecuadamente el proceso de liberación de gas que ocurre cuando se explotan yacimientos de petróleo volátil y condensado.

Lo que ocurre en la prueba de liberación a volumen constante es una declinación de la presión promedio de un yacimiento volumétrico de gas condensado o petróleo volátil. En este yacimiento ocurre condensación retrógrada al descender la presión del yacimiento por debajo de la presión de rocío y revaporización del líquido al continuar disminuyendo la presión.

De la prueba de liberación a volumen constante se obtiene:

- Composición del fluido producido vs. presión del yacimiento
- Saturación de condensado en el yacimiento, condensación y re-vaporización, que ocurre durante el agotamiento de la presión
- Balance de materiales en el yacimiento que provee de la presión del yacimiento en función de los volúmenes producidos.

 $P > P_{rocio}$ P_{rocio} $P < P_{rocio}$ $P < < P_{rocio}$

Figura 1.3 Diagrama del proceso de Liberación a Volumen Constante

A continuación se presenta una comparación entre los tipos de liberación mencionados anteriormente.

	Liberación	Liberación	Liberación a
	Instantánea	Diferencial	Vol. Constante
Información medida	 Presión de saturación Volumen total de fluido Factor de compresibilidad del gas (Z) Compresibilidad del líquido subsaturado 	 Factor Volumétrico de Formación de petróleo Densidad del petróleo Factor de compresibilidad del gas (Z) Viscosidad del líquido y gas Relación gas petróleo Gravedad específica del gas 	 Presión de saturación Factor de compresibilidad del gas (Z) Viscosidades del gas y del líquido Saturación del líquido Fracción del gas removido

Tabla 1.1	1 Comparación entre las tres Liberacion	
	(Tomado de Farias, L. ⁵⁵)	

Comentarios	 * No se extrae fluido de la celda de prueba. * También se le conoce como liberación a masa constante. 	 * La composición del fluido contenido en la celda cambia constantemente por la extracción de componentes más livianos. * La viscosidad del gas es usualmente 	 * El volumen del sistema a la presión de rocío debe ser medido cuidadosamente. * El yacimiento (celda de prueba) es representado por un fluido bifásico
		gas es usualmente calculada.	fluido bifásico.

 Tabla 1.1 Comparación entre las tres Liberaciones (continuación)

1.1.1.5 Liberación Compuesta

La liberación compuesta combina la liberación diferencial y la instantánea para reproducir mejor la liberación que efectivamente ocurre en todo el sistema yacimiento - instalaciones de superficie.

El experimento se realiza usando dos celdas, una principal que simula las condiciones del yacimiento, y otra de menor volumen denominada celda auxiliar que simula las instalaciones de superficie. Inicialmente la celda principal se carga con crudo representativo a una presión superior a la presión de burbujeo y a la temperatura del yacimiento para asegurar que el fluido inicial sea monofásico. La celda auxiliar está vacía al empezar el experimento.

El volumen final de petróleo que queda en la celda auxiliar luego que se han simulado las separaciones instantáneas correspondientes a separadores y al tanque de prueba es usado para calcular el factor volumétrico del petróleo y la relación gas petróleo.

1.1.1.6 Prueba de Separadores

Son pruebas de liberación instantánea que se realizan en uno o varios separadores en el laboratorio, con el objeto de medir el efecto de las condiciones de separación (P y T) en superficie sobre las propiedades del crudo (β_o y R_s).

Al variar la presión de separación se puede obtener una presión óptima que produzca la mayor cantidad de petróleo en el tanque. El procedimiento a seguir para realizar una prueba de separador, es tomar una muestra de fluido del yacimiento y llevarla a una celda en el laboratorio a temperatura de yacimiento y presión mayor a la de burbujeo.

El líquido de la celda se traslada a un sistema de separación por etapas, el número de etapas depende de la presión a la que se encuentre originalmente el fluido y de la RGP.

De la prueba de separadores se obtiene:

- Factor volumétrico del petróleo a *P*_b
- Relación gas petróleo a P_b en cada etapa de separación y total
- Gravedad API del petróleo de tanque
- Composición del gas separado en cada etapa

Las pruebas de separación son usualmente repetidas para varias presiones. La presión óptima de separación es la presión que permite la máxima producción de petróleo con la máxima gravedad API, la mínima relación gas petróleo y con el mínimo factor volumétrico del gas.

1.1.1.7 Variación de Viscosidad

La viscosidad del petróleo con gas en solución se determina experimentalmente usando un viscosímetro de bola rodante o tubo capilar que permiten medir μ_0 a cualquier presión y temperatura. El agotamiento de presión se realiza a temperatura constante siguiendo un proceso de liberación diferencial. La viscosidad del gas se determina generalmente a través correlaciones que se describen más adelante. El líquido usado en cada medida es el líquido remanente de la prueba diferencial al cual se la ha extraído todo el gas que contenía en solución a esa presión.

1.1.2 Limitaciones de las Pruebas de Laboratorio

La muestra de fluido tomada no representa adecuadamente la composición original de los fluidos del yacimiento cuando:

- La muestra se toma a presión de yacimiento menor a la presión de burbujeo
- El pozo produce agua y/o gas libre

Los procesos de liberación de laboratorio no simulan el proceso combinado diferencial – instantáneo que ocurre en el yacimiento.

Hay que tener mucho cuidado al extrapolar los resultados del laboratorio al campo, ya que pequeños errores en las pruebas producen grandes y graves errores en el balance de materiales, cotejo y predicción. En el muestreo de separador, pequeños errores (5%) en la tasa de petróleo y en la tasa de gas, producen errores en la presión de burbujeo de hasta 150 lpc.

1.2 Correlaciones Matemáticas

Cuando no se cuenta con información experimental o las muestras de las pruebas no son confiables, se hace necesario determinar las propiedades de los fluidos mediante correlaciones empíricas. Estas correlaciones son desarrolladas a partir de datos de laboratorio o de campo, y son presentadas en forma de ecuaciones numéricas o expresiones analíticas. En la literatura existe gran variedad de estas correlaciones, las cuales se obtuvieron a partir de estudios realizados a diferentes tipos de crudos, por lo tanto el uso de cualquiera de estas debe ser sustentado con argumentos sólidos de producción que adopte el modelo seleccionado.

1.3 Propiedades de los Fluidos

1.3.1 Propiedades Físicas del Petróleo

• Gravedad Específica, γ_o:

La Gravedad Específica del Petróleo, γ_o , se define como la razón de la densidad del petróleo a la densidad del agua dulce, ambas medidas a la misma presión y temperatura.

$$\gamma_o = \frac{\rho_o}{\rho_w} \tag{1.1}$$

La Gravedad Específica (adimensional) normalmente es reportada como 60°/60°, esto significa que las dimensiones del petróleo y del agua fueron medidas a 60°F y a presión atmosférica.

Para el petróleo es de uso común la gravedad API (American Petroleum Institute), definida mediante la siguiente relación:

$$^{\circ}API = \frac{141.5}{\gamma_{O}} - 131.5 \tag{1.2}$$

Donde, °API, es la gravedad API del petróleo, y γ_0 la gravedad específica petróleo a 60°/60°. Obsérvese que petróleos más livianos que el agua $\gamma_0 < 1.0$, tienen °API > 10, y más pesados que el agua tienen °API < 10. Al agua, $\gamma_w = 1.0$, le corresponde una °API de 10.

• Presión de Burbujeo, *P_b*:

La presión de burbujeo, P_b , o presión de punto de burbujeo como también se le llama, se define como la presión a la cual se forma la primera burbuja de gas al pasar un sistema del estado líquido al estado bifásico, donde la fase líquida está en equilibrio con una cantidad infinitesimal de gas libre.

A presiones por debajo de la presión de burbujeo se forman dos fases en equilibrio: líquida (crudo con gas en solución) y gaseosa (gas natural). La fase líquida está constituida por crudo saturado con gas natural, por esto a estas presiones se les llama de saturación, P_s .

• Solubilidad del Gas en el Petróleo, R_s:

La razón gas disuelto - petróleo (gas en solución) o solubilidad del gas en el petróleo, R_s , se define como el número de pies cúbicos normales (PCN) de gas que pueden disolverse en un barril normal (BN) de petróleo cuando ambos son llevados a las condiciones de presión y temperatura prevalecientes en el yacimiento.

Se dice que un crudo está saturado con gas cuando tiene en solución la máxima cantidad de gas que el admite, y en este caso, al reducir un poco la presión ocurre liberación de gas.

Si el crudo tiene una cantidad de gas inferior a la que puede admitir a ciertas condiciones de P y T se dice que el crudo está subsaturado (no saturado), o sea, que tiene una deficiencia de gas. En un crudo, si se dispone de suficiente gas y se puede someter el petróleo a altas presiones y temperaturas, puede decirse que el gas es infinitamente soluble en el petróleo.

Lo que limita la solubilidad del gas en el petróleo en el yacimiento, son las condiciones de presión y temperaturas que allí existan y por supuesto la cantidad del gas disponible. Por esta razón se encuentran yacimientos con capa de gas inicial (exceso de gas a las condiciones de P y T existentes) y yacimientos subsaturados (no saturados).

Figura 1.4 Comportamiento de R_s vs. presión a temperatura constante

En la Figura 1.4 se observa que R_s aumenta con la presión hasta llegar a la presión de burbujeo, P_b , a partir de la cual se mantiene constante. La razón de esto, es que al llegar al punto de burbujeo no existe más gas disponible para entrar en solución con el petróleo. Así, por arriba de la presión de burbujeo el petróleo está subsaturado ya que una disminución de presión no causa liberación de gas (R_s es constante); sin embargo, por debajo de la presión de burbujeo el petróleo está saturado, ya que una disminución de presión origina una liberación de gas.

Los factores que afectan la solubilidad del gas en el petróleo son:

- Presión: Al aumentar la presión, aumenta *R*_s
- Temperatura: Al aumentar la temperatura disminuye R_s
- Gravedad del petróleo: Al aumentar la gravedad API aumenta R_s
- Gravedad del gas: Al aumentar la gravedad específica del gas aumenta R_s
- Tipo de Liberación: La manera como se separa el gas del petróleo produce diferentes valores de *R_s*, según si es instantánea ó diferencial.

Factor Volumétrico de Formación, β_o:

El Factor Volumétrico de Formación, β_o , se define como el volumen que ocupa a condiciones de yacimiento un barril normal de petróleo más su gas en solución.

También, puede definirse como el cambio de volumen que experimenta la fase líquida al pasar de las condiciones de yacimiento a las condiciones de superficie como consecuencia de la expansión líquida y/o liberación del gas en solución.

Figura 1.5 Comportamiento de β_o vs. presión a temperatura constante

Debido a que no se libera gas de solución cuando la presión disminuye desde su valor inicial hasta la presión de burbujeo (asumiendo que la presión inicial es mayor que la presión de burbujeo), el fluido de yacimiento permanece en estado monofásico (petróleo subsaturado), sin embargo, como los líquidos son ligeramente compresibles, el volumen aumenta un poco desde la presión inicial hasta la presión de burbujeo, como se puede observar en la Figura 1.5.

Por debajo de la presión de burbujeo, la expansión líquida continúa, pero su efecto sobre el aumento en volumen es insignificante comparado con un efecto mucho mayor: la reducción en el volumen líquido debido a la liberación del gas en solución.

• Compresibilidad del Petróleo, Co:

En general, la compresibilidad isotérmica de un fluido, C en lpc⁻¹, se define como el cambio fraccional en volumen cuando la presión es cambiada a temperatura constante, esto es:

$$C = -\frac{1}{V} \times \left(\frac{\partial V}{\partial P}\right)_T \tag{1.3}$$

Donde V se refiere a volumen, P a presión y T a temperatura.

La compresibilidad de un petróleo subsaturado (petróleo que está por arriba de la presión del punto de burbujeo) se define de la siguiente manera:

$$C_o = -\frac{1}{V_o} \left(\frac{\partial V_o}{\partial P} \right)_T = \frac{1}{\rho_o} \left(\frac{\partial \rho_o}{\partial P} \right)_T = -\frac{1}{\beta_o} \left(\frac{\partial \beta_o}{\partial P} \right)_T$$
(1.4)

Como el volumen de un líquido subsaturado disminuye a medida que la presión aumenta, C_o es positiva. Para algunos crudos de ciertos yacimientos, C_o es esencialmente constante por arriba del punto de burbujeo, mientras que en otros varía con la presión.

• Factor Volumétrico Total, β_t:

El Factor Volumétrico Total o Bifásico, β_t , se define como el volumen que ocupa a acondiciones de yacimiento un barril normal de petróleo más su gas originalmente (inicialmente) en solución.

En otras palabras, este factor incluye el volumen líquido, β_o más el volumen de la diferencia entre la solubilidad inicial del gas en el petróleo, R_{si} , y la solubilidad actual del gas en el petróleo R_s en el yacimiento. Si el factor volumétrico del gas es β_g en BY/PCN, para el gas en solución, el factor volumétrico total puede determinarse mediante la siguiente ecuación:

$$\beta_t = \beta_o + (R_{si} - R_s) \times \beta_g \tag{1.5}$$

Donde:	
β_t :	Factor Volumétrico total, BY/BN
β_o :	Factor Volumétrico del petróleo, BY/BN
eta_g :	Factor Volumétrico del gas a P y T, BY/PCN
R_{si} :	Solubilidad del gas en el petróleo a P _i , PCN/BN
R_{a} .	Solubilidad del gas en el petróleo a P PCN/BN

Figura 1.6 Comportamiento de β_o y β_t vs. presión a temperatura constante

Por arriba de la presión de burbujeo, $R_{si} = R_s$, y el Factor Volumétrico Total es igual al Factor Volumétrico del petróleo, $\beta_t = \beta_o$. El comportamiento de β_o vs. Presión se observa en la Figura 1.6

Sin embargo, por debajo de la presión de burbujeo a medida que la presión disminuye el β_o disminuye pero el β_t aumenta debido a que el término ($R_{si} - R_s$) x β_g aumenta puesto que β_g aumenta y R_s disminuye mientras que R_{si} es un valor constante.

• Viscosidad del Petróleo, μ_o:

En general, la viscosidad de un fluido es una medida de la fricción interna o resistencia que ofrecen sus moléculas a fluir (moverse). En el caso de petróleo deben distinguirse dos tipos de viscosidad: viscosidad de un petróleo sin gas en solución, y

viscosidad de un petróleo a determinada P y T llevando consigo la cantidad de gas, R_s , que puede disolverse a esas condiciones.

En ambos casos, el efecto de la temperatura es disminuir la viscosidad, sin embargo, la presión en el primer caso aumenta la viscosidad y en el segundo la disminuye, ya que el efecto de disminución de la viscosidad por gas en solución es mayor que el efecto por compresibilidad del petróleo. El comportamiento de la viscosidad con el cambio de presión se observa en la Figura 1.7.

Figura 1.7 Comportamiento de μ_o vs. presión a temperatura constante

La unidad de medida de la viscosidad dinámica o absoluta, μ , normalmente referida como viscosidad es el centipoise o poise. Una relación entre varios sistemas de unidades está dado por:

$$1 cp=0.01 poise = 0.001 Pa.s = 6.72 X 10^{-4} lbs/(pie-seg)$$
 (1.6)

La viscosidad cinemática de un fluido, v, es la viscosidad absoluta, μ , dividida por la densidad, ρ en grs/cm³. Esto es:

$$v = \frac{\mu}{\rho} \tag{1.7}$$

Donde, la unidad medida es el stoke o centistoke (1cst = 0.01 stokes).

La ecuación (1.7) requiere el conocimiento de la densidad como función de *T*. La siguiente ecuación puede ser utilizada para determinar la densidad a la temperatura de interés:

$$\rho_o = \rho_{ol} (1.022 - 0.000378T) \tag{1.8}$$

Donde:

$ ho_o$:	Densidad del petróleo a 1 atm. y T , lbs/pie ³
$ ho_{ol}$:	Densidad del petróleo a condiciones normales, ($\rho_{ol} = 62.4 \gamma_o$), lbs/pie ³
<i>T</i> :	Temperatura, °F

El efecto de la temperatura sobre la viscosidad de petróleos sin gas en solución (muertos) y productos destilados, es disminuirla.

• Densidad del Petróleo, *ρ_o*:

La Densidad del Petróleo, ρ_o en lbs/pie³, a presiones menores o iguales a la presión de burbujeo ($P \le P_b$) se determina mediante la siguiente ecuación:

$$\rho_o = \frac{350\gamma_o + 0.0764\gamma_{gd}R_s}{5.615\beta_o}$$
(1.9)

Donde:

ρ_o :	Densidad del petróleo, lbs/pie ³
β_o :	Factor volumétrico del petróleo, BY/BN
R_s :	Solubilidad del gas en el petróleo, PCN/BN
γο:	Gravedad específica del petróleo, (agua = 1)
γ _{gd} :	Gravedad específica del gas disuelto, (aire = 1)
350:	Densidad del agua condiciones normales

- 0.0764: Densidad del aire a condiciones normales, lbs/pie³
- 5.615: Factor de conversión

Y a presiones mayores que la presión de punto de burbujeo ($P > P_b$), se determina mediante la siguiente ecuación:

$$\rho_o = \rho_{ob} \exp[C_o \cdot (P_b - P)] \tag{1.10}$$

Donde:

$ ho_o$:	Densidad del petróleo, lbs/pie ³
$ ho_{ob}$:	Densidad del petróleo a P_b , lbs/pie ³
P_b :	Presión de burbujeo, lpca.
C_o :	Compresibilidad isotérmica del petróleo, lpc ⁻¹

1.3.2 Propiedades Físicas del Gas

• Gravedad Específica, γ_g :

La Gravedad Específica del Gas se define como la razón de densidad del gas a la densidad del aire, ambas medidas a las mismas condiciones de presión y temperatura. Como la gravedad del gas se mide generalmente a condiciones normales (14.7 lpca y 60°F), tanto el gas como el aire se comportan como gases ideales y puede escribirse:

$$\gamma_g = \frac{\rho_g}{\rho_a} \tag{1.11}$$

• Factor de Compresibilidad Z:

Las ecuaciones aplicadas a los gases ideales sólo se cumplen a presiones y

temperaturas relativamente bajas. Con el propósito de utilizar la ecuación general de los gases a altas presiones y temperaturas es necesario modificar la ecuación.

$$PV = nRT \tag{1.12}$$

El método más común de corregir estas ecuaciones, consiste en introducir un factor de corrección denominado Factor de Compresibilidad o de desviación del gas, *Z*. Así la Ec. (1.12) se convierte en:

$$PV = nZRT \tag{1.13}$$

Este factor adimensional es afectado por presión, temperatura y composición del gas, y varía por lo general entre 0.70 y 1.20; 1 representa el comportamiento ideal.

Este factor se puede obtener experimentalmente dividiendo el volumen real de n moles de un gas a P y T por el volumen ideal ocupado por la misma masa de gas a iguales condiciones de P y T.

El valor de Z para diferentes gases ha sido determinado en base a la Ley de los Estados Correspondientes, el cual establece que a las mismas condiciones de presión y temperatura seudorreducidas, todos los gases tienen el mismo Factor de Compresibilidad Z.

• Presión y Temperatura Seudocríticas de Gases Naturales, *Psc y Tsc*:

Son conceptos que se introdujeron con la idea de estudiar el comportamiento de las mezclas gaseosas.

Una serie de métodos han sido propuestos para determinar estas propiedades seudocríticas cuando se conoce la composición de la mezcla gaseosa, en general

suponen que cada componente contribuye a la presión y temperatura seudocríticas en proporción a su porcentaje de volumen en el gas y a la presión y temperatura críticas, respectivamente, de dicho componente.

Presión y Temperatura Seudocríticas del Componente Pesado, *P_{scc7+} y T_{scc7+}*:

En el análisis cromatográfico del gas natural y del gas condensado, solo se analizan los componentes hidrocarburos del metano al hexano, C_1 a C_6 y los componentes no hidrocarburos N_2 , CO_2 , H_2S y O_2 .

El resto, o sea los elementos más pesados que aparecen en pequeñas proporciones como el C_{6+} (hexanos y componentes más pesados) o C_{7+} (heptanos y componentes más pesados) se expresan como un solo componente del sistema y generalmente son caracterizados por su peso molecular y gravedad específica.

• Factor Volumétrico del Gas, β_g :

El Factor Volumétrico del Gas se define como el volumen (generalmente en barriles o pies cúbicos) que ocupa en el yacimiento, la unidad volumétrica (generalmente 1 barril o 1 pie cúbico) de gas a condiciones normales.

Este factor relaciona el volumen de gas en el yacimiento al volumen del mismo en la superficie, es decir, a condiciones normales (14.7 lpca y 60°F). Aplicando la Ley de los Gases Reales (PV = nZRT) a condiciones normales y a condiciones de yacimiento, se tiene:

$$\beta_g = \frac{V_g}{V_{gl}} = \frac{nZRT/P}{nZ_lRT_l/P_l}$$
(1.14)

- $V_g =$ Volumen de gas a condiciones normales
- Vgl = Volumen de gas a condiciones de yacimiento

Donde:

Para la misma masa de gas nR se cancelan, y dado que P_1 y T_1 son condiciones normales (14.7 lpca. y 60°F), luego Z_1 1.0 y la ec. (1.14) se reduce a:

$$\beta_g = \frac{ZTP_1}{Z_1 T_1 P} = \frac{(14.7)ZT}{(1.0)(60 + 460)P} = 0.02827 \frac{ZT}{P}, \left[\frac{PCY}{PCN}\right]$$
(1.15)

Si se desea expresar β_g en BY/PCN, se divide por 5.615:

$$\beta_g = 0.00503 \frac{ZT}{P}$$
(1.16)

Donde:

- β_g = Factor Volumétrico del Gas, PCY/PCN o BY/PCN
- Z = Factor de compresibilidad del gas, adim.
- P = Presión, lpca.
- $T = \text{Temperatura, R} (= \circ \text{F} + 460)$

En algunos casos se utiliza el inverso de β_g (factor de expansión del gas, E_g):

$$E_g = \frac{1}{\beta_g} = 35.37 \frac{P}{ZT}, \left[\frac{PCN}{PCY}\right] = 198.8 \frac{P}{ZT}, \left[\frac{PCN}{BY}\right]$$
(1.17)

Para calcular β_g o E_g a una determinada presión y temperatura, el valor del factor de compresibilidad, Z, a esas condiciones debe ser conocido. Por lo tanto, si no se dispone de un valor experimental de Z, entonces necesario recurrir a los métodos que se presentarán en la sección correspondiente en el capítulo 3 para su determinación.

• Compresibilidad del Gas, Cg:

La compresibilidad isotérmica de un gas, C_g en lpc⁻¹, se define como el cambio fraccional en volumen cuando la presión es cambiada a temperatura constante, esto es:

$$C_g = -\frac{1}{V} \left(\frac{\partial V}{\partial P}\right)_T \tag{1.18}$$

Donde V se refiere a volumen, P a presión y el subíndice T a temperatura.

El término compresibilidad de un gas, no debe confundirse con el término factor de compresibilidad del gas. El cambio en volumen con presión para gases a condiciones isotérmicas (caso frecuente en yacimientos), es expresado por la ley de gases reales:

$$V = \frac{nZRT}{P}$$
 ó $V = \text{constante x } \frac{Z}{P}$ (1.19)

Diferenciando con respecto a la presión a temperatura constante, y sustituyendo en la ec. (1.18) resulta:

$$C_g = \frac{1}{P} - \frac{1}{Z} \left(\frac{\partial Z}{\partial P}\right)_T \tag{1.20}$$

Así conociendo la relación Z vs. P a temperatura constante, se puede determinar el gradiente $(\partial Z / \partial P) T$ y por lo tanto evaluar C_g para cualquier gas real.

Para el caso especial de los gases ideales, $Z \approx 1.0$ y ($\partial Z / \partial P$) = 0, y la compresibilidad simplemente es el recíproco de la presión:

$$C_g = \frac{1}{P} \tag{1.21}$$
• Viscosidad del Gas, μ_g :

La viscosidad de un gas es, en general, considerablemente más baja que la de un líquido, ya que las distancias intermoleculares de un gas son mayores que las de un líquido. Además, todos los gases tienen comportamiento reológico Newtoniano y se rigen por la ley de viscosidad de Newton.

Los siguientes factores afectan la viscosidad de un gas natural:

- A bajas presiones (< 1000 1500 lpca) a medida que aumenta la temperatura aumenta la viscosidad del gas debido al incremento de la energía cinética de las moléculas que producen gran número de choques intermoleculares.
- A elevadas presiones (>1000 1500 lpca) a medida que aumenta la temperatura disminuye la viscosidad del gas debido a la expansión térmica de las moléculas. A elevadas presiones las distancias intermoleculares de los gases son pequeñas y un gas tiende a comportarse como un líquido.
- A cualquier temperatura, la viscosidad de un gas aumenta con el incremento de presión debido a la disminución de las distancias intermoleculares.
- A medida que un gas es más pesado, sus moléculas serán más grandes y por tanto su viscosidad será mayor.

La viscosidad de un gas natural puede ser determinada experimentalmente o por medio de ecuaciones. La determinación de μ_g en el laboratorio es difícil debido a que su valor es muy pequeño (≈ 0.2 cp) para ser medido con exactitud. Por esta razón, se prefiere utilizar correlaciones gráficas o numéricas para su determinación.

• Densidad del Gas, ρ_g :

La densidad del gas, ρ_g en lbs/pie³, puede determinarse aplicando la ley de los gases reales:

$$PV = nZRT \tag{1.22}$$

Donde la constante R tiene un valor de 10.73. Las otras variables tienen unidades de: lpca, pie³, lb.-mol, R. El número de moles puede ser expresado como:

$$n = \frac{m}{28.96\gamma_g} \tag{1.23}$$

Combinando estas ecuaciones y resolviendo para la densidad (m/V):

$$\rho_g = \frac{m}{V} = \frac{(28.96)P\gamma_g}{(10.73)ZT} = 2.70\frac{P\gamma_g}{ZT}$$
(1.24)

Donde:

$\rho_g =$	Densidad del gas a P y T , lbs/pie^3
$\gamma_g =$	Gravedad específica del gas, (aire = 1)
Z =	Factor de compresibilidad del gas, adimensional
P =	Presión, lpca
T =	Temperatura, R

1.3.3 Propiedades Físicas del Agua

• Solubilidad del Gas en el Agua, *R_{sw}*:

La razón gas disuelto (o gas en solución) – agua o solubilidad del gas en el agua, se define como el número de pies cúbicos normales (PCN) de gas que pueden disolverse en un barril normal (BN) de agua cuando ambos son llevados a las condiciones de presión y temperatura prevalecientes en el yacimiento.

Por lo general, el agua de formación contiene gases disueltos. La mayoría de estos gases son hidrocarburos, sin embargo, otros gases tales como CO_2 , N_2 , $y H_2S$

normalmente están presentes. La solubilidad de estos gases generalmente disminuye con un aumento en la salinidad del agua, y aumenta con la presión.

Factor Volumétrico del Agua, β_w:

El factor volumétrico del agua, β_w en BY/BN, en forma similar al petróleo, se define como el volumen que ocupa en el yacimiento la unidad volumétrica de agua a condiciones normales más su gas en solución.

El valor de β_w depende de presión, temperatura y de la salinidad del agua que afecta la solubilidad. La variación de β_w con presión es diferente a la del petróleo, o sea, que aumenta con disminución de presión.

Cuando la presión del yacimiento es reducida desde su presión inicial a la presión de burbujeo (asumiendo que la presión inicial es mayor que la presión de burbujeo), el factor volumétrico del agua aumenta debido a la expansión del agua en el yacimiento. A presiones por debajo de la presión de burbujeo, se libera gas, pero el factor volumétrico continúa aumentado debido a que la disminución (merma) en el volumen de agua, resultante de la liberación de gas, es insuficiente para contrarrestar la expansión del líquido. Este efecto se debe a la baja solubilidad del gas natural en el agua.

• Compresibilidad del Agua, C_w:

La compresibilidad isotérmica del agua, C_w en lpc⁻¹, a presiones mayores que la presión de burbujeo se define de manera similar que para el petróleo, esto es:

$$C_{w} = -\frac{1}{V_{w}} \left(\frac{\partial V_{w}}{\partial P} \right)_{T} = \frac{1}{\rho_{w}} \left(\frac{\partial \rho_{w}}{\partial P} \right)_{T} = -\frac{1}{\beta_{w}} \left(\frac{\partial \beta_{w}}{\partial P} \right)_{T}$$
(1.25)

Esta propiedad es afectada por la presión, temperatura y solubilidad del gas en el agua, la cual a su vez es afectada por la salinidad. Así, un aumento en presión causa una reducción en la compresibilidad, mientras que un aumento en temperatura produce un aumento en esta propiedad.

Por otro lado, a una presión y temperatura dada, el efecto del gas disuelto en el agua es aumentar la compresibilidad en relación al agua pura a las mismas condiciones de P y T, mientras que un aumento en la salinidad del agua disminuye la compresibilidad.

Para presiones menores que la presión de burbujeo, la compresibilidad del agua está definida por:

$$C_{w} = -\frac{1}{\beta_{w}} \left(\frac{\partial \beta_{w}}{\partial P} \right)_{T} + \frac{\beta_{g}}{\beta_{w}} \left(\frac{\partial R_{sw}}{\partial P} \right)_{T}$$
(1.26)

Viscosidad del Agua, μ_w:

La viscosidad del agua, μ_w en cp, depende de presión, temperatura y sólidos disueltos. Así, la viscosidad del agua aumenta con un incremento de presión, disminuye con un aumento temperatura y aumenta con un incremento en la concentración de sólidos disueltos. El efecto de los gases disueltos en el agua podría reducir la viscosidad, sin embargo, aún no se ha publicado información al respecto.

Densidad del Agua, ρ_w:

La densidad del agua, ρ_w en lbs/pie³, puede ser determinada utilizando la misma aproximación que para un sistema gas – petróleo, excepto que los efectos del gas en solución normalmente son despreciados, esto es:

$$\rho_w = \frac{\rho_{wl}}{\beta_w} = \frac{62.4\gamma_w}{\beta_w} \tag{1.27}$$

Donde:

$\rho_w =$	Densidad del agua a P y T , lb./pie ³
$ ho_{wl}=$	Densidad del agua a condiciones normales, lbs/pie ³
$\gamma_w =$	Gravedad específica del agua, adimensional
$\beta_w =$	Factor volumétrico del agua a P y T, BY/BN

La gravedad específica del agua de formación, γ_w , puede ser estimada mediante la siguiente ecuación si se conoce la concentración de los sólidos disueltos:

$$\gamma_w = 1.0 + 0.695 \times 10^{-6} S \tag{1.28}$$

Donde, S es la concentración de sólidos disueltos (salinidad) en mg/litro.

CAPÍTULO II

2 CORRELACIONES IMPLEMENTADAS

2.1 Propiedades Físicas del Petróleo

A continuación se formularán las correlaciones más usadas para el cálculo de las propiedades físicas del petróleo.

2.1.1 Presión de Burbujeo, P_b

2.1.1.1 Correlación de Standing, M.B.^{1,2}:

Standing encontró una correlación entre el denominado factor de correlación, F, y la presión de burbujeo, P_b . Se usaron crudos/gas de California. Los gases presentes en las mezclas se encontraban libres de N_2 y H_2S , pero el CO_2 estaba presente en algunas muestras en concentraciones menores al 1% (%molar). Los datos para el desarrollo de la correlación fueron obtenidos en el laboratorio mediante una Liberación Instantánea en dos etapas.

$$F = \left(\frac{R_{sb}}{\gamma_g}\right)^{0.83} \cdot 10^{(0.00091T - 0.0125 \cdot ^{\circ}API)}$$
(2.1)

$$P_b = 18.2[F - 1.4] \tag{2.2}$$

$P_b =$	Presión de burbujeo, lpca
$R_{sb} =$	Solubilidad del gas en el petróleo a $P \ge P_b$
T =	Temperatura del yacimiento, °F
$\gamma_g =$	Gravedad específica del gas, (aire=1)
°API =	Gravedad API del petróleo

Parámetros	Valores
Presión de burbujeo, lpca	130 - 7000
Temperatura, °F	100 - 258
Factor volumétrico del petróleo, BY/BN	1.024 - 2.15
Solubilidad del gas en el petróleo, PCN/BN	20 - 1425
Gravedad del petróleo, °API	16.5 - 63.8
Gravedad específica del gas, (aire=1)	0.59 - 0.95
Presión (lpca): 1ª etapa del separador	265 - 465
2 ^a etapa del separador	14.7
Temperatura del separador, °F	100

Tabla 2.1Rango de los datos para la ec. (2.2)

El error promedio de la correlación cuando se aplicó a los datos utilizados en su desarrollo fue de 4.8% y 106 lpc.

2.1.1.2 Correlación de Vásquez, M.E. y Beggs, H.D.³:

La correlación es la siguiente:

$$P_{b} = \left[\frac{R_{sb}}{C_{1}\gamma_{gc} \exp\left(\frac{C_{3}^{\circ} API}{T + 460}\right)}\right]^{\frac{1}{C_{2}}}$$
(2.3)

$P_b =$	Presión de burbujeo, lpca
$R_{sb} =$	Solubilidad del gas en el petróleo a $P \ge P_b$, PCN/BN
T =	Temperatura del yacimiento, °F

$\gamma_{gc} =$	Gravedad específica del gas corregida a 100 lpcm, (aire=1)
°API =	Gravedad API del petróleo

Constantes			
°API	<i>C</i> ₁	C_2	<i>C</i> ₃
<i>°API</i> ≤ 30	0.0362	1.0937	25.724
°API > 30	0.0178	1.1870	23.931

Tabla 2.2 Valores de las constantes según los °API para la ec. (2.3)

Tabla 2.3Rango de los datos para la ec. (2.3)

Parámetros	<i>°API</i> ≤ 30	°API > 30
Número de puntos de datos	1141	4863
Presión de burbujeo, lpca	15-4572	15 - 6055
Temperatura, °F	162	180
Factor volumétrico del petróleo, BY/BN	1.042 - 1.545	1.028 - 2.226
Solubilidad del gas en el petróleo, PCN/BN	0-831	0-2199
Gravedad del petróleo, °API	5.3 - 30	30.6 - 59.5
Gravedad específica del gas, (aire=1)	0.511 - 1.351	0.53 - 1.259

Desarrollaron esta correlación con 27 crudos diferentes, y se reportó un error promedio de -0.545%.

Debido a que la gravedad del gas depende de las condiciones bajo las cuales el gas es separado del petróleo, Vásquez y Beggs desarrollaron una correlación para normalizar la gravedad del gas a una presión de separación de 100 lpcm (114.7 lpca). Esta presión fue tomada como representativa de las condiciones promedias de separación en el campo. La gravedad específica del gas obtenida de la correlación debe ser utilizada en las correlaciones desarrolladas por Vásquez y Beggs. La correlación es la siguiente:

$$\gamma_{gc} = \gamma_g \cdot \left[1 + 5.912 \times 10^{-5} \cdot API \cdot T_{sp} \cdot \log\left(\frac{P_{sp}}{114.7}\right) \right]$$
(2.4)

Donde:

$\gamma_{gc} =$	Gravedad específica del gas corregida a 100 lpcm, (aire=1)
$\gamma_g =$	Gravedad específica del gas sin corregir, (aire=1)
°API =	Gravedad API del petróleo
$T_{sp} =$	Temperatura del separador, °F
$P_{sp} =$	Presión del separador, lpca

Si T_{sp} y P_{sp} son desconocidas, la gravedad específica del gas sin corregir, γ_g , debe ser utilizada en las correlaciones anteriores.

Tabla 2.4Rango de los datos para la ec. (2.4)

Rango de los datos		
Presión del separador, lpca	60 - 565	
Temperatura del separador, °F	76 – 150	
Gravedad API del petróleo	17 – 45	
Gravedad específica del gas, (aire=1)	0.58 - 1.2	

2.1.1.3 Correlación de Glaso, O.⁴:

La correlación es la siguiente:

$$P_b = 10^{\left[1.7669 + 1.7447 \cdot \log F - 0.30218(\log F)^2\right]}$$
(2.5)

Donde:

$$F = \left(\frac{R_{sb}}{\gamma_g}\right)^{0.816} \cdot \frac{T^{0.172}}{\circ API^{0.989}}$$
(2.6)

$P_b =$	Presión de burbujeo, lpca
$R_{sb} =$	Solubilidad del gas en el petróleo a $P \ge P_b$, PCN/BN
T =	Temperatura del yacimiento, °F
$\gamma_g =$	Gravedad específica del gas, (aire=1)
°API=	Gravedad API del petróleo

Rango de los datos			
Presión de burbujeo, lpca	165 - 7142		
Temperatura, °F	80 - 280		
Gravedad API del petróleo	22.3 - 48.1		
Factor volumétrico del petróleo, BY/BN	1.025 - 2.588		
Solubilidad del gas en el petróleo, PCN/BN	90 - 2637		
Gravedad específica del gas, (aire=1)	0.65 - 1.276		
Presión (lpca): 1ª etapa del separador	415		
2 ^a etapa del separador	15		
Temperatura del separador, °F	125		

Tabla 2.5Rango de los datos para la ec. (2.5)

Para el desarrollo de esta correlación se usaron 45 muestras de crudos, la mayoría de la región del Mar del Norte. Se reportó un error promedio de 1.28%.

Adicionalmente, Glaso desarrolló las siguientes ecuaciones para corregir la presión de burbujeo por efecto de gases no-hidrocarburos: N_2 , CO_2 y/o H_2S .

$$C_{N_{2}} = 1.0 + \left[\left(-2.65x10^{-4} \circ API + 5.5x10^{-3} \right) \cdot T + \left(0.0931 \cdot \circ API - 0.8295 \right) \right] y_{N_{2}} + \left[\left(1.954x10^{-11} \cdot \circ API^{4.699} \right) T + \left(0.027 \cdot \circ API - 2.366 \right) \right] y_{N_{2}}^{2} \right]$$

$$(2.7)$$

$$C_{CO_2} = 1.0 - 693.8 y_{CO_2} T^{-1.553}$$
(2.8)

$$C_{H_2S} = 1.0 - (0.9035 + 0.0015 \cdot {}^{\circ}API)y_{H_2S} + 0.019(45 - {}^{\circ}API)y_{H_2S}^{2}$$
(2.9)

Donde, T en °F y y_{N2} , y_{CO2} y y_{H2S} las fracciones molares de N_2 , CO_2 y H_2S en los gases de superficie.

Las siguientes correcciones son simplemente factores de multiplicación aplicados a la presión de burbujeo calculada, por lo tanto, cualquier factor de corrección pude ser utilizado con cualquier correlación de P_b , esto es:

$$P_b C_{N2} = C_{N2}. \ P_b \tag{2.10}$$

$$P_b C_{CO2} = C_{CO2}. P_b$$
 (2.11)

$$P_b C_{H2S} = C_{H2S}. P_b \tag{2.12}$$

Según el autor estas correcciones son necesarias, despreciar su uso puede resultar en errores del 30% o más en la estimación de la presión de burbujeo.

2.1.1.4 Correlación de la TOTAL, C.F.P.⁵:

La correlación es la siguiente:

$$P_{b} = C_{1} \left(\frac{R_{sb}}{\gamma_{g}}\right)^{C_{2}} \cdot 10^{(C_{3}T - C_{4} \circ API)}$$
(2.13)

$P_b =$	Presión de burbujeo, lpca
$R_{sb} =$	Solubilidad del gas en el petróleo a $P \ge P_b$, PCN/BN
T =	Temperatura del yacimiento, °F
$\gamma_g =$	Gravedad específica del gas, (aire=1)
°API =	Gravedad API del petróleo

Esta correlación fue obtenida a partir de 366 análisis PVT de crudos del Oriente de Venezuela. El análisis estadístico mostró que el 86.5% de los análisis presentaron un error menor del 20% en el cálculo de la P_b por esta correlación en comparación con los valores experimentales.

Tabla 2.6Valores de las constantes según los °API para la ec. (2.13)

		Constantes		
°API	C_1	C_2	<i>C</i> ₃	<i>C</i> ₄
<i>°API</i> ≤ 10	12.847	0.9636	0.000993	0.034170
$10 <^{o}API \leq 35$	25.2755	0.7617	0.000835	0.011292
$35 < ^{o}API \leq 55$	216.4711	0.6922	-0.000427	0.023140

2.1.1.5 Correlación de Al-Marhoun, M.A.⁶:

La correlación es la siguiente:

$$P_b = 5.38088 x 10^{-3} \cdot R_{sb}^{0.715082} \cdot \gamma_g^{-1.87784} \cdot \gamma_o^{3.1437} \cdot T^{1.32657}$$
(2.14)

$P_b =$	Presión de burbujeo, lpca
$R_{sb} =$	Solubilidad del gas en el petróleo a $P \ge P_b$, PCN/BN
T =	Temperatura del yacimiento, R

- γ_g = Gravedad específica del gas, (aire=1)
- γ_o = Gravedad específica del petróleo, (agua = 1)

Se desarrolló esta correlación a partir de 69 análisis PVT de crudos del Medio Oriente. Al-Marhoun reportó un error promedio de 0.03% entre las presiones de burbujeo medidas y calculadas con la correlación.

Rango de los datos	
Presión de burbujeo, lpca	20-3573
Temperatura, °F	74 - 240
Gravedad API del petróleo	19.4 - 44.6
Factor volumétrico del petróleo, BY/BN	1.032 - 1.997
Solubilidad del gas en el petróleo, PCN/BN	26 - 1602
Gravedad específica del gas, (aire=1)	0.752 - 1.367
Factor volumétrico total, BY/BN	1.032 - 6.982
N ₂ en gases en superficie, % molar	0.0 - 3.89
CO ₂ en gases en superficie, % molar	0.0 - 16.38
H ₂ S en gases en superficie, % molar	0.0 - 16.13

Tabla 2.7Rango de los datos para la ec. (2.14)

2.1.1.6 Correlación de Dokla, M.E. y Osman, M.E.⁷:

La correlación es la siguiente:

$$P_b = 0.836386x10^4 \cdot R_{sb}^{0.724047} \cdot \gamma_g^{-1.01049} \cdot \gamma_o^{0.107991} \cdot T^{-0.952584}$$
(2.15)

Donde:

 $P_b =$ Presión de burbujeo, lpca $R_{sb} =$ Solubilidad del gas en el petróleo a $P \ge P_b$, PCN/BN

T =	Temperatura del yacimiento, R
$\gamma_g =$	Gravedad específica del gas, (aire=1)
$\gamma_o =$	Gravedad específica del petróleo, (agua = 1)

En el desarrollo de esta correlación se utilizaron 51 análisis PVT de crudos de los Emiratos Árabes Unidos. Dokla y Osman reportan un error promedio relativo de 0.45% entre las presiones de burbujeo medidas y las calculadas con la correlación.

Rango de los datos			
Presión de burbujeo, lpca	590 - 4640		
Temperatura, °F	190 - 275		
Factor volumétrico del petróleo, BY/BN	1.216 - 2.493		
Solubilidad del gas en el petróleo, PCN/BN	81 - 2266		
Gravedad específica del gas, (aire = 1)	0.789 - 1.290		
Gravedad específica del petróleo, (agua = 1)	0.8236 - 0.886		
Factor volumétrico total, BY/BN	1.032 - 6.982		
N ₂ en gases en superficie, % molar	0.1 – 1.85		
CO ₂ en gases en superficie, % molar	0.37 - 8.9		
H ₂ S en gases en superficie, % molar	0.0 - 6.02		

Tabla 2.8Rango de los datos para la ec. (2.15)

2.1.1.7 Correlación de Petrosky, G.E., Jr. y Farshad, F.F.⁸:

La correlación es la siguiente:

$$P_b = 112.727[F - 12.34] \tag{2.16}$$

$$F = \frac{R_{sb}^{0.5774}}{\gamma_g^{0.8439}} \cdot 10^{\left(4.561x10^{-5}T^{1.3911} - 7.916x10^{-4} \cdot \circ_{API}^{1.541}\right)}$$
(2.17)

Donde:

$P_b =$	Presión de burbujeo, lpca
$R_{sb} =$	Solubilidad del gas en el petróleo a $P \ge P_{b}$, PCN/BN
T =	Temperatura del yacimiento, °F
$\gamma_g =$	Gravedad específica del gas, (aire=1)
°API =	Gravedad API del petróleo

Un total de 81 análisis PVT de crudos del Golfo de México fueron utilizados en el desarrollo de esta correlación. Petrosky y Farshad reportan un error promedio relativo de –0.17% para esta correlación.

Rango de los datos			
Presión de yacimiento, lpca	1700 - 10692		
Presión de burbujeo, lpca	1574 - 6523		
Temperatura, °F	114 - 288		
Factor volumétrico del petróleo, BY/BN	1.1178 – 1.6229		
Solubilidad del gas en el petróleo, PCN/BN	217 - 1406		
Gravedad específica del gas, (aire=1)	0.5781 - 0.8519		
Gravedad API del petróleo	16.3 - 45.0		
Compresibilidad del petróleo x 10 ⁻⁶ lpc ⁻¹	3.507 - 24.64		
N ₂ en gases en superficie, % molar	0.0 - 3.72		
CO ₂ en gases en superficie, % molar	0.0 - 0.79		

Tabla 2.9Rango de los datos para la ec. (2.16)

2.1.1.8 Correlación de Kartoatmodjo, T. y Schmidt, Z.⁹:

La correlación es la siguiente:

$$P_{b} = \left[\frac{R_{sb}}{C_{1}\gamma_{gc}^{C_{2}} \cdot 10^{\left(\frac{C_{3} \cdot ^{\circ} API}{T+460}\right)}}\right]^{C_{4}}$$
(2.18)

Donde:

$P_b =$	Presión de burbujeo, lpca
$R_{sb} =$	Solubilidad del gas en el petróleo a $P \ge P_b$, PCN/BN
T =	Temperatura del yacimiento, °F
$\gamma_{gc} =$	Gravedad específica del gas corregida a 100 lpcm., (aire=1)
°API =	Gravedad API del petróleo

Se desarrolló esta correlación a partir de 740 muestras diferentes de crudos del Sud-Este de Asia (Indonesia), Norte América, Medio Oriente y América Latina. Las muestras fueron separadas en dos grupos debido a la volatilidad de los crudos. El primer grupo contenía crudos con gravedades \leq 30 °*API*, y el segundo crudos con gravedades > 30 °*API*. Kartoatmodjo y Schmidt reportan un error promedio relativo de 3.34032% para la correlación.

Tabla 2.10Valores de las constantes para la ec. (2.18) según los °API

		Constantes		
°API	C_1	C_2	<i>C</i> ₃	<i>C</i> ₄
$^{o}API \leq 30$	0.05958	0.7972	13.1405	0.9986
°API > 30	0.03150	0.7587	11.2895	0.9143

Rango de los datos	
Presión de burbujeo, lpca	14.7 - 6054.7
Temperatura, °F	75 - 320
Factor volumétrico del petróleo, BY/BN	1.007 - 2.144
Solubilidad del gas en el petróleo, PCN/BN	0.0 - 2890
Gravedad específica del gas, (aire=1)	0.379 - 1.709
Gravedad API del petróleo	14.4 - 58.9

Tabla 2.11Rango de los datos para la ec. (2.18)

Similar a Vásquez y Beggs, Kartoatmodjo y Schmidt desarrollaron la siguiente correlación para corregir la gravedad específica del gas a una presión de separación de 100 lpcm. (114.7 lpca.)

$$\gamma_{gc} = \gamma_g \cdot \left[1 + 0.1595^{\circ} API^{0.4078} \cdot T_{sp}^{-0.2466} \cdot \log\left(\frac{P_{sp}}{114.7}\right) \right]$$
(2.19)

Donde:

$\gamma_{gc} =$	Gravedad específica del gas corregida a 100 lpcm., (aire=1)
γ_g =	Gravedad específica del gas sin corregir, (aire=1)
°API =	Gravedad API del petróleo

- T_{sp} = Temperatura del separador, °F
- P_{sp} = Presión del separador, lpca

Esta correlación presenta un error promedio relativo de -0.5524%.

Tabla 2.12Rango de los datos para la ec. (2.19)

Rango de los datos		
Presión del separador, lpca.	14.7 – 514.7	
Temperatura del separador, °F	65 – 186	
Gravedad específica del gas, (aire=1)	0.379 - 1.709	
Gravedad API del petróleo	14.4 - 58.9	

2.1.1.9 Correlación para el Área Mayor de Socororo⁵¹:

La correlación para calcular la presión de burbujeo se basó en la correlación de Total, aplican los mismo rangos de aplicabilidad y viene dada por la siguiente ecuación:

$$P_b = 49.3914 \left(\frac{R_{sb}}{\gamma_g}\right)^{0.6519} \cdot 10^{(0.00042 \cdot T - 0.0066 \cdot ^{\circ} API)}$$
(2.20)

2.1.2 Solubilidad del Gas en el Petróleo, R_s

2.1.2.1 Correlación de Standing, M.B.²:

La correlación es la siguiente:

$$R_{s} = \gamma_{g} \left[\left(\frac{P}{18.2} + 1.4 \right) \cdot 10^{(0.0125 \cdot ^{\circ}API - 0.00091T)} \right]^{1.2048}$$
(2.21)

Donde:

$R_{sb} =$	Solubilidad del gas en el petróleo a $P < P_b$, PCN/BN
P =	Presión de interés, lpca
T =	Temperatura del yacimiento, °F
$\gamma_g =$	Gravedad específica del gas, (aire=1)
°API =	Gravedad API del petróleo

La exactitud de los resultados obtenidos con la correlación presentó un error del 10% respecto a los valores determinados experimentalmente.

2.1.2.2 Correlación de Vásquez, M.E. y Beggs, H.D.³:

La correlación es la siguiente:

$$R_s = C_1 \cdot \gamma_{gc} \cdot P^{C_2} \cdot \exp\left(\frac{C_3 \cdot API}{T + 460}\right)$$
(2.22)

Donde:

$R_s =$	Solubilidad del gas en el petróleo a $P < P_b$, PCN/BN
P =	Presión de interés, lpca
T =	Temperatura del yacimiento, °F
$\gamma_{gc} =$	Gravedad específica del gas corregida a 100 lpcm., (aire=1)
°API =	Gravedad API del petróleo

Vásquez y Beggs reportan un error promedio de -0.7% para la correlación. La Tabla 2.3 muestra los valores de las constantes según los °API.

2.1.2.3 Correlación de Glaso, O.⁴:

La correlación es la siguiente:

$$R_{s} = \gamma_{g} \cdot \left[F \frac{{}^{\circ} API^{0.989}}{T^{0.172}} \right]^{1.2255}$$
(2.23)

$$F = 10^{\left[2.8869 - (14.1811 - 3.3093 \log P)^{0.5}\right]}$$
(2.24)

$$R_s$$
 =Solubilidad del gas en el petróleo a $P < P_b$, PCN/BN P =Presión de interés, lpca T =Temperatura del yacimiento, °F γ_g =Gravedad específica del gas, (aire=1)°API =Gravedad API del petróleo

2.1.2.4 Correlación de TOTAL, C.F.P.⁵:

La correlación es la siguiente:

$$R_s = \gamma_g \cdot \left[\frac{P}{C_1} \cdot 10^{(C_2 \cdot \circ_{API-C_3 \cdot T})} \right]^{C_4}$$
(2.25)

Donde:

$R_s =$	Solubilidad del gas en el petróleo a $P < P_b$, PCN/BN
P =	Presión de interés, lpca
T =	Temperatura del yacimiento, °F
$\gamma_g =$	Gravedad específica del gas, (aire=1)
°API =	Gravedad API del petróleo

Tabla 2.13Valores de las constantes según los °API para la ec. (2.25)

Constantes				
°API	C_1	<i>C</i> ₂	<i>C</i> ₃	<i>C</i> ₄
°API ≤ 10	12.2651	0.030405	0.0	0.9669
10 <°API ≤ 35	15.0057	0.0152	$4.484 \text{x} 10^{-4}$	1.0950
35 <°API ≤ 45	112.925	0.0248	-1.469x10 ⁻³	1.1290

2.1.2.5 Correlación de Al-Marhoun, M.A.⁶:

La correlación es la siguiente:

$$R_{s} = \left[185.84321 \cdot P \cdot \gamma_{g}^{1.87784} \cdot \gamma_{o}^{-3.1437} \cdot T^{-1.32657}\right]^{1.3984}$$
(2.26)

- R_s = Solubilidad del gas en el petróleo a $P < P_b$, PCN/BN
- P = Presión de interés, lpca

T =	Temperatura del yacimiento, R
$\gamma_g =$	Gravedad específica del gas, (aire = 1)
$\gamma_o =$	Gravedad específica del petróleo, (agua = 1)

2.1.2.6 Correlación de Dokla, M.E. y Osman, M.E.⁷:

La correlación es la siguiente:

$$R_{s} = \left[0.11956x10^{-3} \cdot P \cdot \gamma_{g}^{1.01049} \cdot \gamma_{o}^{-0.107991} \cdot T^{0.952584}\right]^{1.3811}$$
(2.27)

Donde:

$R_s =$	Solubilidad del gas en el petróleo a $P < P_b$, PCN/BN
P =	Presión de interés, lpca
T =	Temperatura del yacimiento, R
$\gamma_g =$	Gravedad específica del gas, (aire = 1)
$\gamma_o =$	Gravedad específica del petróleo, (agua = 1)

2.1.2.7 Correlación de Petrosky, G.E., Jr. y Farshad, F.F.⁸:

La correlación es la siguiente:

$$R_{s} = \left[\gamma_{g}^{0.8439} \left(\frac{P}{112.727} + 12.34\right) \cdot 10^{7.916 \times 10^{-4} \cdot \circ_{API}^{1.5410} - 4.561 \times 10^{-5} \cdot T^{-1.3911}}\right]^{1.73184}$$
(2.28)

$R_s =$	Solubilidad del gas en el petróleo a $P < P_b$, PCN/BN
P =	Presión de interés, lpca
T =	Temperatura del yacimiento, °F
$\gamma_g =$	Gravedad específica del gas, (aire=1)

°API = Gravedad API del petróleo

Petrosky y Farshad reportan un error promedio relativo de -0.05%. La tabla 2.9 presenta el rango de los datos utilizados en su desarrollo.

2.1.2.8 Correlación de Kartoatmodjo, T. y Schmidt, Z.⁹:

La correlación es la siguiente:

$$R_{s} = C_{1} \cdot \gamma_{gc}^{C_{2}} \cdot P^{\frac{1}{C_{4}}} \cdot 10^{\left(\frac{C_{3} \cdot ^{\circ} API}{T + 460}\right)}$$
(2.29)

Donde:

$R_s =$	Solubilidad del gas en el petróleo a $P < P_b$, PCN/BN
P =	Presión de interés, lpca
T =	Temperatura del yacimiento, °F
$\gamma_{gc} =$	Gravedad específica del gas corregida a 100 lpcm., (aire=1)
°API =	Gravedad API del petróleo

Kartoatmodjo y Schmidt reportan un error promedio de -4.6839% para la correlación.

La tabla 2.10 presenta los valores de las constantes C_1 , C_2 , C_3 y C_4 , de acuerdo a la gravedad API del crudo.

2.1.2.9 Correlación para el Área Mayor de Socororo⁵¹:

La ecuación que estima el valor de la Rsb, presenta el mismo formato que la ecuación de la correlación de Total, y posee su mismo rango de aplicabilidad:

$$R_{sb} = \gamma_g \left(\frac{P_b \cdot 10^{\gamma}}{31.8568}\right)^{1.2656}$$
(2.30)

Donde *Y* viene dada por:

$$Y = (0.0107 \cdot {}^{\circ}API) - (-0.00008 \cdot T)$$
(2.31)

2.1.3 Factor Volumétrico de Formación, β₀

Las siguientes correlaciones permiten determinar β_o a la presión del punto de burbujeo ($P = P_b$).

2.1.3.1 Correlación de Standing, M.B.^{1,2}:

Standing encontró una correlación entre el denominado "*factor de correlación F*", y el factor volumétrico de formación del petróleo a la presión del punto de burbujeo, β_{ob} .

Se determina F por la siguiente ecuación:

$$F = R_{sb} \cdot \sqrt{\frac{\gamma_g}{\gamma_o}} + 1.25T \tag{2.32}$$

El Factor Volumétrico de formación del petróleo está dado por la ecuación:

$$\beta_{ob} = 0.9759 + 12x10^{-5} \cdot F^{1.2}$$
 (2.33)

- β_{ob} = Factor Volumétrico de formación del petróleo a P_b , BY/BN
- R_{sb} = Solubilidad del gas en el petróleo a $P \ge P_b$, PCN/BN
- T = Temperatura del yacimiento, °F

$$\gamma_g$$
 = Gravedad específica del gas, (aire = 1)

 γ_o = Gravedad específica del petróleo, (agua = 1)

Standing reporta un error promedio de 0.01% para la correlación. La tabla 2.1 presenta el rango de los datos utilizados en su desarrollo. El rango de "F" es: 150 < F < 1880.

2.1.3.2 Correlación de Vásquez, M.E. y Beggs, H.D.³:

La correlación es la siguiente:

$$\beta_{ob} = 1.0 + C_1 \cdot R_{sb} + C_2 \left(T - 60\right) \left(\frac{\circ API}{\gamma_{gc}}\right) + C_3 \cdot R_{sb} \left(T - 60\right) \left(\frac{\circ API}{\gamma_{gc}}\right) \quad (2.34)$$

Donde:

$\beta_{ob} =$	Factor Volumétrico de formación del petróleo a P_b , BY/BN
$R_{sb} =$	Solubilidad del gas en el petróleo a $P \ge P_{b}$, PCN/BN
T =	Temperatura del yacimiento, °F
$\gamma_{gc} =$	Gravedad específica del gas corregida a 100 lpcm., (aire=1)
°API =	Gravedad API del petróleo

Vásquez y Beggs reportaron un error promedio de 4.7% para la correlación.

La tabla 2.14 presenta los valores de las constantes C_1 , C_2 y C_3 de acuerdo a la gravedad API del crudo.

Tabla 2.14Valores de las constantes según los °API para la ec. (2.34)

Constantes			
°API	C_1	C_2	<i>C</i> ₃
°API ≤ 30	4.677x10 ⁻⁴	1.751x10 ⁻⁵	-1.8106x10 ⁻⁸
°API > 30	4.670x10 ⁻⁴	1.100×10^{-5}	1.3370x10 ⁻⁹

2.1.3.3 Correlación de Glaso, O.⁴:

La correlación es la siguiente:

$$\beta_{ob} = 1.0 + 10^{\left[-6.58511 + 2.91329 \cdot \log F - 0.27683 (\log F)^2\right]}$$
(2.35)

Donde:

$$F = R_{sb} \cdot \left(\frac{\gamma_g}{\gamma_o}\right)^{0.526} + 0.968T$$
(2.36)

$$\beta_{ob} = Factor Volumétrico de formación del petróleo a P_b, BY/BN
R_{sb} = Solubilidad del gas en el petróleo a $P \ge P_b$, PCN/BN

$$T = Temperatura del yacimiento, °F$$

$$\gamma_g = Gravedad específica del gas, (aire = 1)$$

$$\gamma_o = Gravedad específica del petróleo, (agua = 1)$$$$

Glaso reporta un error promedio de -0.43% para la correlación. La tabla 2.5 presenta el rango de los datos utilizados en el desarrollo de la correlación.

2.1.3.4 Correlación de TOTAL, C.F.P.⁵:

La correlación es la siguiente:

$$\beta_{ob} = 1.022 + 4.857 x 10^{-4} \cdot R_{sb} - 2.009 x 10^{-6} \left(T - 60\right) \left(\frac{^{\circ} API}{\gamma_g}\right) + 17.569 x 10^{-9} \cdot R_{sb} \left(T - 60\right) \left(\frac{^{\circ} API}{\gamma_g}\right)$$

$$(2.37)$$

Donde:

 β_{ob} =Factor Volumétrico de formación del petróleo a P_b , BY/BN R_{sb} =Solubilidad del gas en el petróleo a $P \ge P_b$, PCN/BN

T =	Temperatura del yacimiento, °F	
$\gamma_g =$	Gravedad específica del gas, (aire=1)	
°API =	Gravedad API del petróleo	

El estudio estadístico realizado por TOTAL determinó que el 97% de 289 valores de β_{ob} calculados con la correlación, presentó un error del 10% en comparación con los valores experimentales.

2.1.3.5 Correlación de Al-Marhoun, M.A.⁶:

La correlación es la siguiente:

$$\beta_{ob} = 0.497069 + 0.862963x10^{-3}T + 0.182594x10^{-2}F + 0.318099x10^{-5}F^{2}$$
(2.38)

Donde:

$$F = R_{sb}^{0.74239} \cdot \gamma_g^{0.323294} \cdot \gamma_o^{-1.20204}$$
(2.39)

$$\beta_{ob} = Factor Volumétrico de formación del petróleo a P_b, BY/BN
R_{sb} = Solubilidad del gas en el petróleo a $P \ge P_b$, PCN/BN

$$T = Temperatura del yacimiento, R
\gamma_g = Gravedad específica del gas, (aire = 1)
\gamma_o = Gravedad específica del petróleo, (agua = 1)$$$$

Al-Marhoun reporta un error promedio de -0.01% respecto a los valores experimentales determinados con la correlación. La tabla 2.7 presenta el rango de los datos utilizados en el desarrollo de la correlación.

2.1.3.6 Correlación de Dokla, M.E. y Osman, M.E.⁷:

La correlación es la siguiente:

$$\beta_{ob} = 0.431935 x 10^{-1} + 0.156667 x 10^{-2} T + 0.139775 x 10^{-2} F + 0.380525 x 10^{-5} F^2$$
(2.40)

Donde:

$$F = R_{sb}^{0.773572} \cdot \gamma_g^{0.40402} \cdot \gamma_o^{-0.882605}$$

$$\beta_{ob} = Factor Volumétrico de formación del petróleo a P_b, BY/BN$$

$$R_{sb} = Solubilidad del gas en el petróleo a P \ge P_b, PCN/BN$$

$$T = Temperatura del yacimiento, R$$

$$\gamma_g = Gravedad específica del gas, (aire = 1)$$

$$\gamma_o = Gravedad específica del petróleo, (agua = 1)$$
(2.41)

Dokla y Osman reportan un error promedio relativo de 0.023% respecto a los valores experimentales determinados con la correlación. La tabla 2.8 presenta el rango de los datos utilizados en el desarrollo de la correlación.

2.1.3.7 Correlación de Petrosky, G.E., Jr. y Farshad, F.F.⁸:

La correlación es la siguiente:

$$\beta_{ob} = 1.0113 + 7.2046 \, x 10^{-5} \cdot F^{3.0936} \tag{2.42}$$

Donde:

$$F = R_{sb}^{0.3738} \cdot \left(\frac{\gamma_g^{0.2914}}{\gamma_o^{0.6265}}\right) + 0.24626T^{0.5371}$$
(2.43)

$$\beta_{ob}$$
 = Factor Volumétrico de formación del petróleo a P_b , BY/BN

$$R_{sb}$$
 = Solubilidad del gas en el petróleo a $P \ge P_b$, PCN/BN

T = Temperatura del yacimiento, °F

- γ_g = Gravedad específica del gas, (aire = 1)
- γ_o = Gravedad específica del petróleo, (agua = 1)

Petrosky y Farshad reportan un error promedio relativo de -0.01% para la correlación. La tabla 2.9 presenta el rango de los datos utilizados en su desarrollo.

2.1.3.8 Correlación de Kartoatmodjo, T. y Schmidt, Z.⁹:

La correlación es la siguiente:

$$\beta_{ob} = 0.98496 + 1.0x10^{-4} \cdot F^{1.5}$$
(2.44)

Donde:

$$F = R_{sb}^{0.755} \cdot \gamma_{gc}^{0.25} \cdot \gamma_{o}^{-1.5} \cdot 0.45T$$

$$\beta_{ob} = Factor Volumétrico de formación del petróleo a P_b, BY/BN$$

$$R_{sb} = Solubilidad del gas en el petróleo a P \ge P_b, PCN/BN$$

$$T = Temperatura del yacimiento, °F$$

$$\gamma_{gc} = Gravedad específica del gas corregida a 100lpcm., (aire=1)$$

$$^{\circ}API = Gravedad API del petróleo$$
(2.45)

Kartoatmodjo y Schmidt reportan un error promedio de -0.104% para la correlación. La tabla 2.11 presenta el rango de los datos utilizados en el desarrollo de la correlación.

Las correlaciones antes formuladas pueden ser utilizadas para estimar valores de β_o a presiones por debajo de la presión de burbujeo. En este caso, se debe utilizar R_s a la presión deseada en vez de R_{sb} .

Los valores β_o por debajo del punto de burbujeo están afectados tanto por la solubilidad como por la compresibilidad, mientras que por arriba del punto de burbujeo la solubilidad es constante y por tanto solo influye la compresibilidad. Por lo tanto, si se conoce la compresibilidad del petróleo puede determinarse β_o a

presiones mayores que la presión del punto de burbujeo $(P > P_b)$ mediante la siguiente ecuación:

$$\beta_o = \beta_{ob} \cdot \exp[C_o \cdot (P_b - P)] \tag{2.46}$$

Donde:

$\beta_o =$	Factor Volumétrico de formación del petróleo a $P > P_b$, BY/BN
$\beta_{ob} =$	Factor Volumétrico de formación del petróleo a P_b , BY/BN
$P_b =$	Presión de burbujeo, lpca
P =	Presión de interés, lpca
$C_o =$	Compresibilidad isotérmica del petróleo, lpc ⁻¹

2.1.3.9 Correlación para el Área Mayor de Socororo⁵¹:

En la determinación de la correlación del β_{ob} , se usó como base la correlación de Standing, quedando la correlación generada como se muestra a continuación:

$$\beta_{ob} = 0.9529 + 1.1417 \cdot 10^{-4} \left(R_{sb} \left(\frac{\gamma_g}{\gamma_o} \right)^{0.8805} + 1.7278 \cdot T \right)^{1.1979}$$
(2.47)

2.1.4 Compresibilidad del petróleo, Co

La compresibilidad de crudos subsaturados varía de 5 a 100×10^{-6} lpc⁻¹, los valores mayores corresponden a altas gravedades *API*, mayores cantidades de gas disuelto y a mayores temperaturas.

Las siguientes correlaciones permiten determinar *Co* a presiones mayores que la presión del punto de burbujeo ($P > P_b$).

2.1.4.1 Correlación de Vásquez, M.E. y Beggs, H.D.³:

La correlación es la siguiente:

$$C_o = \frac{-1433 + 5R_s + 17.2T - 1180\gamma_{gc} + 12.61^{\circ} API}{Px10^5}$$
(2.48)

Donde:

Co =	Compresibilidad isotérmica del petróleo, lpc ⁻¹
$R_s =$	Solubilidad del gas en el petróleo, PCN/BN
P =	Presión de interés, lpca
T =	Temperatura del yacimiento, °F
$\gamma_{gc} =$	Gravedad específica del gas corregida a 100 lpcm., (aire=1)
°API =	Gravedad API del petróleo

Un total de 4486 puntos de datos fueron utilizados en el desarrollo de esta correlación. La tabla 2.15 presenta el rango de estos datos. Vásquez y Beggs no reportan el porcentaje de error de la correlación.

Rango de los datos			
Presión, lpca	141 – 9515		
Solubilidad del gas en el petróleo, PCN/BN	9.3 - 2199		
Factor volumétrico del petróleo, BY/BN	1.066 - 2.226		
Temperatura del separador, °F	76 – 150		
Gravedad API del petróleo	15.3 – 59.5		
Gravedad específica del gas, (aire=1)	0.511 – 1.351		

 Tabla 2.15
 Rango de datos para la correlación (2.48)

2.1.4.2 Correlación de Petrosky, G.E., Jr. y Farshad, F.F.⁸:

La correlación es la siguiente:

$$C_o = 1.705 \times 10^{-7} \cdot R_s^{0.69357} \cdot \gamma_g^{0.1885} \cdot API^{0.3272} \cdot T^{0.6729} \cdot P^{-0.5906}$$
(2.49)

Donde:

<i>Co</i> =	Compresibilidad isotérmica del petróleo, lpc	
$R_s =$	Solubilidad del gas en el petróleo, PCN/BN	
P =	Presión de interés, lpca	
T =	Temperatura del yacimiento, °F	
$\gamma_g =$	Gravedad específica del gas, (aire=1)	
°API =	Gravedad API del petróleo	

Petrosky y Farshad reportan un error de -0.17% para esta correlación. La tabla 2.9 presenta el rango de los datos utilizados en su desarrollo.

2.1.4.3 Correlación de Kartoatmodjo, T. y Schmidt, Z.⁹:

La correlación es la siguiente:

$$C_o = \frac{6.8257 R_s^{0.5002} \cdot {}^{\circ} API^{0.3613} \cdot T^{0.76606} \cdot \gamma_{gc}^{0.35505}}{Px10^6}$$
(2.50)

Donde:

- Co = Compresibilidad isotérmica del petróleo, lpc⁻¹
- R_s = Solubilidad del gas en el petróleo, PCN/BN
- P = Presión de interés, lpca
- T = Temperatura del yacimiento, °F
- γ_g = Gravedad específica del gas corregida a 100 lpcm., (aire=1)
- *°API* = Gravedad API del petróleo

Un total de 2545 puntos de datos fueron utilizados en el desarrollo de esta correlación. Kartoatmodjo y Schmidt reportan un error promedio de 0.30078% para la

correlación.

2.1.5 Viscosidad del petróleo, μ_o

Las siguientes correlaciones permiten determinar la viscosidad de crudos *"sin gas en solución (muertos)"*, μ_{od} en cp., a presión atmosférica y temperatura de yacimiento.

2.1.5.1 Correlación de Beal, C¹⁰.:

En esta correlación la viscosidad del petróleo libre de gas (muerto) está en función de la gravedad API del petróleo y a varias temperaturas.

En el desarrollo de esta correlación se utilizó un total de 655 datos de viscosidades de crudos sin gas en solución a 100°F y 98 y 98 datos a temperaturas mayores de 100°F obtenidos 492 campos diferentes, 358 de los cuales correspondían a los Estados Unidos. La tabla 2.16 presenta el rango de estos datos.

Tabla 2.16Rango de datos para la ec. (2.51)

Rango de los datos	
Temperatura, °F	98 - 250
Gravedad API del petróleo	10 - 52.5
Viscosidad, cp	0.865 - 1.55

La correlación de Beal es la siguiente:

$$\mu_{od} = \left[0.32 + \frac{1.8 \times 10^7}{^{\circ} API^{4.53}}\right] \left[\frac{360}{T + 200}\right]^{\alpha}$$
(2.51)

$$\alpha = anti \log \left(0.43 + \frac{8.33}{\circ API} \right)$$
(2.52)

$\mu_{od} =$	Viscosidad del petróleo libre de gas a 1 atm. y <i>T</i> , cp.
°API =	Gravedad API del petróleo
T =	Temperatura del yacimiento, °F

Beal reportó un error promedio de -1.58% para esta correlación.

2.1.5.2 Correlación de Beggs, H.D. y Robinson, J.R.¹¹.:

La correlación es la siguiente:

$$\mu_{od} = 10^x - 1 \tag{2.53}$$

Donde:

x =	$y \cdot T^{-1.163}$
<i>y</i> =	10 ^z
$_{Z} =$	3.0324 – 0.02023. °API
$\mu_{od} =$	Viscosidad del petróleo libre de gas a 1 atm. y <i>T</i> , cp.
°API =	Gravedad API del petróleo
T =	Temperatura del yacimiento, °F

Un total de 460 datos de viscosidades de crudos sin gas en solución obtenidos de 600 muestras diferentes de crudos fueron utilizados en el desarrollo de esta correlación. La tabla 2.17 presenta el rango de estos datos.

Tabla 2.17Rango de datos para la ec. (2.53)

Rango de los datos		
Presión, lpca.	15 - 5265	
Temperatura, °F	70 – 295	
Gravedad API del petróleo	16 - 58	
Solubilidad del gas en el petróleo, PCN/BN	20 - 2070	

Beggs y Robinson reportan un error promedio de -0.64% entre las viscosidades medidas y las calculadas con la correlación.

2.1.5.3 Correlación de Glaso, O.⁴.:

La correlación es la siguiente:

$$\mu_{od} = 3.141 x 10^{10} \cdot T^{-3.444} (\log^{\circ} API)^{(10.313 \log T - 36.447)}$$
(2.54)

Donde:

$\mu_{od} =$	Viscosidad del petróleo libre de gas a 1 atm. y <i>T</i> , cp.
°API =	Gravedad API del petróleo
T =	Temperatura del yacimiento, °F

Esta correlación se desarrolló a partir de 26 muestras diferentes de crudos cubriendo el rango de datos mostrados en la tabla 2.18

Tabla 2.18Rango de datos para la ec. (2.54)

Rango de los datos	
Temperatura, °F	50 - 300
Gravedad API del petróleo	20.1 - 48.1
Viscosidad, cp	0.616 - 39.1

2.1.5.4 Correlación de Egbogah, E.O.¹².:

La correlación es la siguiente:

$$\log[\log(\mu_{od} + 1)] = 1.8653 - 0.025086^{\circ} API - 0.5644 \log T$$
(2.55)

$\mu_{od} =$	Viscosidad del petróleo libre de gas a 1 atm. y T, cp.
°API =	Gravedad API del petróleo
T =	Temperatura del yacimiento, °F

Egbogah reporta un error promedio de 6.6% para la correlación. El rango de los datos utilizados en el desarrollo de la correlación presentaban las siguientes características: $59 < T(^{\circ}F) < 176$ y $5 < ^{\circ}API < 58$

2.1.5.5 Correlación de Kartoatmodjo, T. y Schmidt, Z.⁹:

La correlación es la siguiente:

$$\mu_{od} = 16.0x10^8 \cdot T^{-2.8177} \left(\log^{\circ} API\right)^{(5.7526\log T - 26.9718)}$$
(2.56)

Donde:

prou	$\mu_{od} =$	Viscosidad del petróleo li	bre de gas a 1 atm	1. y <i>T</i> , cp
------	--------------	----------------------------	--------------------	--------------------

°API = Gravedad API del petróleo

T = Temperatura del yacimiento, °F

Tabla 2.19	Rango de datos para	la ec.	(2.56)
------------	---------------------	--------	--------

Rango de los datos		
Temperatura, °F	75 - 320	
Gravedad API del petróleo	14.4 - 58.9	
Viscosidad, cp	0.5 - 682	

En el desarrollo de esa correlación se utilizó un total de 661 muestras diferentes de crudos, y los autores reportan un error promedio de -13.158%. La tabla 2.19 presenta el rango de los datos utilizados en su desarrollo.

Las siguientes correlaciones permiten determinar la viscosidad de crudos "*con gas en solución (vivos)*", μ_{ob} en cp., a presiones menores o iguales a la presión del punto de burbujeo.

2.1.5.6 Correlación de Chew, J.N. y Connally, C.A., Jr.¹³:

La correlación es la siguiente:

$$\mu_{ob} = A(\mu_{od})^b \tag{2.57}$$

Donde A y b son funciones de R_s . Los autores reportaron estos parámetros inicialmente en una figura, pero para fines matemáticos de la programación en SYEP se tomó el ajuste que Standing le hizo a la misma figura, resultando las siguientes ecuaciones:

$$A = anti \log \left[R_s \left(2.2x 10^{-7} R_s - 7.4x 10^{-4} \right) \right]$$
(2.58)

$$b = \frac{0.68}{10^{8.62x10^{-5}R_s}} + \frac{0.25}{10^{1.1x10^{-3}R_s}} + \frac{0.062}{10^{3.74x10^{-3}R_s}}$$
(2.59)

Estas ecuaciones reprodujeron valores de *A* y *b* de la tabla 2.21 con la siguiente precisión: un error promedio con una desviación estándar de diferencias de -0.21% y 2.79% para A, y de -0.10% y 0.36% para b, respectivamente.

Tabla 2.20Rango de datos para la ec. (2.57)

Rango de los datos	
Presión de burbujeo, lpca.	132 - 5645
Temperatura, °F	72 – 292
Solubilidad del gas en el petróleo, PCN/BN	51 - 3544
Viscosidad del petróleo muerto, cp	0.377 - 50

En el desarrollo de esta correlación se utilizó un total de 457 muestras de crudos de
Canadá, Estados Unidos y Sur América. La tabla 2.20 presenta el rango de estos datos.

R _s , PCN/BN	A	Ь
0	1.000	1.000
50	0.898	0.931
100	0.820	0.884
200	0.703	0.811
300	0.621	0.761
400	0.550	0.721
600	0.447	0.660
800	0.373	0.615
1000	0.312	0.578
1200	0.273	0.548
1400	0.251	0.522
1600	0.234	0.498

Tabla 2.21Valores de A y $_b$ usados en la ec. (2.57)

2.1.5.7 Correlación de Beggs, H.D. y Robinson, J.R.¹¹:

La correlación es la siguiente:

$$\mu_{ob} = a(\mu_{od})^b \tag{2.60}$$

Donde:

$$a = 10.715 \left(R_s + 100 \right)^{-0.515} \tag{2.61}$$

$$b = 5.44 \left(R_s + 150 \right)^{-0.338} \tag{2.62}$$

Un total de 2073 datos de viscosidades de crudos con gas disuelto obtenidos de 600 muestras diferentes fueron utilizados en el desarrollo de esta correlación. La tabla 2.17 presenta el rango de los datos utilizados en su desarrollo. Los autores reportan un error promedio de -1.83% para la correlación.

2.1.5.8 Correlación de Kartoatmodjo, T. y Schmidt, Z.⁹:

La correlación es la siguiente:

$$\mu_{ab} = -0.06821 + 0.9824A + 40.34x10^{-5}A^2 \tag{2.63}$$

Donde:

$$A = \left(0.2001 + 0.8428 \times 10^{-0.000845R_s}\right) \mu_{od}^{(0.43+0.5165b)}$$
(2.64)

$$b = 10^{-0.00081R_s} \tag{2.65}$$

Un total de 5321 puntos de datos fueron utilizados en el desarrollo de esta correlación, la cual reportó un error promedio de 0.8034% respecto a los valores experimentales.

Las correlaciones anteriores permiten determinar μ_{ob} hasta la presión de burbujeo. La viscosidad de crudos a presiones mayores que la presión de burbujeo (crudos subsaturados), se determina conociendo la viscosidad en el punto de burbujeo, μ_{ob} , mediante las siguientes correlaciones.

2.1.5.9 Correlación de Beal, C.¹⁰:

Esta correlación permite determinar el incremento en viscosidad, $\Delta \mu_o$, por cada 1000 lpc de aumento de presión por arriba de P_b .

El autor reportó inicialmente la correlación en una figura, pero para fines matemáticos de la programación en SYEP se tomó el ajuste que Standing² le hizo a la misma figura. Para 11 valores leídos de la figura original de Beal, la ecuación presentó un error promedio de 0.01%.

$$\frac{\mu_o - \mu_{ob}}{0.001(P - P_b)} = 0.024 \mu_{ob}^{-1.6} + 0.038 \mu_{ob}^{-0.56}$$
(2.66)

En el desarrollo de esta correlación se utilizaron 52 datos de viscosidades tomados de 26 muestras de crudos de 20 campos diferentes, 11 de los cuales pertenecían a California. La mitad de los datos fueron tomados de crudos a la presión de burbujeo, mientras los datos restantes fueron obtenidos de crudos a presiones mayores que la presión de burbujeo.

Rango de los datos	a P _b	> P _b
Presión, lpca	140 - 4135	1515 - 5515
Solubilidad del gas en el petróleo, PCN/BN	12 - 1827	
Viscosidad, cp	0.142 - 127	0.16 315

Tabla 2.22Rango de datos para la ec. (2.66)

La tabla 2.22 presenta el rango de los datos utilizados en el desarrollo de la correlación. Beal reporta un error promedio de 2.7% para la correlación.

2.1.5.10 Correlación de Vásquez, M.E. y Beggs, H.D.³:

La correlación es la siguiente:

$$\mu_o = \mu_{ob} \left(\frac{P}{P_b}\right)^m \tag{2.67}$$

Donde:

$$m = 2.6P^{1.187} \exp\left(-11.513 - 8.98x10^{-5}P\right)$$
(2.68)

Esta correlación fue obtenida a partir de 3143 puntos de datos. La tabla 2.23 presenta el rango de datos utilizados en su desarrollo. Vásquez y Beggs reportan un error promedio de –7.54% para la correlación.

Rango de los datos			
Presión, lpca.	141 – 9515		
Solubilidad del gas en el petróleo, PCN/BN	9.3 - 2199		
Gravedad API del petróleo	15.3 - 59.5		
Gravedad específica del gas, (aire=1)	0.511 - 1.351		
Viscosidad, cp	0.117 - 148		

Tabla 2.23Rango de datos para la ec. (2.67)

2.1.5.11 Correlación de Kartoatmodjo, T. y Schmidt, Z.⁹:

La correlación es la siguiente:

$$\mu_o = 1.00081\mu_{ob} + 1.127x10^{-3} \left(P - P_b\right) \left(-65.17x10^{-4} \cdot \mu_{ob}^{-1.8148} + 0.038\mu_{ob}^{-1.59}\right) (2.69)$$

Esta correlación fue desarrollada a partir de 3588 puntos de datos obtenidos de 661 análisis PVT. Kartoatmodjo y Schmidt reportaron u error promedio de -4.287% para la correlación.

2.1.6 Densidad del petróleo, ρ_o

La Densidad del Petróleo, ρ_o en lbs/pie³, a presiones menores o iguales a la presión de burbujeo ($P \le P_b$) se determina mediante la siguiente ecuación:

$$\rho_o = \frac{350\gamma_o + 0.0764\gamma_{gd}R_s}{5.615\beta_o}$$
(1.9)

Donde:

$ ho_0$:	Densidad del petróleo, lbs/pie ³
β_o :	Factor Volumétrico del petróleo, BY/BN
R_s :	Solubilidad del gas en el petróleo, PCN/BN
γο:	Gravedad específica del petróleo, (agua = 1)
γ_{gd} :	Gravedad específica del gas disuelto, (aire = 1)
350:	Densidad del agua condiciones normales, lb./bls
0.0764:	Densidad del aire a condiciones normales, lbs/pie ³
5.615:	Factor de conversión, pie ³ /bls

La gravedad específica del gas disuelto, γ_{gd} , se obtiene de una figura, a la cual Brill y Beggs¹⁴ le hicieron el siguiente ajuste:

$$\gamma_{gd} = \frac{12.5 + ^{\circ}API}{50} - 3.5715x10^{-6} \cdot ^{\circ}API \cdot R_s$$
(2.70)

Una limitación impuesta a γ_{gd} es la siguiente: $\gamma_g \leq \gamma_{gd} \geq 0.56$ donde 0.56 es la gravedad específica del metano, y γ_g es la gravedad específica del gas producido en el separador.

Y a presiones mayores que la presión de punto de burbujeo (P > Pb), la densidad del petróleo se determina mediante la siguiente ecuación:

$$\rho_o = \rho_{ob} \exp[C_o \cdot (P_b - P)] \tag{1.10}$$

Donde:

 ρ_o : Densidad del petróleo, lbs/pie³

$ ho_{ob}$:	Densidad del petróleo a Pb, lbs/pie ³
P_b :	Presión de burbujeo, lpca.
C_o :	Compresibilidad isotérmica del petróleo, lpc ⁻¹

2.2 Propiedades Físicas del Agua

A continuación se formularán las correlaciones más usadas para el cálculo de las propiedades físicas del agua.

2.2.1 Solubilidad del Gas en el Agua, R_{sw}

2.2.1.1 Correlación de Culberson, O.L. y McKetta, J.J., Jr.¹⁵:

Los autores presentaron originalmente su correlación en una figura, en donde la solubilidad del gas metano en agua pura (no salina), R_{swp} , está en función de presión y temperatura.

La siguiente ecuación ajusta la figura de la correlación dentro de un 5% para todo el rango de temperatura y para presiones de 1.000 a 10.000 lpca.¹⁶. Se recomienda no utilizar esta ecuación para presiones menores de 1.000 lpca.

$$R_{swp} = A + BP + CP^2 \tag{2.71}$$

Donde:

$$A = 8.15839 - 6.12265x10^{-2}T + 1.91663x10^{-4}T^{2} - 2.1654x10^{-7}T^{3}$$
(2.72)

$$B = 1.01021x10^{-2} - 7.44241x10^{-5}T + 3.05553x10^{-7}T^2 - 2.94883x10^{-10}T^3$$
(2.73)

$$C = \begin{pmatrix} -9.02505 + 0.130237T - 8.53425x10^{-4}T^{2} + 2.34122x10^{-6}T^{3} \\ -2.37049x10^{-9}T^{4} \end{pmatrix} x10^{-7}$$
(2.74)

P = Presión, lpca.

T = Temperatura, °F

Luego se le debe efectuar una corrección a R_{swp} por salinidad, la cual se desarrolló originalmente en una figura y cuya ecuación que la ajusta dentro de un 3% de error promedio es:

$$\frac{R_{sw}}{R_{swp}} = 10^{-0.0840655ST^{-0.285854}}$$
(2.75)

Donde T en °F y S (salinidad) en porcentaje por peso de sólidos disueltos (1% = 10.000 ppm).

El rango de datos para la ec. (2.75) es: $0 < S(\%) < 30 \ y \ 70 < T(^{\circ}F) < 250^{16}$.

2.2.1.2 Correlación de McCoy, R.L.¹⁷:

La correlación es la siguiente:

$$R_{swp} = A + BP + CP^2 \tag{2.76}$$

Donde:

$$A = 2.12 + 3.45x10^{-3}T - 3.59x10^{-5}T^{2}$$

$$B = 0.0107 - 5.26x10^{-5}T + 1.48x10^{-7}T^{2}$$

$$C = -8.75x10^{-7} + 3.9x10^{-9}T - 1.02x10^{-11}T^{2}$$

$$P = \text{Presión, lpca.}$$

$$T = \text{Temperatura, }^{\circ}\text{F}$$
(2.77)

El factor de corrección por salinidad está dado por:

$$\frac{R_{sw}}{R_{swp}} = 1 - \left(0.0753 - 1.73x10^{-4}T\right) \cdot S$$
(2.78)

Donde T en °F y S (salinidad) en porcentaje por peso de sólidos disueltos (1% = 10.000 ppm).

2.2.2 Factor Volumétrico del Agua, β_w

Las siguientes correlaciones permiten determinar el factor volumétrico del agua a presiones menores o iguales a la presión del punto de burbujeo ($P \le P_b$).

2.2.2.1 Correlación de McCain, W.D., Jr.¹⁶:

Esta correlación está en función del cambio de volumen durante la reducción de presión, ΔV_{wp} , y el cambio en volumen debido a la reducción en temperatura es representado por ΔV_{Wt} como funciones de presión y temperatura.

El factor volumétrico del agua puede determinarse utilizando estos valores mediante la siguiente ecuación:

$$\beta_{w} = \left(1 + \Delta V_{wp}\right)\left(1 + \Delta V_{wT}\right)$$
(2.79)

Donde:

$$\Delta V_{wT} = -1.0001x10^{-2} + 1.33391x10^{-4}T + 5.50654x10^{-7}T^2$$
(2.80)

$$\Delta V_{wp} = -1.95301x10^{-9} pT - 1.72834x10^{-13} p^2T - 3.58922x10^{-7} p$$

-2.25341x10^{-10} p² (2.81)

P en lpca. y T en °F.

Esta correlación es válida para aguas de yacimientos con concentraciones de sal ampliamente variables. Así, un aumento en la concentración de sal causa un ligero aumento en el coeficiente de expansión térmica del agua, lo cual produce un ligero aumento en ΔV_{Wt} . Un aumento en la concentración de sal causa una disminución en la solubilidad del gas en el agua, causando una ligera disminución en ΔV_{wp} . Estos cambios en ΔV_{Wt} y ΔV_{wp} están dentro del 1% para concentraciones de sal en el rango de 0 a 30%.

2.2.2.2 Correlación de McCoy, R.L.¹⁷:

La correlación es la siguiente:

$$\beta_{wp} = A + BP + CP^2 \tag{2.82}$$

Donde para agua pura libre de gas:

$$A = 0.9947 + 5.8x10^{-6}T + 1.02x10^{-6}T^{2}$$

$$B = -4.228x10^{-6} + 1.8376x10^{-8}T - 6.77x10^{-11}T^{2}$$

$$C = 103x10^{-10} - 1.3855x10^{-12}T + 4.285x10^{-15}T^{2}$$

(2.83)

$$A = 0.9911 + 6.35x10^{-5}T + 8.5x10^{-7}T^{2}$$

$$B = -1.093x10^{-6} - 3.497x10^{-9}T + 4.57x10^{-12}T^{2}$$

$$C = -5.0x10^{-11}6.429x10^{-13}T - 1.43x10^{-15}T^{2}$$
(2.84)

Donde P en lpca. y T en °F.

El factor de corrección por salinidad está dado por¹⁸:

$$\left(\frac{\beta_{w}}{\beta_{wp}}\right) = 1 + S \begin{bmatrix} 5.1x10^{-8}P + (5.47x10^{-6} - 1.95x10^{-10}P)(T - 60) - \\ (3.23x10^{-8} - 8.5x10^{-13}P)(T - 60)^2 \end{bmatrix}$$
(2.85)

Donde *P* en lpca., *T* en °F y *S* (salinidad) en porcentaje por peso de sólidos disueltos (1% = 10.000 ppm).

El factor volumétrico del agua a presiones mayores que la presión del punto de burbujeo ($P > P_b$), se determina de la misma manera que para un sistema gaspetróleo, esto es:

$$\beta_{w} = \beta_{wb} \cdot \exp[C_{w}(P_{b} - P)]$$
(2.86)

Donde

$\beta_w =$	Factor volumétrico del agua a $P > P_b$, BY/BN
$\beta_{wb} =$	Factor volumétrico del agua a P_b , BY/BN
$P_b =$	Presión de burbujeo, lpca.
P =	presión de interés, lpca.
$C_w =$	Compresibilidad isotérmica del agua, lpc ⁻¹

2.2.3 Compresibilidad del Agua, C_w

Las siguientes correlaciones permiten determinar la compresibilidad del agua a presiones mayores que la presión del punto de burbujeo ($P > P_b$).

2.2.3.1 Correlación de Dodson, C.R. y Standing, M.B.¹⁹:

Esta correlación se presentó originalmente en una figura, en donde la compresibilidad del agua pura libre de gas, C_w , está en función de presión y temperatura, esta correlación requiere además una corrección que debe efectuarse por efectos del gas disuelto. Por fines de programación de la misma, se tomó el ajuste²⁰ que se hizo a la misma, de esta forma queda:

$$C_{wp} = \frac{A + BT + CT^2}{10^6}$$
(2.87)

Donde:

$$A = 3.8546 - 1.34x10^{-4} P$$

$$B = -0.01052 + 4.77X10^{-7} P$$

$$C = 3.9267X10^{-5} - 8.8x10^{-10} P$$

$$P = \text{Presión, lpca.}$$

$$T = \text{Temperatura, }^{\circ}\text{F}$$
(2.88)

y el factor de corrección C_{wp} por solubilidad del gas está dado por²⁰:

$$\frac{C_w}{C_{wp}} = 1 + 8.9 \times 10^{-3} R_{sw}$$
(2.89)

 R_{sw} = solubilidad del gas en el agua en PCN/BN

La corrección de C_{wp} por efectos de sólidos disueltos está dada por¹⁸:

$$\frac{C_w}{C_{wp}} = 1 + S^{0.7} \left[-5.2x10^{-2} + 2.7x10^{-4}T - 1.14x10^{-6}T^2 + 1.121x10^{-9}T^3 \right]$$
(2.90)

Donde, T en °F y S (salinidad) en porcentaje por peso de sólidos disueltos (1%=10.000 ppm).

2.2.3.2 Correlación de Osif, T.L.²¹:

La correlación es la siguiente:

$$C_w = \frac{1}{7.033P + 541.5S - 537T + 403300}$$
(2.91)

Donde, P en lpca., T en °F y S (salinidad) en grs/litro (= ppm / 58443).

En el desarrollo de esta ecuación se utilizó el siguiente rango de datos: 1000 < P(lpca.) < 20000, 200 < T (°F) < 270 y 0 < S (grs/litro) < 200

Osif no presenta estimados de exactitud de sus resultados o de la ecuación.

A presiones menores que la presión del punto de burbujeo ($P < P_b$), la compresibilidad del agua está definida por²²:

$$C_{w} = -\frac{1}{\beta_{w}} \left(\frac{\partial \beta_{w}}{\partial P} \right)_{T} + \frac{\beta_{g}}{\beta_{w}} \left(\frac{\partial R_{sw}}{\partial P} \right)_{T}$$
(2.92)

En esta ecuación, el primer término del lado derecho es C_w a $P > P_b$ y se determina mediante las correlaciones presentadas anteriormente.

El segundo término del lado derecho se determina separándolo en tres partes, el factor volumétrico del gas, β_g , se determina mediante la ecuación:

$$\beta_g = 0.00503 \frac{ZT}{P}, \frac{BY}{PCN}$$
(2.93)

El cual se comentará más adelante en la sección de Propiedades Físicas del Gas. $McCain^{16}$ sugiere usar un valor de 0.63 para la gravedad específica del gas liberado del agua para determinar un valor del factor Z para la ec. (2.93). Este valor es basado sobre datos limitados y su exactitud es desconocida, sin embargo, los valores obtenidos parecen ser razonables.

El factor volumétrico del agua, β_w , se determina mediante las correlaciones presentadas anteriormente. La derivada $(\partial R_{sw} / \partial P)_T$ se determina mediante la siguiente correlación.

2.2.3.2.1 Correlación de Ramey, H.J., Jr.²²:

Esta correlación se presentó originalmente en una figura, pero por razones de programación de la misma se utilizó el ajuste que le hizo McCain¹⁶.

$$\left(\frac{\partial R_{sw}}{\partial P}\right)_T = B + 2CP \tag{2.94}$$

Se obtuvo diferenciando la ec. (2.71). Es de notar que esta ecuación no ajusta muy bien la curva original de Ramey. Una expresión similar para $(\partial R_{sw} / \partial P)_T$ se obtiene diferenciando la ec. (2.76)

La correlación permite determinar la derivada $(\partial Rsw / \partial P)$ T. Este valor debe ser multiplicado por el factor de corrección de la ec. (2.78) para considerar el efecto de los sólidos disueltos. Ramey recomienda no utilizar esta correlación cuando la temperatura exceda de 250°F.

2.2.4 Viscosidad del Agua, μ_w

Las siguientes correlaciones permiten determinar la viscosidad del agua.

2.2.4.1 Correlación de Van Wingen, N.²³:

Esta correlación se presenta originalmente en una figura, pero por la necesidad de programarla, se tomó el ajuste que se le realizó¹⁴.

$$\mu_{w} = \exp(1.003 - 1.479 x 10^{-2} T + 1.982 x 10^{-5} T^{2})$$
(2.95)

Donde, μ_w en cp. y T en °F.

La viscosidad del agua está en función de temperatura para varias presiones. Los efectos de presión y salinidad son despreciables.

2.2.4.2 Correlación de Matthews, C.S. y Russel, D.G.²⁴:

Esta correlación se presenta originalmente en una figura, pero por la necesidad de programarla, se tomó el ajuste que se le realizó²⁵. La viscosidad del agua a presión atmosférica, μ_{wl} en cp., está en función de temperatura y salinidad.

$$\mu_{wl} = A + \frac{B}{T} \tag{2.96}$$

Donde

 $A = -0.04518 + 0.00931313S - 0.000393S^2$

 $B = 70.634 + 0.09576S^2$

T = Temperatura, °F

S = Salinidad, % por peso de sólidos disueltos (1% = 10.000 ppm)

y el factor de corrección por presión, está dado por:

$$f = 1 + 3.5x10^{-12} P^2 (T - 40))$$
(2.97)

Donde, *P* en lpca. y *T* en °F. Estas correlaciones fueron desarrolladas para el siguiente rango de datos: $P(lpca.) \le 10000, \ 60 \le T(°F) \le 400, \ S(\%) \le 26.$

2.2.4.3 Correlación de McCain, W.D., Jr.¹⁶:

Esta correlación es también un ajuste de las curvas de la figura de la correlación de Matthews y Russel, y está dada por:

$$\mu_{wl} = A \cdot T^n \tag{2.98}$$

Donde

$$A = 109.574 - 8.40564 \cdot S + 0.313314 \cdot S^{2} + 8.72213x10^{-3} \cdot S^{3}$$

$$B = -1.12166 + 2.63951x10^{-2} \cdot S - 6.79461x10^{-4} \cdot S^{2} - 5.47119x10^{-5} \cdot S^{3} + 1.55586x10^{-6} \cdot S^{4}$$

$$T = \text{Temperatura, }^{\circ}\text{F}$$

$$S = \text{Salinidad, }^{\circ}\text{por peso de sólidos disueltos (1\% = 10000 \text{ ppm)}}$$

Esta correlación ajustas las curvas de la figura de Matthews y Russel dentro de un 5% para temperaturas entre 100 y 400°F y salinidades hasta 26%. El factor de corrección por presión fue desarrollado originalmente en una figura²⁶, pero por razones de programación, se usó el ajuste que le hicieron¹⁶.

$$\frac{\mu_w}{\mu_{wl}} = 0.9994 + 4.0295 x 10^{-5} P + 3.1062 x 10^{-9} P^2$$
(2.99)

Donde, P en lpca.

Los datos utilizados en el desarrollo de esta ecuación presentaban un rango de temperatura desde 86.5 a 167 °F y presiones hasta 14.000 lpca. La ec. (2.99) ajusta la curva en un 4% para presiones menores de 10000 lpca. y en 7% para presiones entre 10000 y 14000 lpca.

2.2.4.4 Correlación de McCoy, R.L.¹⁷:

La correlación es la siguiente:

$$\mu_{wp} = 0.02414 \times 10^{\left(\frac{247.8}{T-140}\right)} \tag{2.100}$$

Donde, μ_{wp} en cp., y *T* en K (= 5/9 °F + 255.37)

La corrección de μ_{wp} por salinidad está dada por¹⁸:

$$\frac{\mu_{w}}{\mu_{wp}} = 1 - 1.87x10^{-3}S^{0.5} + 2.18x10^{-4}S^{2.5} +$$

$$\left(T^{0.5} - 1.35x10^{-2}T\right)\left(2.76x10^{-3}S - 3.44x10^{-4}S^{1.5}\right)$$
(2.101)

Donde, T en °F y S (salinidad) en porcentaje por peso de sólidos disueltos (1% = 10000 ppm.).

2.2.5 Densidad del Agua, ρ_w

La siguiente correlación permite determinar la densidad del agua.

2.2.5.1 Correlación de McCain, W.D., Jr.¹⁶:

Esta correlación se presenta originalmente en una figura, pero por la necesidad de programarla, se tomó el ajuste que se le realizó¹⁶, dentro de un 0.1% de error. La densidad de la salmuera a condiciones normales, ρ_{wl} en lbs/pie³, está en función del porcentaje total de sólidos disueltos.

$$\rho_{wl} = 62.368 + 0.438603S + 1.60074x10^{-3}S^2$$
 (2.102)

Donde, S es la salinidad en porcentaje por peso de sólidos disueltos (1% = 10000 ppm.).

2.3 Propiedades Físicas del Gas

A continuación se formularán las correlaciones más usadas para el cálculo de las propiedades físicas del gas.

2.3.1 Presión y Temperatura Seudocríticas de Gases, Psc y Tsc

Una serie de métodos o reglas de combinación han sido propuestas para determinar

estas propiedades seudocríticas cuando se conoce la composición de la mezcla gaseosa. Estos métodos o reglas de combinación suponen que cada componente contribuye a la presión y temperatura seudocríticas en proporción a su porcentaje de volumen en el gas y a la presión y temperaturas críticas, respectivamente de dicho componente.

Entre los métodos o reglas de combinación más conocidos se tienen los siguientes:

2.3.1.1 Método de Kay, W.B.²⁷:

La presión y temperatura seudocríticas están dadas por:

$$P_{scM=\sum_{i=1}^{n}y_i \cdot P_{ci}}$$
(2.103)

$$T_{scM = \sum_{i=1}^{n} y_i \cdot T_{ci}}$$
(2.104)

Donde:

$P_{scM} =$	Presión seudocrítica de la mezcla, lpca.
$T_{scM} =$	Temperatura seudocrítica de la mezcla, R
$P_{ci} =$	Presión crítica del componente i, lpca.
$T_{ci} =$	Temperatura crítica del componente i, R
n =	Número de componentes en la mezcla

2.3.1.2 Correlación de Brown, G.G., Katz, D.L., Oberfell, G.G. y Alden, R.C.²⁸:

Esta correlación se presenta originalmente en una figura, pero por la necesidad de programarla, se tomó el ajuste que se le realizó²⁸. *Gas Natural:*

$$P_{scHC} = 677 + 15\gamma_{gHC} - 37.5\gamma_{gHC}^{2}$$
(2.105)

$$T_{scHC} = 168 + 325\gamma_{gHC} - 12.5\gamma_{gHC}^{2}$$
(2.106)

Gas condensado:

$$P_{scHC} = 706 - 51.7 \gamma_{gHC} - 11.1 \gamma_{gHC}^{2}$$
(2.107)

$$T_{scHC} = 187 + 330\gamma_{gHC} - 71.5\gamma_{gHC}^{2}$$
(2.108)

La presión y temperatura seudocríticas, P_{sc} y T_{sc} , están en función de la gravedad específica del gas, γ_g (aire = 1), y puede ser utilizada para gas natural en general o para condensado.

Las curvas en la figura de la correlación representan mezclas gaseosas con cantidades despreciables de N_2 , CO_2 y H_2S . Si la mezcla gaseosa contiene cantidades apreciables de componentes no hidrocarburos (mayor de 5% por volumen), la gravedad específica de la mezcla debe ser corregida por estos componentes. Así, γ_{gM} es la gravedad específica de la mezcla total de gas, la gravedad específica de la porción de gas hidrocarburo, γ_{gHC} , está dada por²⁹.

$$\gamma_{gHC} = \frac{\gamma_{gM} - 0.967 y_{N_2} - 1.52 y_{CO_2} - 1.18 y_{H_2S}}{1 - y_{N_2} - y_{CO_2} - y_{H_2S}}$$
(2.109)

Donde:

 γ_{gHC} = Gravedad específica de la porción de gas hidrocarburo, (aire=1)

 γ_{gM} = Gravedad específica de la mezcla total de gas, (aire=1)

 γ_{N2} = Contenido de N₂, fracción molar

 γ_{CO2} = Contenido de CO₂, fracción molar

 γ_{H2S} = Contenido de H₂S, fracción molar

En la ec. (2.109), $\gamma_{gHC} \ge 0.55$ (gravedad específica del metano).

2.3.1.3 Correlación de Sutton, R.P.³⁰:

Sutton desarrolló las siguientes ecuaciones para gas natural:

$$P_{scHC} = 756.8 - 131\gamma_{gHC} - 3.6\gamma_{gHC}^{2}$$
(2.110)

$$T_{scHC} = 169.2 + 349.5\gamma_{gHC} - 74\gamma_{gHC}^{2}$$
(2.111)

Estas ecuaciones fueron obtenidas a partir de 264 muestras diferentes de gas en el siguiente rango de gravedades específicas: $0.571 < \gamma_{gHC} < 1.679$

Finalmente, la presión y temperaturas seudocríticas de la mezcla total de gas, P_{scM} y T_{scM} se determinan mediante las siguientes ecuaciones ²⁹:

$$P_{scM} = \left(1 - y_{N_2} - y_{CO_2} - y_{H_2S}\right) \cdot P_{scHC} + 493y_{N_2} + 1071y_{CO_2} + 1306y_{H_2S} \quad (2.112)$$

$$T_{scM} = \left(1 - y_{N_2} - y_{CO_2} - y_{H_2S}\right) \cdot T_{scHC} + 227y_{N_2} + 548y_{CO_2} + 672y_{H_2S}$$
(2.113)

En estas ecuaciones, la presión y la temperatura seudocríticas de la porción de gas hidrocarburo P_{scHC} y T_{scHC} , pueden ser representadas por las ecuaciones anteriores dependiendo del tipo de gas hidrocarburo considerado.

2.3.2 Presión y Temperatura Seudocríticas del Componente Pesado

Las siguientes correlaciones permiten determinar la presión y temperatura seudocríticas del C_{7+} :

2.3.2.1 Correlación de Mathews, T.A., Roland, C.H. y Katz, D.L.,³¹:

Mathews y Cols. en base a una serie de micro-destilaciones de fracciones de C_{7+} de condensados obtuvieron una correlación gráfica por medio de la cual puede determinarse la presión y temperatura seudocríticas del C_{7+} en función de la gravedad específica, γ_{C7+} (agua = 1) y del peso molecular, M_{C7+} . Para fracciones de pentanos y compuestos más pesados, C_{5+} , y hexanos y compuestos más pesados, C_{6+} ,

la correlación también puede ser utilizada. Por la necesidad de programar la correlación, se tomó el ajuste que se le realizó³¹:

$$P_{scC7+} = 1188 - 431\log(M_{C7+} - 61.1) + [2319 - 852\log(M_{C7+} - 53.71)](\gamma_{C7+} - 0.8)(2.114)$$

$$T_{scC7+} = 608 + 364\log(M_{C7+} - 71.2) + (2450\log M_{C7+} - 3800)\log \gamma_{C7+}$$
(2.115)

Donde:

P_{scc7+}	=	Presión seudocrítica del C_{7+} , lpca.
T_{scc7+}	=	Temperatura seudocrítica del C7+, R
M_{C7^+}	=	Peso molecular del C_{7+} , lbs/lb-mol
<i>YC</i> 7+	=	Gravedad específica del C_{7+} , (agua = 1)

La precisión de estas ecuaciones en el ajuste de más de 20 valores de las curvas de Mathews y Cols. es la siguiente³¹:

Tabla 2.24Precisión para las ecs. (2.114-115)

Datos	P _{scc7+}	T_{scc7+}
Número de puntos	25	28
Error relativo promedio	-0.51%	-0.29%
Desviación estándar	1.61%	0.97%

2.3.2.2 Correlación de Kessler, M.G. y Lee, B.I.³²:

Las correlaciones son las siguientes:

$$P_{scc7+} = \exp\left[\begin{cases} 8.3634 - \frac{0.0566}{\gamma_{C7+}} - \left(0.24244 + \frac{2.2898}{\gamma_{C7+}} + \frac{0.11857}{\gamma_{C7+}^{2}} \right) T_{b} x 10^{-3} + \\ \left(1.4685 + \frac{3.648}{\gamma_{C7+}} + \frac{0.47227}{\gamma_{C7+}^{2}} \right) T_{b}^{2} x 10^{-7} - \left(0.42019 + \frac{1.6977}{\gamma_{C7+}^{2}} \right) T_{b}^{3} x 10^{-10} \right]$$

$$(2.116)$$

$$T_{scC7+} = 341.7 + 811\gamma_{C7+} + (0.4244 + 0.1174\gamma_{C7+})T_b + (0.4669 - 3.2623\gamma_{C7+})x\frac{10^5}{T_b}$$
(2.117)

Donde:

$P_{scC7+} =$	Presión seudocrítica del C_{7+} , lpca.
$T_{scC7^+} =$	Temperatura seudocrítica del C7+, R
γ _{C7+} =	Gravedad específica del C_{7+} , (agua = 1)
$T_b =$	Temperatura de ebullición, R

La temperatura de ebullición se determina mediante la siguiente ecuación desarrollada por Whitson³³:

$$T_b = \left[4.5579 M_{C7^+}^{0.15178} \cdot \gamma_{C7^+}^{0.15427} \right]^3$$
(2.118)

Standing²⁹, recomienda tomar los siguientes valores para condensados cuando no se conoce el peso molecular ni la gravedad específica del componente pesado: M_{C7+} = 128 (equivalente al C_9), P_{scC7+} = 385 lpca. y T_{scC7+} = 1100 °F

Las sumatorias de las ecs. (2.103 - 104) deben incluir la P_c y T_c del C_{7+} determinadas por las ecs. (2.114 - 115) o (2.116 - 117).

2.3.3 Factor de Compresibilidad del Gas, Z

El valor de Z para diferentes gases ha sido determinado en base a la Ley de los Estados Correspondientes, el cual establece que a las mismas condiciones de presión y temperatura seudorreducidas, todos los gases tienen el mismo Factor de Compresibilidad Z.

$$P_{sr} = \frac{P}{P_{scM}}$$

$$T_{sr} = \frac{T}{T_{scM}}$$
(2.119)

Donde *P* y *T* son la presión y temperatura absolutas a la cual se desea determinar *Z* y P_{scM} y T_{scM} la presión y temperatura seudocríticas, tal como se discutió anteriormente.

2.3.3.1 Método de Sarem, A.M.³⁴:

Este método para determinar Z se basa en los Polinomios de Legendre de grado 0 a 5. La ecuación básica de ajuste es:

$$Z = \sum_{i=0}^{5} \sum_{j=0}^{5} A_{ij} P_i(x) P_j(y)$$
(2.120)

Donde:

$$x = \frac{2P_{sr} - 15}{14.8}$$

$$y = \frac{2T_{sr} - 4}{1.9}$$
(2.121)

Los polinomios de Legendre de grado 0 - 5, P_i y P_j tienen las siguientes formas:

$$P_{0}(\alpha) = 0.7071068$$

$$P_{1}(\alpha) = 1.224745\alpha$$

$$P_{2}(\alpha) = 0.7905695(3\alpha^{2} - 1)$$

$$P_{3}(\alpha) = 0.9354145(5\alpha^{5} - 3\alpha)$$

$$P_{4}(\alpha) = 0.265165(35\alpha^{4} - 30\alpha^{2} + 3)$$

$$P_{5}(\alpha) = 0.293151(63\alpha^{5} - 70\alpha^{3} + 15\alpha)$$

Donde α se reemplaza por "x" y "y" al efectuar la sumatoria de la ec. (2.120). La tabla 2.25 presenta los valores de los coeficientes A_{ij} .

Ι	j=0	j=1	<i>j</i> =2	j=3	j=4	j=5
0	2.1433504	0.0831762	-0.0214670	-0.0008714	0.0042846	-0.0016595
1	0.3312352	-0.1340361	0.0668810	-0.0271743	0.0088512	-0.002152
2	0.1057287	-0.0503937	0.0050925	0.0105513	-0.0073182	0.0026960
3	0.0521840	0.0443121	-0.0193294	0.0058973	0.0015367	-0.0028327
4	0.0197040	-0.0263834	0.019262	-0.0115354	0.0042910	-0.0081303
5	0.0053096	0.0089178	-0.0108948	0.0095594	-0.0060114	0.0031175

 Tabla 2.25
 Valores de los coeficientes A_{ij}

Para los intervalos $0.1 \le P_{sr} \le 14.9$ y $1.05 \le T_{sr} \le 2.95$, el error del método con respecto a los valores leídos en las curvas de Standing y Katz fue menor de 0.4%. El método de Sarem puede ser utilizado cuando el gas natural contiene impurezas corrigiendo P_{scM} y T_{scM} por el método de Wichert y Aziz^{35, 36}.

2.3.3.2 Método de Hall, K.R. y Yarborough, L. ^{37, 38}:

Hall y Yarborough basados en la ecuación de estado de Starling-Carnahan desarrollaron las siguientes ecuaciones para el cálculo de *Z*:

$$Z = \frac{0.06125P_{sr} \cdot t \cdot \exp\left[-1.2(1-t)^2\right]}{y}$$
(2.122)

Donde:

 $t = \text{Recíproco de la temperatura seudorreducida, } t = T_{sc} / T$

y = Densidad reducida, la cual se obtiene a partir de la solución de la siguiente ecuación:

$$-AP_{sr} + \frac{y + y^{2} + y^{3} - y^{4}}{(1 - y)^{3}} - By^{2} + Cy^{D} = 0$$
(2.123)

Donde:

$$A = 0.06125 \cdot t \cdot \exp\left[-1.2(1-t)^{2}\right]$$

$$B = 14.76 \cdot t - 9.76t^{2} + 4.58t^{3}$$

$$C = 90.7 \cdot t - 242.2t^{2} + 42.4t^{3}$$

$$D = 2.18 + 2.82t$$

(2.124)

Para obtener buenos resultados con éste método, se recomienda que P_{sr} y T_{sr} estén entre los siguientes rangos $0.1 \le P_{sr} \le 24.0$ y $.2 \le T_{sr} \le 3.0$

Para gases naturales con impurezas se recomienda corregir $P_{scM} y T_{scM}$ por el método de Wichert y Aziz.

Debido a que la ec. (2.123) es no lineal, se requiere una solución de ensayo y error para resolverla. Un método de ensayo y error frecuentemente utilizado, es el método de Newton-Raphson³⁹ el cual utiliza el siguiente procedimiento iterativo (aplicado a este caso):

- 1. Suponer un valor inicial de y_1 y calcular $F(y_1)$, donde F(y) es el término de la derecha de la ec. (2.123).
- 2. Si $F(y1) \approx 0$ ó se encuentra dentro de una tolerancia especificada (±10-4), se puede considerar que y_1 es la solución. En caso contrario, calcular un nuevo valor de y utilizando la siguiente aproximación (Series de Taylor):

$$y_{2} = y_{1} - \frac{F(y_{1})}{\frac{dF(y_{1})}{dy}}$$
(2.125)

Donde la expresión para dF(y) / dy se obtiene derivando la ec. (2.123) con respecto a y a T_{sr} constante, esto es:

$$\frac{dF}{dy} = \frac{1+4y+4y^2-4y^3+y^4}{\left(1-y\right)^4} - 2By + CDy^{(D-1)}$$
(2.126)

- 3. Hacer $y_1 = y_2$ y repetir el paso 2. Continuar el procedimiento hasta obtener la solución.
- 4. Sustituir el valor correcto de y en la ec. (2.122) para obtener Z.

2.3.3.3 Método de Brill, J.P. y Beggs, H.D.^{29, 40}:

La ecuación para el cálculo de Z es la siguiente:

$$Z = A + \frac{1 - A}{\exp(B)} + CP_{sr}^{\ D}$$
(2.127)

Donde:

$$A = 1.39(T_{sr} - 0.92)^{0.5} - 0.36T_{sr} - 0.10$$

$$B = (0.62 - 0.23T_{sr})P_{sr} + \left[\frac{0.066}{T_{sr} - 0.86} - 0.037\right]P_{sr}^{2} + \frac{0.32}{10^{9(T_{sr} - 1)}}P_{sr}^{6}$$

$$C = 0.132 - 0.32\log T_{sr}$$

$$D = anti \log(0.3106 - 0.49T_{sr} + 0.1824T_{sr}^{2})$$

(2.128)

Para obtener buenos resultados con éste método, se recomienda que P_{sr} y T_{sr} estén entre los siguientes rangos: $0 \le P_{sr} \le 13$ y $1.2 \le T_{sr} \le 2.4$

El método no es válido para temperaturas seudorreducidas fuera del rango de 1.2 a 2.4. Para gases naturales con impurezas se recomienda corregir P_{scM} y T_{scM} por el método de Wichert y Aziz.

2.3.3.4 Método de Dranchuk, P.M., Purvis, R.A. y Robinson, D.B.⁴¹:

Este método es el resultado de un ajuste realizado a la ecuación de estado de Benedict, Webb y Rubin⁴² (BWR), la cual escribieron en la siguiente forma:

$$Z = 1 + \left(A_{1} + \frac{A_{2}}{T_{sr}} + \frac{A_{3}}{T_{sr}^{3}}\right)\rho_{r} + \left(A_{4} + \frac{A_{5}}{T_{sr}}\right)\rho_{r}^{2} + \frac{A_{5}A_{6}\rho_{r}^{5}}{T_{sr}} + A_{7}\left(1 + A_{8}\rho_{r}^{2}\right)\frac{\rho_{r}^{2}}{T_{sr}^{3}}\exp\left(-A_{8}\rho_{r}^{2}\right)$$

$$(2.129)$$

La densidad reducida, ρ_r , se calcula mediante la siguiente expresión (obtenida de la Ley de los gases):

$$\rho_r = \frac{\rho}{\rho_c} = \frac{Z_c P_{sr}}{Z T_{sr}} = 0.27 \frac{P_{sr}}{Z T_{sr}}$$
(2.130)

En esta ecuación se tomó el factor de compresibilidad del gas en el punto crítico, $Z_c = 0.27$, considerado como un valor apropiado para mezclas compuestas principalmente por metano. Además, utilizando datos de 1500 puntos⁴³, se determinaron los siguientes valores para las constantes $A_1 - A_8$:

Tabla 2.26 Valores de las constantes A_{1-8}

$A_1 = 0.31506237$	<i>A</i> ₂ = -1.0467099	<i>A</i> ₃ = -0.57832729
$A_4 = 0.53530771$	A ₅₌ -0.61232032	A ₆ = -0.10488813
$A_7 = 0.68157001$	$A_8 = 0.68446549$	

El método reprodujo los 1500 puntos de datos con un error absoluto de 0.54% y una desviación estándar de 0.00445. Los rangos de aplicación del método son: $0.2 \le Psr \le 30.0, 1.05 \le T_{sr} \le 3.0$

Para gases naturales con impurezas se recomienda corregir $P_{scM} y T_{scM}$ por el método de Wichert y Aziz.

Para resolver la formulación implícita de la densidad reducida, se debe utilizar un procedimiento iterativo de ensayo y error. Si se utiliza el método iterativo de Newton – Raphson, se tiene:

$$F = Z - \begin{bmatrix} 1 + \left(A_{1} + \frac{A_{2}}{T_{sr}} + \frac{A_{3}}{T_{sr}^{3}}\right)\rho_{r} + \left(A_{4} + \frac{A_{5}}{T_{sr}}\right)\rho_{r}^{2} + \frac{A_{5}A_{6}\rho_{r}^{5}}{T_{sr}} + \\ A_{7}\left(1 + A_{8}\rho_{r}^{2}\right)\frac{\rho_{r}^{2}}{T_{sr}^{3}}\exp\left(-A_{8}\rho_{r}^{2}\right) \end{bmatrix} = 0 \quad (2.131)$$

$$y \qquad \left(\frac{\partial F}{\partial Z}\right)_{T_{sr}} = 1 + \left(A_{1} + \frac{A_{2}}{T_{sr}} + \frac{A_{3}}{T_{sr}^{3}}\right)\frac{\rho_{r}}{Z} + 2\left(A_{4} + \frac{A_{5}}{T_{sr}}\right)\frac{\rho_{r}^{2}}{Z} + \frac{5A_{5}A_{6}\rho_{r}^{5}}{ZT_{sr}} + \\ \frac{2A_{7}\rho_{r}^{2}}{ZT_{sr}^{3}}\left[1 + A_{8}\rho_{r}^{2} - \left(A_{8}\rho_{r}^{2}\right)^{2}\right]\exp\left(-A_{8}\rho_{r}^{2}\right) \qquad (2.132)$$

2.3.3.5 Método de Dranchuk, P.M. y Abou-Kassem, J.H.⁴⁴:

Este método es muy similar al anterior, sin embargo Dranchuk y Abou-Kassem utilizaron la ecuación de estado de Starling ⁴⁵ la cual escribieron en la siguiente forma:

$$Z = 1 + \left(A_{1} + \frac{A_{2}}{T_{sr}} + \frac{A_{3}}{T_{sr}^{3}} + \frac{A_{4}}{T_{sr}^{4}} + \frac{A_{5}}{T_{sr}^{5}}\right)\rho_{r} + \left(A_{6} + \frac{A_{7}}{T_{sr}} + \frac{A_{8}}{T_{sr}^{2}}\right)\rho_{r}^{2} - A_{9}\left(\frac{A_{7}}{T_{sr}} + \frac{A_{8}}{T_{sr}^{2}}\right)\rho_{r}^{5} + A_{10}\left(1 + A_{11}\rho_{r}^{2}\right)\frac{\rho_{r}^{2}}{T_{sr}^{3}}\exp\left(-A_{11}\rho_{r}^{2}\right)$$
(2.133)

Se utilizó la ec. (2.130) para la densidad reducida y mediante un procedimiento similar al método anterior y utilizando los mismos 1500 puntos, determinaron los siguientes valores para las constantes $A_1 - A_{11}$:

$A_1 = 0.3265$	<i>A</i> ₂ = -1.07	$A_3 = -0.5339$
$A_4 = 0.01569$	A ₅₌ -0.05165	$A_6 = 0.5475$
A ₇ = -0.7361	$A_8 = 0.1844$	A9 = 0.1056
$A_{10} = 0.6134$	$A_{11} = 0.721$	

Tabla 2.27Valores de las constantes A_{1-11}

El método reprodujo los 1500 puntos de datos con un error absoluto de 0.307%. Los rangos de aplicación del método son: $0.2 \le P_{sr} \le 30.0$ y $1.0 \le T_{sr} \le 3.0$

Para $P_{sr} < 1.0$ con $0.7 < T_{sr} \le 1.0$, pero produce resultados inaceptables en la región de $T_{sr} = 1.0$ y $P_{sr} \ge 1.0$. Para gases naturales con impurezas se recomienda corregir $P_{scM} y T_{scM}$ por el método de Wichert y Aziz.

Para resolver la ec. (2.133) se debe utilizar un procedimiento iterativo de ensayo y error. Si se utiliza el método iterativo de Newton – Raphson, se tiene:

$$F = Z - \begin{bmatrix} 1 + \left(A_{1} + \frac{A_{2}}{T_{sr}} + \frac{A_{3}}{T_{sr}^{3}} + \frac{A_{4}}{T_{sr}^{4}} + \frac{A_{5}}{T_{sr}^{5}}\right)\rho_{r} + \left(A_{6} + \frac{A_{7}}{T_{sr}} + \frac{A_{8}}{T_{sr}^{2}}\right)\rho_{r}^{2} - \\ A_{9}\left(\frac{A_{7}}{T_{sr}} + \frac{A_{8}}{T_{sr}^{2}}\right)\rho_{r}^{5} + A_{10}\left(1 + A_{11}\rho_{r}^{2}\right)\frac{\rho_{r}^{2}}{T_{sr}^{3}}\exp\left(-A_{11}\rho_{r}^{2}\right) \end{bmatrix} = 0 \quad (2.134)$$

$$\left(\frac{\partial F}{\partial Z}\right)_{T_{sr}} = 1 + \left(A_1 + \frac{A_2}{T_{sr}} + \frac{A_3}{T_{sr}^3} + \frac{A_4}{T_{sr}^4} + \frac{A_5}{T_{sr}^5}\right)\frac{\rho_r}{Z} + 2\left(A_6 + \frac{A_7}{T_{sr}} + \frac{A_8}{T_{sr}^2}\right)\frac{\rho_r^2}{Z} - 5A_9\left(\frac{A_7}{T_{sr}} + \frac{A_8}{T_{sr}^2}\right)\frac{\rho_r^5}{Z} + \frac{2A_{10}\rho_r^2}{ZT_{sr}^3}\left[1 + A_{11}\rho_r^2 - \left(A_{11}\rho_r^2\right)^2\right]\exp\left(-A_{11}\rho_r^2\right)$$
(2.135)

2.3.3.6 Método de Gopal, V.N.⁴⁶:

Gopal desarrolló las siguientes ecuaciones para el cálculo del factor Z:

Rango de P _{sr}	Rango de T _{sr}	Ecuaciones para Z
	1.05 y 1.2	$P_{sr}(1.6643 T_{sr} - 2.2114) - 0.3647 T_{sr} + 1.4385$
0.2 y 1.2	1.2+ y 1.4	$P_{sr}(0.0522T_{sr}-0.8511)-0.0364 T_{sr}+1.0490$
	1.4+ y 2.0	$P_{sr}(0.1391T_{sr}-0.2988)+0.0007T_{sr}+0.9969$
	2.0+ y 3.0	$P_{sr}(0.0295T_{sr}-0.0825)+0.0009T_{sr}+0.9967$
	1.05 y 1.2	$P_{sr}(-1.3570T_{sr}+1.4942)+4.6315T_{sr}-4.7009$
1.2+ y 2.8	1.2+ y 1.4	$P_{sr}(0.1717T_{sr}-0.3232)+0.5869T_{sr}+0.1229$
	1.4+ y 2.0	$P_{sr}(0.0984T_{sr}-0.2053)+0.0621T_{sr}+0.8580$
	2.0+ y 3.0	$P_{sr}(0.0211T_{sr}-0.0527)+0.0127T_{sr}+0.9549$
	1.05 y 1.2	$P_{sr}(-0.3278T_{sr}+0.4752)+1.8223T_{sr}-1.9036$
2.8+ y 5.4	1.2+ y 1.4	$P_{sr}(-0.2521T_{sr}+0.3871)+1.6087T_{sr}-1.6635$
	1.4+ y 2.0	$P_{sr}(-0.0284T_{sr}+0.0625)+0.4714T_{sr}-0.0011$
	2.0+ y 3.0	$P_{sr}(0.0041T_{sr}+0.0039)+0.0607T_{sr}+0.7927$
5.4+ y 15	1.05 y 3.0	$P_{sr}(0.711+3.66T_{sr})^{-1.4667}-1.637/(0.319T_{sr})^{-1.4667}$
		+0.522)+2.071

Tabla 2.28 Ecs. desarrolladas por Gopal según P_{sr} y T_{sr}

El método de Gopal puede ser utilizado cuando el gas natural contiene impurezas corrigiendo $P_{scM} y T_{scM}$ por el método de Wichert y Aziz.

2.3.4 Factor Volumétrico del Gas, β_g

El Factor Volumétrico del Gas se define como el volumen (generalmente en barriles o pies cúbicos) que ocupa en el yacimiento, la unidad volumétrica (generalmente 1 barril o 1 pie cúbico) de gas a condiciones normales. Este factor relaciona el volumen de gas en el yacimiento al volumen del mismo en la superficie, es decir, a condiciones normales (14.7 lpca y 60°F).

Aplicando la Ley de los Gases Reales (PV = Nzrt) a condiciones normales y a

condiciones de yacimiento, se tiene:

$$\beta_g = \frac{V_g}{V_{gl}} = \frac{nZRT/P}{nZ_lRT_l/P_l}$$
(1.14)

 $V_g =$ Volumen de gas a condiciones normales Vgl = Volumen de gas a condiciones de yacimiento

Donde, para la misma masa de gas nR se cancelan, y dado que P_1 y T_1 son condiciones normales (14.7 lpca. y 60°F), luego Z_1 1.0 y la ec. (1.14) se reduce a:

$$\beta_g = \frac{ZTP_1}{Z_l T_l P} = \frac{(14.7)ZT}{(1.0)(60 + 460)P} = 0.02827 \frac{ZT}{P}, \frac{PCY}{PCN}$$
(1.15)

Si se desea expresar β_g en BY/PCN, se divide por 5.615:

$$\beta_g = 0.00503 \frac{ZT}{P}, \frac{BY}{PCN}$$
(1.16)

Donde:

- β_g = Factor Volumétrico del Gas, PCY/PCN o BY/PCN
- Z = Factor de compresibilidad del gas, adim.
- P = Presión, lpca.
- T = Temperatura, R (= °F + 460)

En algunos casos se utiliza el inverso de β_g (factor de expansión del gas, E_g):

$$E_{g} = \frac{1}{\beta_{g}} = 35.37 \frac{P}{ZT}, \frac{PCN}{PCY} = 198.8 \frac{P}{ZT}, \frac{PCN}{BY}$$
(1.17)

Para calcular β_g o E_g a una determinada presión y temperatura, el valor del factor de compresibilidad, *Z*, a esas condiciones debe ser conocido. Por lo tanto, si no se dispone de un valor experimental de *Z*, entonces es necesario recurrir a los métodos que se presentaron anteriormente.

2.3.5 Compresibilidad del Gas, C_g

Se desarrollaron diferentes métodos para determinar la Compresibilidad del Gas, los cuales se presentan a continuación:

2.3.5.1 Método de Mattar, L., Brar, G.S. y Aziz, K⁴⁷:

Mattar y Cols. desarrollaron la siguiente expresión analítica para determinar la compresibilidad seudorreducida. La expresión es la siguiente:

$$C_{r} = \frac{1}{P_{sr}} - \frac{0.27}{Z^{2}T_{sr}} \left[\frac{\left(\frac{\partial Z}{\partial P_{r}}\right)_{T_{sr}}}{1 + \frac{P_{r}}{Z} \left(\frac{\partial Z}{\partial P_{r}}\right)_{T_{sr}}} \right]$$
(2.136)

La derivada $(\partial Z / \partial \rho_r)_{Tsr}$ se obtiene diferenciando la ec. (2.129), la ecuación de estado desarrollada por Dranchuk, Purvis y Robinson⁴¹, esto es:

$$\left(\frac{\partial Z}{\partial P_r}\right)_{T_{sr}} = A_1 + \frac{A_2}{T_{sr}} + \frac{A_3}{T_{sr}^3} + 2\left(A_4 + \frac{A_5}{T_{sr}}\right)P_r + 5A_5A_6\frac{P_r^4}{T_{sr}} + \frac{2A_7P_r}{T_{sr}^3}\left[1 + A_8P_r^2 - \left(A_8P_r^2\right)^2\right] \cdot \exp\left(-A_8P_r^2\right)$$
(2.137)

Utilizando las ecs. (2.136) y (2.137) y la definición de compresibilidad seudorreducida, la compresibilidad de un gas puede ser determinada siempre que la

presión y la temperatura del gas se encuentren dentro de los rangos especificados por la ecuación de Dranchuk y Cols. Las ecs. (2.136) y (2.137) no deben utilizarse a valores de T_{sr} menores de 1.4 y P_{sr} entre 0.4 y 3.0.

Una manera alterna de determinar la compresibilidad de un gas, es a partir de la definición de compresibilidad seudorreducida:

$$C_r = C_g \cdot P_{sc} = \frac{1}{P_{sr}} - \frac{1}{Z} \left(\frac{\partial Z}{\partial P_{sr}} \right)_{T_{sr}}$$
(2.138)

Así el gradiente $(\partial Z / \partial P_{sr})_{Tsr}$ se obtiene derivando analíticamente los métodos anteriormente presentados para determinar *Z*, esto es:

2.3.5.2 Sarem, A.M.:

$$\left(\frac{\partial Z}{\partial P_{sr}}\right)_{T_{sr}} = \sum_{i=0}^{5} \sum_{j=0}^{5} A_{ij} \left(\frac{\partial P_i(x)}{\partial P_{sr}}\right)_{T_{sr}} \left(\frac{\partial P_j(y)}{\partial P_{sr}}\right)_{T_{sr}}$$
(2.139)

Donde los Polinomios de Legendre de grado 0 - 5, y argumentos x e y están dados por:

Tabla 2.29Polinomios de Legendre

$P_0(x) = 0.0$	$P_0(y) = 0.7071068$
$P_1(x) = 0.16551$	$P_1(y) = 1.224745y$
$P_2(x) = 0.641002x$	$P_2(y) = 0.7905695(3y^2 - 1)$
$P_3(x) = 0.379221(5x^2 - 1)$	$P_3(y) = 0.9354145(5y^3 - 3y)$
$P_4(x) = 0.716652(7x^3 - 3x)$	$P_4(y) = 0.265165(35y^4 - 30y^2 + 3)$
$P_5(x) = 0.594225(21x^4 - 14x^2 + 1)$	$P_5(y) = 0.293151(63y^5 - 70y^3 + 15y)$

2.3.5.3 Hall, K.R. y Yarborough, L.:

La ec. (2.122) puede expresarse como:

$$Z = \frac{AP_{sr}}{y} \tag{2.140}$$

y así se tiene:

$$\left(\frac{\partial Z}{\partial P_{sr}}\right)_{T_{sr}} = \frac{A}{y} - \frac{AP_{sr}}{y^2} \left(\frac{\partial y}{\partial P_{sr}}\right)_{T_{sr}}$$
(2.141)

Donde:

$$\left(\frac{\partial y}{\partial P_{sr}}\right)_{T_{sr}} = A \cdot \left[\frac{(1-y)^4}{1+4y+4y^2-4y^3+y^4-(1-y)^4(2By-CDy^{(D-1)})}\right]$$
(2.142)

2.3.5.4 Brill, J.P. y Beggs, H.D.:

$$\left(\frac{\partial y}{\partial P_{sr}}\right)_{T_{sr}} = \frac{1-A}{\left[\left(0.62 - 0.23T_{sr}\right) + \left(\frac{0.132}{T_{sr} - 0.86} - 0.074\right)P_{sr} + \frac{1.92}{10^{9(T_{sr} - 1)}} \cdot P_{sr}^{5}\right] \cdot \exp(B) + CDP_{sr}^{(D-1)}$$

$$(2.143)$$

2.3.5.5 Gopal, V.N.:

La exactitud de las siguientes ecuaciones no ha sido verificada, sin embargo, pueden ser utilizadas dentro de los rangos de presión y temperatura especificados por las ecuaciones de las cuales fueron obtenidas.

Rango de P _{sr}	Rango de T _{sr}	Ecuaciones para $\left(\frac{\partial Z}{\partial P_{sr}}\right)_{T_{sr}}$
	1.05 y 1.2	$1.6643T_{sr} - 2.2114$
0.2 y 1.2	1.2+ y 1.4	$0.0522T_{sr} - 0.8511$
	1.4+ y 2.0	$0.1391T_{sr} - 0.2988$
	2.0+ y 3.0	$0.0295T_{sr} - 0.0825$
	1.05 y 1.2	$-1.3570T_{sr}$ +1.4942
1.2+ y 2.8	1.2+ y 1.4	$0.1717T_{sr} - 0.3232$
	1.4+ y 2.0	$0.0984T_{sr} - 0.2053$
	2.0+ y 3.0	$0.0211T_{sr} - 0.0527$
	1.05 y 1.2	$-0.3278T_{sr}+0.4752$
2.8+ y 5.4	1.2+ y 1.4	$-0.2521T_{sr} + 0.3871$
	1.4+ y 2.0	$-0.0284T_{sr}+0.0625$
	2.0+ y 3.0	$0.0041T_{sr} + 0.0039$
5.4+ y 15	1.05 y 3.0	$\left(0.711 + 3.66T_{sr}\right)^{-1.4667}$

Tabla 2.30 Ecs. Desarrolladas por Gopal según P_{sr} y T_{sr}

2.3.6 Viscosidad del Gas, μ_g

Las siguientes correlaciones permiten determinar la viscosidad del gas:

2.3.6.1 Correlación de Carr, N.L., Kobayashi, R. y Burrows, D.B.⁴⁸

Esta correlación se presentó originalmente en una figura, pero por razones de

programación se usó el ajuste que se le hiciera²⁹:

$$\mu_{gl} = \left(1.709x10^{-5} - 2.062x10^{-6}\gamma_g\right)T + 8.188x10^{-3} - 6.15x10^{-3}\log\gamma_g \qquad (2.144)$$

Permite determinar la viscosidad del gas a presión atmosférica y temperatura del yacimiento, μ_{gl} , a partir de su peso molecular o gravedad específica. Permite también realizar las correcciones por contenido de H_2S , CO_2 y/o N_2 . Así, si el gas contiene impurezas, μ_{gl} se corrige de la siguiente manera:

$$\mu_{glc} = \mu_{gl} + C_{CO_2} + C_{H_2S} + C_{N_2}$$
(2.145)

Donde:

 μ_{glc} = Viscosidad del gas a 1 atm. y *T*, corregida por impurezas, cp. μ_{gl} = Viscosidad del gas a 1 atm. y *T*, sin corregir por impurezas, cp., ec. (2.144) C_{CO2}, C_{H2S}, C_{N2} = Correcciones por presencia de *H*₂*S*, *CO*₂ y/o *N*₂, cp.,

estos valores de obtienen de:

$$C_{N_{2}} = y_{N_{2}} \left(8.48x10^{-3} \log \gamma_{g} + 9.59x10^{-3} \right)$$

$$C_{CO_{2}} = y_{CO_{2}} \left(9.08x10^{-3} \log \gamma_{g} + 6.24x10^{-3} \right)$$

$$C_{H_{2}S} = y_{H_{2}S} \left(8.49x10^{-3} \log \gamma_{g} + 3.73x10^{-3} \right)$$

(2.146)

T =Temperatura, °F

 γ_g = Gravedad específica del gas, (aire = 1)

 y_{N2} = Contenido de N₂, fracción molar

 y_{CO2} = Contenido de CO₂, fracción molar

 y_{H2S} = Contenido de H₂S, fracción molar

El error de ajuste de la ec. (2.144) a las curvas originales fue de 0.38% para valores en los rangos de: $0.55 < \gamma_g < 1.55 \text{ y } 100 < T(^{\circ}\text{F}) < 300.$

La viscosidad del gas a la presión requerida se obtiene mediante la determinación del

cociente μ_g / μ_{gl} , el cual se puede calcular analíticamente mediante el siguiente ajuste presentado por Dempsey ^{29, 49}:

$$\ln\left(\frac{\mu_g}{\mu_{gl}}T_{sr}\right) = a_0 + a_1P_{sr} + a_2P_{sr}^2 + a_3P_{sr}^3 + T_{sr}\left(a_4 + a_5P_{sr} + a_6P_{sr}^2 + a_7P_{sr}^3\right) + T_{sr}^2\left(a_8 + a_9P_{sr} + a_{10}P_{sr}^2 + a_{11}P_{sr}^3\right) + T_{sr}^3\left(a_{12} + a_{13}P_{sr} + a_{14}P_{sr}^2 + a_{15}P_{sr}^3\right)$$

$$(2.147)$$

El ajuste de Dempsey presenta buenos resultados cuando P_{sr} y T_{sr} están entre los siguientes intervalos: $1.0 \le P_{sr} \le 20$ y $1.2 \le T_{sr} \le 3.0$

Donde:

Tabla 2.31 Constantes para hallar el cociente μ_g/μ_{gl} ,

$a_0 = -2.46211820 \text{ E}+00$	a ₆ = 3.60373020 E-01	a ₁₂ = 8.39387178 E-02
a ₁ = 2.97054714 E+00	a ₇ =-1.04432413 E-02	$a_{13} = -1.86408848 \text{ E-}01$
a ₂ =-2.86264054 E-01	a ₈ =-7.93385684 E-01	a ₁₄ = 2.03367881 E-02
a ₃ = 8.05420522 E-03	a ₉ = 1.39643306 E+00	$a_{15} = -6.09579263 \text{ E-04}$
a ₄ = 2.80860949 E+00	a ₁₀ = -1.49144925 E-01	
a ₅ = -3.49803305 E+00	a ₁₁ = 4.41015512 E-03	

Finalmente, μ_g está dada por:

$$\mu_g = \left(\frac{\mu_g}{\mu_{gl}}\right) \cdot \mu_{glc} \tag{2.148}$$

2.3.6.2 Correlación de Lee, A.L., González, M.H. y Eakin, B.E.⁵⁰:

Lee y Cols. midieron experimentalmente la viscosidad de 4 gases naturales con
impurezas (CO₂, N₂) a temperaturas desde 100 hasta 340° F y presiones desde 100 a 8000 lpca. A partir de los datos experimentales obtuvieron la siguiente ecuación:

$$\mu_g = \frac{K \cdot \exp\left(X\rho_g^{Y}\right)}{10^4} \tag{2.149}$$

Donde:

$$K = \frac{(9.4 + 0.02M)T^{1.5}}{209 + 19M + T}$$

$$X = 3.5 + \frac{986}{T} + 0.01M$$

$$Y = 2.4 - 0.2X$$

$$\rho_g = 1.4935x10^{-3} \frac{PM}{ZT}$$

$$\mu_g = \text{Viscosidad del gas a } P \text{ y } T, \text{ cp.}$$

$$\rho_g = \text{Densidad del gas, grs/cc.}$$

M = Peso molecular del gas (= 28.96 γ_g), lbs/lb-mol

- Z = Factor de compresibilidad del gas, adim.
- P = Presión, lpca.
- T = Temperatura, R

La ec. (2.149) reprodujo los datos experimentales con una desviación estándar de 2.69% y una desviación máxima de 8.99%.

2.3.7 Densidad del Gas, ρ_g

Otra manera de calcular la densidad del gas ρ_g , diferente a la expresada en la ec. (1.24) es considerando la Ley de la Conservación de la Masa para una cantidad dada de gas. Esto es:

$$\left(\rho_g V_g\right)_2 = \left(\rho_g V_g\right)_1 \tag{2.150}$$

Lo cual indica que el cambio en densidad de condiciones de yacimiento (2) a condiciones normales (1), está dado por el cambio en volumen puesto que la masa permanece constante. De la igualdad anterior se tiene:

$$\rho_{g2} = \frac{\rho_{gl} V_{gl}}{V_{g2}}$$
(2.151)

Como el cambio en volumen está dado por el factor volumétrico del gas, β_g , la densidad del gas a *P* y *T* está dada por:

$$\rho_g = \frac{\rho_{gl}}{\beta_g} \tag{2.152}$$

Donde el factor volumétrico del gas, β_g , es en PCY/PCN. La densidad del gas a condiciones normales, ρ_{gl} en lbs/pie³, está dada por:

$$\rho_{gl} = 0.0763 \gamma_g \tag{2.153}$$

Se debe recordar que si el gas contiene componentes no hidrocarburos (CO_2 , N_2 , etc.), estos deben ser considerados en el cálculo de *Z*.

2.4 Compilación de las correlaciones.

A continuación se presentan en las Tablas 2.32, 2.33 y 2.34, las correlaciones que se incluyeron en **GPVT2.0** para el cálculo de las diferentes propiedades para petróleo, gas y agua respectivamente.

Propiedad	Autor	Año de publicación
	Standing	1977
	Vásquez & Beggs	1980
	Glaso	1980
	TOTAL	1983
$P_{b,}R_{s},\beta_{o}(P \leq P_{b})$	Al-Marhoun	1988
	Dokla & Osman	1992
	Petrosky y Farshad	1993
	Kartoatmodjo y Schmidt	1994
	Mendoza y Piña	2002
	Vázquez & Beggs	1980
$\beta_{o}(P > P_{b})$	Petrosky y Farshad	1993
	Kartoatmodjo y Schmidt	1994
	Beal	1946
Viscosidad dal	Beggs y Robinson	1975
viscosidad del	Glaso	1980
petroleo inderto	Egbogah	1983
	Kartoatmodjo y Schmidt	1994
Viscosidad	Chew y Connally	1959
$(\mathbf{P} < \mathbf{P})$	Beggs y Robinson	1975
$(\mathbf{r} \geq \mathbf{r}_{b})$	Kartoatmodjo y Schmidt	1994
Viscosidad	Beal	1946
$(\mathbf{P} > \mathbf{P}_{1})$	Vázquez & Beggs	1980
$(1 < 1_b)$	Kartoatmodjo y Schmidt	1994

Tabla 2.32 Correlaciones incluidas en GPVT2.0 para el petróleo

 Tabla 2.33 Correlaciones incluidas en GPVT2.0 para el gas

Propiedad	Autor	Año de publicación
РуТ	Brown y Katz	1948
$1_{c} \mathbf{y} 1_{c}$	Sutton	1985
D v T del e	Mathews, Roland y Katz	1942
$\Gamma_{c} y \Gamma_{c} uer v_{7+}$	Kessler y Lee	1976
Corrección por	Wichert - Aziz	1972
CO_2 , H_2S y N_2		
	Sarem	1961
	Hall y Yarborough	1973
7	Brill y Beggs	1974
L	Dranchuk, Purvis y	1974
	Robinson	
	Dranchuk y Abou-Kassem	1975
β _g	Ley de Gases Reales	
Viscosidad	Carr y Kobayashi	1954
viscosidad	Lee y González	1966

Propiedad	Autor	Año de publicación
ß	McCain	1990
p_{w}	McCoy	1983
	Van Wingen	1950
	Matthews y Russel	1967
Viscosidad	McCain	1990
	McCoy	1983
	Numbere	1977
D	Culberson y McKetta	1951
\mathbf{K}_{SW}	McCoy	1983

 Tabla 2.34 Correlaciones incluidas en GPVT2.0 para el agua

Las correlaciones que se incluyeron en el Generador de PVT para estimar las propiedades de los fluidos pertenecientes al Área Mayor de Socororo son las que Mendoza y Piña⁵¹ generaron en su estudio, en el cual observaron que la correlación más conveniente a ser tomada como base en la generación de correlaciones para predecir los valores de P_b y R_{sb} fue la generada por TOTAL y que para el caso de la estimación del β_{ob} , la que más se ajustó fue la correlación de Standing. En vista que la generación de correlaciones para el Área Mayor de Socororo está basada (en su mayoría) en las generadas por TOTAL, se consulto además a la publicación Correlaciones P.V.T.⁵³ para poder enmarcar mejor aún el rango de aplicabilidad de las mismas.

Las correlaciones que estaban implementadas en GPVT, se muestran en la Tabla 2.35

Propiedad a calcular	Correlación a utilizar
Presión de Burbujeo (P_b)	Vázquez – Beggs
Viscosidad ($P < P_b$)	Beggs – Robinson
Viscosidad $(P > P_b)$	Vázquez – Beggs
Factor Volumétrico de Formación (β_o)	Vázquez – Beggs
Relación Gas en Solución – Petróleo (R_s)	Vázquez – Beggs

 Tabla 2.35 Correlaciones que estaban implementadas en GPVT

CAPÍTULO III

3 METODOLOGÍA E IMPLEMENTACIÓN

El estudio del comportamiento de producción de los yacimientos requiere el conocimiento de las propiedades físicas de sus fluidos. Estas propiedades se determinan en el laboratorio mediante análisis de muestras de fondo o de superficie. Sin embargo, está información no está disponible en muchos casos, por tal motivo es necesario usar correlaciones empíricas.

Las correlaciones empíricas constituyen herramientas básicas para el cálculo de las propiedades físicas de los fluidos, cuando no se dispone de análisis PVT. Estas herramientas son obtenidas a partir de información de laboratorio, y por esta razón, su aplicación a condiciones diferentes a las cuales fueron obtenidas puede generar graves errores.

GPVT es una herramienta aplicada a la generación de propiedades PVT de los fluidos a través de las correlaciones implementada en **SYEP**. La función principal de **GPVT** es generar las propiedades PVT de los fluidos del yacimiento (petróleo, agua y gas) en forma de tablas y gráficos, mediante la aplicación de correlaciones publicadas en la literatura.

Con base en esto, el presente trabajo estuvo dirigido hacia la compilación de correlaciones adicionales a las ya incluidas en **SYEP**, la implementación de estas en el **GPVT** y la validación de las mismas, lo cual permitió desarrollar el programa **GPVT2.0** en el simulador **SYEP**.

Para ello se procedió de la siguiente manera:

• Revisión bibliográfica de las principales correlaciones

- Programación de las correlaciones e implementación en GPVT
- Validación de las correlaciones implementadas en GPVT2.0
- Validación de las propiedades PVT con un análisis de laboratorio

Algunas de las propiedades que pueden ser generadas por **GPVT2.0** son: factores volumétricos de formación, viscosidades, relación gas – petróleo o gas – agua en solución y presión del punto de burbujeo, entre otras.

Para contribuir con el desarrollo de nuevos módulos o procesos que puedan ser incorporados en **GPVT2.0**, se incluye el código fuente de las correlaciones programadas (ver ANEXO 1).

3.1 Revisión bibliográfica de las principales correlaciones

Se realizó una revisión bibliográfica y de publicaciones de la Society of Petroleum Engineers (SPE) para encontrar las correlaciones desarrolladas por diferentes autores, para el cálculo de las propiedades de fluidos.

En la revisión bibliográfica se utilizó la Guía Correlaciones Numéricas P.V.T. ⁵² en la cual se encuentran distintas correlaciones para el cálculo de las propiedades de fluidos (PVT). Dichas correlaciones son las que poseen menor porcentaje de error con respecto a los datos de campo, según las observaciones de cada uno de los autores.

Standing¹ fue el primero en desarrollar las ecuaciones de R_{sb} , β_{ob} y P_b en función de la gravedad API, de la gravedad específica del gas y de la temperatura. A partir de sus correlaciones, comenzaron a surgir nuevas, basadas en ésta para estimar las propiedades de los fluidos. Desde entonces, se desarrollaron una gran cantidad de correlaciones en diferentes regiones del mundo a fin de caracterizar las propiedades de los fluidos.

También se implementaron las correlaciones desarrolladas por Mendoza y Piña⁵¹ que fueron desarrolladas para el Área Mayor de Socororo.

3.2 Programación de las correlaciones e implementación en GPTV.

Para permitir la generación de tablas de propiedades PVT y sus respectivos gráficos para petróleo, gas y agua, se programó el **GPVT2.0** en ambiente VISUAL BASIC 6.0 basado en **GPVT**.

La programación de **GPVT2.0** está conformada por seis archivos de extensión ".FRM" y un archivo de extensión ".BAS", los cuales se describen a continuación:

Archivos tipo Formulario (.FRM):

Nombres de los archivos: CORRELACIONES.FRM, PVT_CHEQ_1.FRM, PVT_CHEQ_2.FRM, PVT_CHEQ_3.FRM, PVT_CHEQ_4.FRM y PVT_CHEQUEAR.FRM.

Son los archivos principales de **GPVT2.0**. Contienen los formularios con el cuerpo del programa y está compuesto por 1124 líneas de código.

Archivo tipo Módulo (.BAS):

Nombre del archivo: MODULO_CORRELACIONES.BAS

Archivo que contiene la declaración de las variables y las funciones programadas para el cálculo de las propiedades PVT de los fluidos. Está compuesto por 632 líneas de código (ver ANEXO 1).

3.3 Validación de las correlaciones implementadas en GPVT2.0

Para comprobar que la programación de todas las correlaciones estuviera correcta, se

generó una tabla de propiedades PVT y sus respectivos gráficos para compararlos con los resultados de un programa desarrollado por Amoco Corp.⁵⁶, que calcula también las propiedades de los fluidos.

En la Tabla 3.1 se observan los datos de entrada (tomados de CoreLab⁵⁴) que se usaron en el programa de Amoco Corp. y en **GPVT2.0** con la finalidad de generar las tablas PVT y gráficos respectivos.

Parámetros	Valor
T (°F)	209
°API	28.5
γ _g	0.765
R _s (PCN/BN)	498

Tabla 3.1 Características del yacimiento

3.4 Validación de las propiedades PVT con un análisis de laboratorio

Para comprobar que las propiedades de fluidos generadas estuvieran correctas, se generó una tabla de propiedades PVT (con los datos de la Tabla 3.1) y sus respectivos gráficos para compararlos con los resultados de análisis PVT (ver ANEXO 2) elaborado por CORE LABORATORIES INTERNATIONAL, S.A.⁵⁴, del pozo SVS 182, perteneciente al Campo Lama en el estado Zulia y que se encontraba para el año 1983 asignado a Corpoven, S.A.

Si bien es cierto que la precisión de los resultados de ensayos de laboratorio realizados a muestras representativas de los fluidos del yacimiento es mayor que la que tienen las correlaciones empíricas, lo que se quiso demostrar con la comparación entre los resultados del análisis del laboratorio y los de **GPVT2.0** es la validez de las correlaciones programadas por medio de la consistencia de los resultados obtenidos.

La tabla de propiedades PVT y gráficos, se generaron con todas las correlaciones incluidas, previo chequeo del rango de aplicabilidad de cada una y usando las que sirvan para las características del yacimiento en estudio.

3.5 Diagrama de flujo de GPVT

La metodología con la que se desarrolló el inicial **GPVT** se muestra en la Figura 3.1. Esta metodología tiene predeterminada la correlación para el cálculo de cada una de las propiedades PVT. El usuario ingresa los datos del yacimiento y luego **GPVT** genera las propiedades en forma tabular y gráfica.

Este metodología plantea la limitación del uso de una sola correlación para cada propiedad, sin considerar el rango de aplicabilidad de la misma, incurriendo en errores de imprecisión cuando el rango de aplicabilidad de la correlación predeterminada no abarque los datos del yacimiento que se están introduciendo.

Figura 3.1 Diagrama de flujo de GPVT

3.6 Diagrama de flujo para desarrollar GPVT2.0

La metodología con la que se desarrolló **GPVT2.0** se muestra en la Figura 3.2. Al inicio el usuario introduce los datos característicos del yacimiento. Luego **GPVT2.0** le permite seleccionar la correlación que va a usar para el cálculo de cada una de las propiedades PVT dependiendo del rango de aplicabilidad de cada correlación implementada. La selección sólo se puede hacer entre las correlaciones cuyos rangos de aplicabilidad abarquen los datos introducidos. Luego se generan las propiedades en forma tabular y gráfica. Este metodología plantea la innovación del chequeo de los rangos de aplicabilidad de las mismas, lo que garantiza una mayor precisión en las propiedades PVT generadas que la que tenían los resultados que eran generados por **GPVT.**

Figura 3.2 Diagrama de flujo de GPVT2.0

CAPÍTULO IV

4 **RESULTADOS**

4.1 Programación e inclusión de GPVT2.0

El resultado de este Trabajo Especial de Grado es un nuevo módulo generador de propiedades PVT (**GPVT2.0**), que a diferencia de el módulo generador de PVT anterior (**GPVT**), incluye varias correlaciones con amplio rango de aplicación y plantea una metodología diferente y más confiable para generar las propiedades PVT.

GPVT2.0 es una herramienta aplicada a la generación de propiedades PVT de los fluidos a través de correlaciones empíricas. La función principal de esta aplicación es generar las propiedades PVT de los fluidos presentes en el yacimiento (petróleo, agua y gas) en forma tabular y gráfica, mediante la aplicación de correlaciones desarrolladas por diversos autores.

Figura 4.1 Ventana principal de la Aplicación SYEP

Se ingresa a **GPVT2.0** teniendo la herramienta **SYEP** instalada y abierta como se ilustra en la Figura 4.1 y haciendo clic en el botón Generador de PVT del Menú Aplicaciones Adicionales ubicado en la parte superior de la pantalla (Figura 4.2).

A	Archivo	Aplicaciones	Aplicaciones Adicionales Manu		iales	Ayuda
			Generador de Reportes			
			Generador de PVT			

Figura 4.2 Menú Aplicaciones Adicionales – Botón Generador de PVT

Al ejecutar la aplicación se abre la ventana mostrada en la Figura 4.3.

🗃 Generación de Propiedades PVT		
Archivo Generar PVT Ayuda		
Petróleo Gas Agua		
Temperatura del Yacimiento	Presión de Burbujeo (Pb)	Chequear
Relación Gas-Petróleo Inicial PCN/BN 💌	Relacion Gas en Solución-Petróleo (Rs)	Chequear
Gravedad del Petróleo *API 💌	Factor Volumétrico de Formación (Bo) (P<=Pb)	Chequear
Gravedad Específica del Gas GE 💌	Factor Volumétrico de Formación (Bo) (P>Pb)	Chequear
	Viscosidad del Petróleo Muerto	Chequear
	Viscosidad (P<=Pb)	Chequear
	Viscosidad (P>Pb)	Chequear
		Generar PVT
		Ver Gráfico

Figura 4.3 Ventana principal de GPVT2.0

La ventana principal de **GPVT2.0** se encuentra conformada por las siguientes secciones:

<u>Menú principal</u>: Ubicado en la parte superior de la ventana. El menú principal consta de tres menús generales que son: Archivo, Generar PVT y Ayuda.

El Menú Archivo permite cerrar la aplicación, el menú Generar PVT permite activar

la pantalla para la introducción de los datos necesarios para generar las propiedades PVT del fluido seleccionado, cómo se muestra en la Figura 4.4, y el menú Ayuda ofrece información acerca de **SYEP**.

Generación de Propieda nivo Generar PVT Ayuda	ades PVT						JD
Petróleo Gas A	gua						
emperatura del Yacimiento	209	°F ▼	Presión de Burbujeo (Pb)	Standing		Cł	nequea
elación Gas-Petróleo Inicial	498	PCN/BN -	Relacion Gas en Solución-Petróleo (Rs)	Standing		Cł	nequea
ravedad del Petróleo	28.5	*API 💌	Factor Volumétrico de Formación (Bo) (P<=Pb)	Standing		Cł	neque
ravedad Específica del Gas	0.765	GE 💌	Factor Volumétrico de Formación (Bo) (P>Pb)	Petrosky	-Farshad	Cł	neque
			Viscosidad del Petróleo Muerto	Beal		Cł	neque
			Viscosidad (P<=Pb)	Chew-Co	nnally	Cł	neque
			Viscosidad (P>Pb)	Beal		Ü	neque
			Presión Máxima del Yacimiento	psia	-		
			Presión de Burbujeo	psia	-	Generar	PVT
			Presión del Separador	psia	-	Ver Grá	ifico
			Temperatura del Separador	۴F	-		
			Contenido de N2	% Mola	ir 👻		
			Contenido de H2S	% Mola	r 🔻		

Figura 4.4 Ventana activa para la introducción de los datos

<u>Menú secundario</u>: Ubicado en la parte superior izquierda de la ventana contiene los botones "Petróleo", "Gas" y "Agua", los cuales permiten acceder al cálculo de las propiedades físicas del fluido seleccionado. Se muestra dentro de la ventana del fluido seleccionado (al lado derecho), el despliegue de las diversas correlaciones programadas para el cálculo de las propiedades PVT.

Para seleccionar la correlación más adecuada para el cálculo de cada propiedad PVT, se mostrará gráficamente el rango de aplicabilidad de cuatro parámetros para cada correlación, y a su vez se mostrará en que parte de ese gráfico se encuentran los datos del yacimiento que se introdujeron inicialmente, esto es para mostrar al usuario cuales correlaciones puede usar y cuales no, tal como se ilustra en la Figura 4.5

Figura 4.5 Ventana con el rango de aplicabilidad de cada correlación

También le permite al usuario establecer visualmente un criterio de selección de correlación, es decir, al notar que los datos del yacimiento se encuentran en el borde de un rango de aplicabilidad, el usuario preferirá una correlación que muestre al dato en observación hacia la zona media del rango de aplicabilidad., ya que de esta manera disminuiría las imprecisiones en los cálculos.

La programación e implementación de **GPVT2.0** ha sido probada y validada. Con la implementación de **GPVT2.0** en **SYEP** se plantea una disminución progresiva de la dependencia de paquetes comerciales de simulación numérica de yacimientos que implican la utilización de recursos económicos, que pudieran ser destinados para otro fin en beneficio del estudiantado.

4.2 Validación de las correlaciones implementadas en GPVT2.0

La tabla de cada propiedad PVT generada por **GPVT2.0** y la generada por Amoco Corporation⁵⁶ así como sus respectivos gráficos, se presentan a continuación con la finalidad de demostrar la validez las correlaciones implementadas.

Se calcula también el error relativo (%), para mostrar de una mejor manera la precisión de las correlaciones implementadas en **GPVT2.0**.

Presión de Burbujeo, Pb:

El error relativo presentado en la Tabla 4.1 se produce al comparar los valores obtenidos por las diferentes correlaciones implementadas en **GPVT2.0** para el cálculo de la presión de burbujeo (P_b) con el valor de 2661.55 lpc que obtuvo el programa de Amoco Corp.

Correlación	P _b (lpc)	Error relativo (%)
Standing	2648,7	-0,48
TOTAL	2503,2	-5,95
Kartoadmodjo	2849	7,04
Al-Marohun	2873,6	7,97
Glaso	3031,4	13,90
Petrosky	3039,3	14,19

Tabla 4.1 Comparación entre la P_b calculada por varias correlaciones

Se puede apreciar que el menor error relativo se obtuvo con el uso de la correlación de Standing, tal como era de esperarse siempre y cuando esa correlación estuviera bien implementada en **GPVT2.0**, debido a que la correlación que usa Amoco Corp. en su programa para el cálculo de la presión de burbujeo es precisamente la de Standing.

De esta comparación se puede interpretar que las correlaciones implementadas en

GPVT2.0 para el cálculo de la presión de burbujeo están bien implementadas, y que el error relativo producido en cada correlación se debe a la ubicación de los datos característicos del yacimiento dentro de los rangos de aplicabilidad de cada correlación implementada.

Solubilidad del Gas en el Petróleo, Rs:

El error relativo presentado en la Tabla 4.2 se genera al comparar los valores obtenidos por la correlación de Standing implementada en **GPVT2.0** para el cálculo de la solubilidad del gas en el petróleo (R_s) con los valores que obtuvo el programa de Amoco Corp., que también usa la correlación de Standing.

P (lpc)	Amoco	GPVT2.0	Error relativo (%)		
4500	498	498	0,00		
4129	498	498	0,00		
3758	498	498	0,00		
3388	498	498	0,00		
3017	498	498	0,00		
2671	498	495,291	0,54		
2646	494	494,92	-0,19		
2275	413	412,32	0,16		
1904	334	334,3914	-0,12		
1533	261	258,1872	1,08		
1163	192	186,3084	2,96		

Tabla 4.2 Comparación entre la R_s (PCN/BN) de Amoco y la de GPVT2.0

La Figura 4.6 muestra el comportamiento de los valores calculados por Amoco Corp. y por **GPVT2.0** para la solubilidad del gas en el petróleo, los cuales tienen un cotejo casi perfecto. En la Tabla 4.2 también se aprecia que los errores relativos son en su mayoría menores al 1%, con lo que se puede interpretar que las correlaciones implementadas en **GPVT2.0** para el cálculo de la solubilidad del gas en el petróleo son válidas.

Figura 4.6 Gráfico comparativo entre el R_s de Amoco y el de GPVT2.0

Factor Volumétrico de Formación, *βo*:

El error relativo presentado en la Tabla 4.3 se genera al comparar los valores obtenidos por **GPVT2.0** para el factor volumétrico de formación (β_o) con los valores que obtuvo el programa de Amoco Corp.

P (lpc)	Amoco	GPVT2.0	Error relativo (%)
4500	1,279	1,27859	0,03
4129	1,282	1,2802	0,14
3758	1,286	1,286035	0,00
3388	1,290	1,29002	0,00
3017	1,295	1,29483	0,01
2671	1,301	1,29866	0,18
2646	1,299	1,29883	0,01
2275	1,258	1,25802	0,00
1904	1,220	1,22052	-0,04
1533	1,187	1,1845	0,21
1163	1,156	1,15161	0,38
792	1,130	1,1216	0,74
421	1,107	1,09642	0,96
50	1,084	1,0743	0,89
14,7	1,079	1,07258	0,59

Tabla 4.3 Comparación entre el β_o (BY/BN) de Amoco y el de GPVT2.0

Se puede apreciar que los errores relativos son menores al 1%, con lo que se puede interpretar que las correlaciones implementadas en **GPVT2.0** para el cálculo del factor volumétrico de formación son válidas. Para esta propiedad, **GPVT2.0** y Amoco Corp. usaron la correlación de Petrosky – Farshad y Standing antes de burbujeo y Standing y Vásquez – Beggs después de burbujeo, respectivamente.

Figura 4.7 Gráfico comparativo entre el β_o de Amoco y el de GPVT2.0

La Figura 4.7 muestra el comportamiento de los valores calculados por Amoco Corp. y por **GPVT2.0** para el factor volumétrico de formación, y se puede apreciar que a pesar que ambos programas usan correlaciones diferentes antes y después de burbujeo, la correspondencia es casi perfecta.

Viscosidad del petróleo, µo:

El error relativo presentado en la Tabla 4.4 se genera al comparar los valores obtenidos por **GPVT2.0** para la viscosidad del petróleo (μ_o) con los valores que obtuvo el programa de Amoco Corp.

Por encima del punto de burbujeo a pesar de que ambos programas usaron correlaciones diferentes para los cálculos de la viscosidad (GPVT2.0 usó la

correlación que Kartoatmodjo - Schmidt que era la que reproducía mejor los resultados obtenidos por Amoco), se puede apreciar un error relativo menor al 11%, lo que demuestra una consistencia y validez en los resultados obtenidos por **GPVT2.0**, no se evidencia lo mismo después de burbujeo, por lo que se puede inferir que los autores realizan análisis bastante diferentes entre sí para post – burbujeo.

P (lpc)	Amoco	GPVT2.0	Error relativo (%)
4500	0,71	0,78511	4,33
4129	0,69	0,76849	6,25
3758	0,68	0.75188	6,69
3388	0,66	0,73533	8,78
3017	0,65	0,71871	9,28
2671	0,63	0,70325	11,55
2646	0,63	0,70216	11,45
2275	0,70	0,77894	11,28
1904	0,78	0,87883	12,67
1533	0,88	1,00256	13,93
1163	1,00	1,17698	17,70
792	1,13	1,44888	28,22
421	1,30	1,88346	44,88

Tabla 4.4 Comparación entre la μ_o (cp) de Amoco y la de GPVT2.0

Figura 4.8 Gráfico comparativo entre la μ_o de Amoco y el de GPVT2.0

La Figura 4.8 muestra el comportamiento de los valores calculados por Amoco Corp. y por **GPVT2.0** para la viscosidad del petróleo, y se puede apreciar que a pesar que ambos programas usan correlaciones diferentes antes y después de burbujeo, la correspondencia a presiones mayores que la de burbujeo, es aceptable.

La Figura 4.9 muestra las correlaciones que se usaron para calcular las propiedades de los fluidos **GPVT2.0**.

Temper	atura del Yaci	miento 20	09	°F 💌	1	Presión de Burbujeo (Pb)		Standing			Chequear
Relación Gas-Petróleo Inicial 498		PCN/BN -	1	Relacion Gas en Solución-Petróleo (Rs)		Standing			Chequear		
Graved	ad del Petróle	0 2	8.5	*API 💌	1	Factor Volumétrico de Formación (Bo) (P<=Pb)		Standing			Chequear
Gravedad Específica del Gas 0.765		GE 💌	1	Factor Volumétrico de Formación (Bo) (P>Pb)		Petrosky	-Farshac	1	Chequear		
				_	Viscosidad del Petróleo Muerto		Beal			Chequear	
- 10	Presión	Viscosidad	Bo	Rs	^	Viscosidad (P<=Ph)		Pagga P	obinoon		Chequear
12	2084,23	0,82484	1,23846	372,02		V(sees) ded (Dy Dh)		Deggan	obinson		Cricquear
14	2460,51	0,73834	1,27815	453,30		Viscosidad (F>FD)		Kartoatm	iodjo-Sicł	nmidt	Chequear
15	2648,65	0,70216	1,29883	494,92							
16	2833,79	0,70652	1,29750	498,00		Presión Máxima del Yacimiento	4500	psia	-		
17	3018,92	0,71032	1,29483	498,00		Presión de Burbujeo	2648,7	Dsia	-	Ger	nerar PVT
18	3204,06	0,71414	1,29234	498,00			Line .	-			
19	3389,19	0,71794	1,29002	498,00		Presión del Separador	100	psia	~	Ve	r Gráfico
20	3574,33	0,72174	1,28785	498,00		Temperatura del Separador	76	°E	-	Vis	sc vs P
21	3759,46	0,72554	1,28580	498,00			-				
22	3944,60	0,72934	1,28386	498,00		Contenido de N2	1	% Mola	ar 💌	F١	/Fvs.P
23	4129,73	0,73314	1,28202	498,00		Contenido de H2S		% Mola	ar 👻	В	is vs. P
24	4314,87	0,73694	1,28027	498,00							
25	4500,00	0,74076	1,27859	498,00		Lontenido de CU2	1	% Mola	ar 💌		

Figura 4.9 Ventana de GPVT2.0 con la tabla PVT generada

Propiedad	Amoco	GPVT2.0
Presión de burbujeo	Standing	Standing
Solubilidad del gas en el petróleo	Standing	Standing
Factor volumétrico del petróleo (P≤P _b)	Vásquez y Beggs	Standing
Factor volumétrico del petróleo (P>P _b)	Standing	Petrosky - Farshad
Viscosidad del petróleo muerto	Bergman	Beal
Viscosidad ($P \leq P_b$)	Bergman	Beggs - Robinson
Viscosidad (P>P _b)	Bergman	Kartoatmodjo

Tabla 4.5 Correlaciones usadas por Amoco y por GPVT2.0

La Tabla 4.5 muestra las correlaciones que se usaron para calcular las propiedades de los fluidos en el programa de Amoco y las usadas en **GPVT2.0**.

Es importar destacar el hecho de que la correlación usada por el programa de Amoco para el cálculo del factor volumétrico de formación a presiones menores que la presión de burbujeo fue la de Vásquez y Beggs, lo que generaría un error de precisión debido a que su rango de aplicabilidad en temperatura es de 162 – 180 °F, y el yacimiento al cual se le generó el PVT tiene una temperatura de 209°F, la cual si se encuentra dentro del rango de aplicabilidad de la correlación usada por **GPVT2.0**, que fue la de Standing, cuyo rango es de 100 - 258 °F.

Se puede demostrar de las tablas y figuras antes presentadas, que las correlaciones implementadas en **GPVT2.0** se encuentran bien programadas, debido a su bajo y aceptable error relativo.

4.3 Validación de las propiedades PVT con un análisis de laboratorio

Se generaron las propiedades PVT en forma tabular y gráfica para el mismo yacimiento cuyas características se encuentran en la Tabla 3.1. Para generar las propiedades PVT con **GPVT2.0**, primero se deben introducir los datos característicos del yacimiento y luego se debe chequear el rango de aplicabilidad de cada propiedad a calcular y para correlación implementada.

A continuación se presentan unas tablas comparativas entre los resultados obtenidos por CoreLab. y por **GPVT2.0** y los respectivos errores relativos para las diferentes propiedades PVT.

Presión de Burbujeo, Pb:

Para calcular la presión de burbujeo luego de haber introducido los datos del yacimiento, se chequea el rango de aplicabilidad para dichos datos. **GPVT2.0** muestra los rangos de todas las correlaciones implementadas para calcular la presión de burbujeo, y luego el usuario selecciona una correlación, tal como se muestra en la Figura 4.10.

GPVT2.0 muestra cuales correlaciones se pueden usar para el yacimiento en estudio dependiendo del rango de aplicabilidad de las mismas y cotejándolo con los datos suministrados por el usuario. Para este caso se pueden seleccionar las correlaciones de: Standing, Glaso, TOTAL, Al-Marohun, Petrosky – Farshad, Kartoatmodjo-Schmidt y Socororo

También se muestra como la temperatura del yacimiento (209°F) queda fuera del rango de aplicabilidad de la correlación de Vásquez – Beggs (162 - 180°F) y la gravedad específica del gas (0.765) queda fuera del rango de aplicabilidad de la

correlación de y Dokla – Osman (0.789 – 1.290), por lo que automáticamente **GPVT2.0** elimina estas dos correlaciones dentro de las posibles a ser seleccionadas.

Figura 4.10 Ventana de GPVT2.0 con los rangos de aplicabilidad

El error relativo presentado en la Tabla 4.6 se calcula al comparar los valores obtenidos por las diferentes correlaciones implementadas en **GPVT2.0** para el cálculo de la presión de burbujeo (P_b) con el valor de 3193 lpc que obtuvo CoreLab.

Correlación	P _b (lpc)	Error relativo (%)
Petrosky	3039,3	-4,81
Glaso	3031,4	-5,06
Al-Marohun	2873,6	-10,00
Kartoadmodjo	2849	-10,77
Socororo	2648,7	-17,05
Standing	2676,1	-16,19
TOTAL	2503,2	-21,60

Tabla 4.6 Comparación entre la *P*^{*b*} calculada por varias correlaciones

Se puede apreciar que el menor error relativo se obtuvo con el uso de la correlación de Petrosky – Farshad, de lo que se puede interpretar que es la correlación que mejor ajusta el comportamiento de crudos de características similares al de el yacimiento en estudio. Debido a esto, se continuó haciendo los cálculos del resto de las propiedades PVT, considerando esta correlación para la presión de burbujeo.

Solubilidad del Gas en el Petróleo, Rs:

Para calcular la solubilidad del gas, se deben chequear los rangos de aplicabilidad de todas las correlaciones implementadas, y luego el usuario selecciona una correlación. En este caso las correlaciones válidas para ser seleccionadas son las mismas que para la presión de burbujeo, tal como se mostró en la Figura 4.10.

El error relativo presentado en la Tabla 4.7 se calcula al comparar los valores obtenidos por las diferentes correlaciones implementadas en **GPVT2.0** para el cálculo de la solubilidad del gas en el petróleo en el punto de burbujeo (R_{sb}) con el valor de 816 lpc que obtuvo CoreLab también en el punto de burbujeo.

Correlación	R _{sb} (PCN/BN)	Error relativo (%)
Petrosky	676.82	-17,06
Socororo	625.26	-23,38
TOTAL	603.93	-25,99
Standing	583.39	-28,51
Al-Marohun	538.44	-34,01
Kartoadmodjo	531.26	-34,89
Glaso	499.68	-38,76

Tabla 4.7 Comparación entre la R_{sb} calculada por las correlaciones válidas

Se puede apreciar que el menor error relativo se obtuvo con el uso de la correlación de Petrosky – Farshad. Debido a esto, se continuó haciendo los cálculos del resto de

las propiedades PVT, considerando esta correlación para la solubilidad del gas en el petróleo.

La Figura 4.11 muestra el comportamiento que tiene la solubilidad del gas en el petróleo calculada por Core Lab. y por **GPVT2.0**. Se puede apreciar que siguen la misma tendencia a pesar que los valores calculados difieren un poco, lo que se debe a que las correlaciones empíricas son considerablemente más imprecisas que los resultados de un análisis PVT de laboratorio. Por encima de la presión de burbujeo no se tienen datos de Core Lab, por lo que no se puede establecer ninguna comparación.

Figura 4.11 Gráfico comparativo entre la R_s de Core Lab. y la de GPVT2.0

Al seleccionar la correlación de Petrosky – Farshad y comparando los valores por ella calculados y los resultados del análisis de Core Lab, se determinó un segundo error relativo. Este resultado se puede observar en la Figura 4.12

El error relativo promedio de los valores de R_s , comparando los obtenidos por **GPVT2.0** con los del análisis de laboratorio, es igual a 19%. La zona de mayor dispersión de estos valores se encuentra entre 1800 y 600 lpc.

Figura 4.12 Error relativo entre los valores de R_s de Core Lab. y de GPVT2.0

Factor Volumétrico de Formación, *βo*:

Para calcular el factor volumétrico de formación, se deben chequear los rangos de aplicabilidad de todas las correlaciones implementadas, y luego el usuario selecciona una correlación. En este caso las correlaciones válidas para ser seleccionadas son las mismas que para la presión de burbujeo y para la solubilidad del gas en el petróleo, tal como se mostró en la Figura 4.10.

El error relativo presentado en la Tabla 4.8 se calcula al comparar los valores obtenidos por las diferentes correlaciones implementadas en **GPVT2.0** para el cálculo del factor volumétrico de formación en el punto de burbujeo (β_{ob}) con el valor de 1.481 BY/BN que obtuvo CoreLab también en el punto de burbujeo.

Se puede apreciar que el menor error relativo se obtuvo con el uso de la correlación de Standing para presiones menores o iguales a la presión de burbujeo. Debido a esto, se continuó haciendo los cálculos del resto de las propiedades PVT usando esta correlación para el cálculo de los factores volumétricos de formación por debajo de

burbujeo. Por encima de la presión de burbujeo no se tienen datos de Core Lab, por lo que no se puede establecer ninguna comparación.

Correlación	eta_{ob} (BY/BN)	Error relativo (%)
Standing	1,392	-6,030
Kartoadmodjo	1,300	-12,218
TOTAL	1,299	-12,285
Socororo	1,293	-12,681
Al-Marohun	1,293	-12,689
Petrosky	1,292	-12,732
Glaso	1,268	-14,375

Tabla 4.8 Comparación entre el β_{ob} calculado por las correlaciones válidas

La Figura 4.13 muestra el comportamiento que tiene el factor volumétrico de formación calculado por Core Lab. y por **GPVT2.0**. Se puede apreciar que siguen la misma tendencia a pesar que los valores calculados difieren un poco, lo que se debe a que las correlaciones empíricas son considerablemente más imprecisas que los resultados de un análisis PVT de laboratorio.

Al seleccionar la correlación de Standing y comparando los valores por ella calculados y con resultados del análisis de Core Lab, se determinó un segundo error relativo. Este resultado se puede observar en la Figura 4.14.

El error relativo promedio de los valores de β_o , comparando los obtenidos por **GPVT2.0** con los del análisis de laboratorio es igual a -6.8%. La zona de mayor dispersión de estos valores se encuentra entre 1800 y 600 lpc.

Figura 4.14 Error relativo entre los valores de β_o de Core Lab. y de GPVT2.0

Viscosidad del Petróleo, µo:

Para calcular la viscosidad del petróleo luego de haber introducido los datos del yacimiento, se chequea el rango de aplicabilidad para dichos datos. **GPVT2.0** muestra los rangos de todas las correlaciones implementadas para calcular la viscosidad del petróleo, y luego el usuario selecciona una correlación, tal como se muestra en la Figura 4.15.

GPVT2.0 muestra cuales correlaciones se pueden usar para el yacimiento en estudio

dependiendo del rango de aplicabilidad de las mismas y cotejándolo con los datos suministrados por el usuario.

Para el cálculo de la viscosidad del petróleo muerto se pueden seleccionar las correlaciones de Beal, Beggs – Robinson, Glaso y Kartoatmodjo – Schmidt.

Figura 4.15 Ventana de GPVT2.0 con los rangos de aplicabilidad

También se muestra como la temperatura del yacimiento (209°F) queda fuera del rango de aplicabilidad de la correlación de Egbogah (59 – 176°F), por lo que automáticamente **GPVT2.0** elimina esta correlación dentro de las posibles a ser seleccionadas.

Para el cálculo de la viscosidad del petróleo a presiones igual ó menores que la presión de burbujeo, se pueden seleccionar las correlaciones de Chew – Connally, Beggs – Robinson y Kartoatmodjo – Schmidt, como se observa en la Figura 4.16. Esto se debe a que la temperatura del yacimiento (209°F) y la relación gas en solución – petróleo (498 PCN/BN) están dentro del rango de aplicabilidad de las tres correlaciones implementadas, por lo que **GPVT2.0** permite que cualquiera pueda ser seleccionada.

🖆 Chequeo de Correlaciones	
Chequeo de Correlaciones Relación Gas en Solución - Petróleo (PCN/BN) Chew-Connally Beggs-Robinson Chew-Connally Temperatura (*F) Correlac Chew-Connally Beggs Go 90 120 150 180 210 240 270 300 320 350 Chew-Connally Go 90 120 150 180 210 240 270 300 320 350 Chew-Connally Go 90 120 150 180 210 240 270 300 320 350 Chew-Connally Go 90 120 150 180 210 240 270 300 320 350	O 3250 3500
0 30 60 90 120 150 180 210 240 270 300 320 350 Seleccionar corre	ichmidt elación

Figura 4.16 Ventana de GPVT2.0 con los rangos de aplicabilidad

Para el cálculo de la viscosidad del petróleo a presiones mayores que la presión de burbujeo, sólo se pueden seleccionar las correlaciones de Beal y Kartoatmodjo – Schmidt, como se observa en la Figura 4.17. Esto se debe a que la temperatura del yacimiento (209°F) queda fuera del rango de aplicabilidad de la correlación de Vásquez - Beggs (162 – 180°F) y en cambio, la relación gas en solución – petróleo (498 PCN/BN) está dentro del rango de aplicabilidad de las tres correlaciones implementadas, pero por no cumplir Vásquez – Beggs con la temperatura, **GPVT2.0** la excluye de las posibles a ser seleccionadas.

Figura 4.17 Ventana de GPVT2.0 con los rangos de aplicabilidad

El error relativo presentado en la Tabla 4.9 se calcula al comparar los valores obtenidos por las diferentes correlaciones implementadas en **GPVT2.0** para el cálculo

de la viscosidad del petróleo en el punto de burbujeo (μ_{ob}) con el valor de 0.712 cp que obtuvo CoreLab también en el punto de burbujeo.

Correlación	μ _{ob} (cp)	Error relativo (%)
Chew – Connally	0,7191	0,997
Kartoatmodjo – Schmidt	0,64482	-16,039
Beggs - Robinson	0,5848	-18,778

Tabla 4.9 Comparación entre la μ_{ob} calculado por las correlaciones válidas

Se puede apreciar que el menor error relativo se obtuvo con el uso de la correlación de Chew – Connally para presiones menores o iguales a la presión de burbujeo.

En la Tabla 4.10 se presentan los resultados de las correlaciones válidas implementadas para el cálculo de la viscosidad por encima de la presión de burbujeo, así como el error relativo al comparar estos resultados con el valor de 0.791 cp. para 4500 lpc. que obtuvo Core Lab.

Tabla 4.10 Comparación entre la $\mu_{o@}4500$ lpc calculado por las correlaciones válidas

Correlación	$\mu_{o@}4500$	Error relativo (%)	
Beal	0,78593	-0,64096	
Kartoadmodjo	0,75082	-5,07965	

Se puede apreciar que el menor error relativo se obtuvo con el uso de la correlación de Beal para presiones mayores a la presión de burbujeo.

La Figura 4.18 muestra el comportamiento que tiene la viscosidad del petróleo calculado por Core Lab. y por **GPVT2.0**. Se puede apreciar que siguen la misma tendencia a pesar que los valores calculados difieren un poco, lo que se debe a que las correlaciones empíricas son considerablemente más imprecisas que los resultados de un análisis PVT de laboratorio.

Figura 4.18 Gráfico comparativo entre la μ_o de Core Lab. y la de GPVT2.0

Al seleccionar las correlaciones de Chew – Connally y Beal, y comparando los valores por ellas calculados y los resultados del análisis de Core Lab, se determinó un segundo error relativo. Este resultado se puede observar en la Figura 4.19.

Figura 4.19 Error relativo entre los valores de μ_o de Core Lab. y de GPVT2.0

El error relativo promedio de los valores de μ_o , comparando los obtenidos por **GPVT2.0** con los del análisis de laboratorio es igual a 4.8%. La zona de mayor

dispersión de estos valores se encuentra entre 1800 y 2200 lpc.

Al comparar la tabla de propiedades PVT generada por **GPVT2.0** con los resultados de análisis PVT elaborado por CORE LABORATORIES INTERNATIONAL, S.A.⁵⁴, y tomando en cuenta que la precisión de los resultados de los análisis de laboratorio es mayor que la que tienen las correlaciones empíricas, se demostró que las propiedades de los fluidos generadas por **GPVT2.0** son consistentes y válidas.

CONCLUSIONES

- Se compilaron las correlaciones empíricas de diversos autores para el cálculo de las propiedades físicas de los fluidos, y se programaron e implementaron satisfactoriamente en SYEP, dando origen al nuevo módulo generador de propiedades PVT, llamado GPVT2.0.
- GPVT2.0 incluye varias correlaciones con amplio rango de aplicación y plantea una metodología lógica y confiable para generar las propiedades físicas de los fluidos.
- Se implementaron en GPVT2.0 las correlaciones empíricas generadas para el Área Mayor de Socororo.
- 4. A través de **GPVT2.0** se permite al usuario obtener las propiedades físicas de los fluidos en forma tabular y gráfica.
- Se mejoró el proceso de visualización de gráficos y generador de tablas de propiedades PVT de SYEP.
- Se incorporó en GPVT2.0 la opción de seleccionar las unidades deseadas para la introducción de las diversas variables.
- 7. Se evidenciaron las imprecisiones que se comenten si se usan correlaciones sin tomar en cuenta el rango de aplicabilidad de las mismas.
- 8. La Escuela de Petróleo de la U.C.V. cuenta con una herramienta de simulación numérica de yacimientos que incluye un módulo Generador de PVT, GPVT2.0, consistente, probado y con un amplio rango de aplicabilidad, disminuyendo la dependencia de paquetes comerciales de simulación numérica de yacimientos.

- Se demostró que las correlaciones implementadas en GPVT2.0 están correctamente programadas, debido a su bajo y aceptable error relativo cuando fueron comparadas con los resultados de un programa desarrollado por Amoco Corp.
- 10. Se demostró que las propiedades de los fluidos generadas por **GPVT2.0** son consistentes y válidas, al compararlas con los resultados de un análisis PVT elaborado por CORE LABORATORIES INTERNATIONAL.
RECOMENDACIONES

Las consideraciones que a continuación se plantean, constituyen un conjunto de recomendaciones detalladas, desarrolladas con el objeto de promover futuros Trabajos Especiales de Grado, que tengan como finalidad mejorar y ampliar el **SYEP** en beneficio de la Escuela de Petróleo.

- Desarrollar una aplicación adicional para GPVT2.0, con la finalidad de generar automáticamente una correlación empírica a partir de la introducción por parte del usuario de los resultados de varios análisis de laboratorios para una misma zona geográfica y para yacimientos con similares condiciones.
- 2. Crear una opción que pueda automatizar el proceso de selección de las correlaciones a utilizar que tengan el menor error relativo, tomando como referencia el resultado de un análisis de laboratorio que el usuario pueda suministrarle a **GPVT2.0**.
- 3. Realizar dos simulaciones numéricas a un mismo yacimiento, pero que en una de ellas se incluya la tabla de propiedades físicas de los fluidos que generaba GPVT, (en la cual existía una sola correlación empírica implementada) y en la otra se incluya la tabla que genera GPVT2.0, para poder cuantificar las diferencias existentes en las estimaciones de los volúmenes de fluidos del yacimiento y cuantificar los errores del flujo de fluidos.
- Revisar y hacer las modificaciones necesarias en el actual GPVT2.0 con la finalidad de poder exportar las tablas generadas a otro simulador o a cualquier aplicación de Windows Office.

REFERENCIAS

- Standing, M.B. A Pressure Volume Temperature Correlation for Mixtures of California Oils and Gases, Drill. and Prac., API (1947) 275-287.
- Standing, M.B. Volumetric and Phase Behavior of Oil Field Hydrocarbon Systems, SPE. Dallas (1977).
- Vásquez, M.E. and Beggs, H.D. Correlations for Fluid Physical Property Prediction, J. Pet. Tech. (June 1980), 968-970.
- Glaso, O. Generalized Pressure–Volume–Temperature Correlations, J. Pet. Tech. (May 1980), 785-795.
- TOTAL Compagnie Francaise Des Petroles. Proyectos de Inyección de Fluidos – Correlaciones P.V.T. para Crudos del Oriente de Venezuela, S.A. MENEVEN. (Sept. de 1983).
- Al-Marhoun, M.A. PVT Correlation for Middle East Crude Oils, J. Pet. Tech. (May 1988), 650-666.
- Dokla, M.E. y Osman, M.E. Correlation or PVT Properties for UAE Crudes, Trans, AIME (1992) 293, 41-46.
- Petrosky, G.E., Jr. and Farshad, F.F. Pressure -Volume Temperature Correlations for Gulf of Mexico Crude Oils, paper SPE 26644, Houston, Texas, (Oct. 3-6, 1993).
- 9. Kartoatmodjo, T. and Schmidt, Z. Large Data Bank Improve Crude Physical

Property Correlations, Oil and Gas J. (July 4, 1994) 51-55.

- Beal, C. The Viscosity of Air, Water, Natural Gas, Crude Oil and Its Associated Gases Free Oils, Trans., AIME (1964) 237, 1487-1490.
- Beggs, H.D. and Robinson, J.R. Estimating the Viscosity of Crude Oil Systems, J. Pet. Tech. Forum (Sept. 1975), 1140-1141.
- Egbogah, E.O. An Improved Temperature Viscosity Correlation for Crude Oil Systems, paper 83-34-32, Banff, Alberta, (May 10-13, 1983).
- Chew, J.N. and Connally, C.A. Jr. A Viscosity Correlation for Gas Saturated Crude Oils, Trans. AIME (1959) 216, 23-25.
- Brill, J.P. and Beggs, H.D. Two Phase Flow in Pipes, University of Tulsa, Tulsa, OK, (1988).
- Culberson, O.L. and McKetta, J.J., Jr. Phase Equilibria in Hydrocarbon -Water System III – The Solubility of Methane in Water at Pressures to 10.000 psia. Trans., AIME (1951) 192, 223-226.
- McCain, W.D., Jr. The Properties of Petroleum Fluids, 2nd ed. Tulsa, OK. Penn Well Books, (1990).
- McCoy, R.L. Microcomputer Programs for Petroleum Engineers: Vol 1. Reservoir Engineering and Formation Evaluation, Gulf Publishing Co., Houston (1983).
- Numbere, D. Brigham, W.E., and Standing, M.B. Correlations for Physical Properties of Petroleum Reservoir Brines, Stanford University Petroleum

Research Institute, SUPRI-TR-1, (Nov. 1977).

- Dodson, C.R. and Standing, M.B. Pressure Volume Temperature and Solubility Relations for Natural Gas – Water - Mixtures, Drill. And Prod. Prac., API (1944) 173-179.
- Meehan, D.N. A Correlation for Water Compressibility, Petroleum Engineer (Nov. 1980) 125-126.
- 21. Osif, T.L. The Effects of Salt, Gas, Temperature, and Pressure on the Compressibility of Water, SPE Res. Eng. (Feb. 1988) 3, No. 1, 175-181.
- 22. Ramey, H.J., Jr. Rapid Methods for Estimating Reservoir Compressibilities, Trans., AIME (1964) 231, 447-454.
- Van Wingen, N. Viscosity of Air, Water, Natural Gas, and Crude Oil at Varying Pressure and Temperatures, Secondary recovery of Oil in the United States, API (1950) 127.
- 24. Matthews, C.S. and Russel, D.G. **Pressure Buildup and Flow Test in Wells,** Monograph Series, Society of Petroleum engineers of AIME, Dallas (1967).
- Meehan, D.N. A Correlation for Water Compressibility, Petroleum Engineer (July 1980) 117-118.
- 26. Collins, A.G. **Properties of Produced Waters,** Petroleum Engineering Handbook, H.B. Bradley et al. (eds.), SPE, Richardson, TX (1987) 17-24.
- Kay, W.B. Density of Hydrocarbon Gases and Vapors at High Temperature and Pressure, Ind. Eng. Chem. (Sept. 1936) 28, 1014-1019.

- Brown, G.G., Katz, D.L. Oberfell, G.G., and Alden, R.C. Natural Gasoline and the Volatile Hydrocarbons, Natural Gasoline Ass. Of America, Tulsa (1948), 24-32.
- 29. Standing, M.B. Volumetric and Phase Behavior of Oil Field Hydrocarbon Systems, SPE, (1977).
- Sutton, R.P. Compressibility Factors for High Molecular Weight Reservoir Gases, paper SPE 14265, (Sept. 22-25, 1985).
- 31. Mathews, T.A., Roland, C.H., and Katz, D.L. High Pressure Gas Measurement, Proc., NGAA (1942) 41.
- 32. Kessler, M.G. and Lee, B.I. Improve Prediction of Enthalpy of Fractions, Hyd. Proc., (March 1976) 55, 153-158.
- Whitson, C.H. Effect of Physical Properties Estimation on Equation of State Predictions, paper SPE 11200 (Sept. 1982).
- Sarem, A.M. Z Factor equation Developed for Use in Digital Computers, Oil and Gas J. (Sept. 18, 1961) 118.
- Wichert, E. and Aziz, K. Compressibility Factor of Sour Natural Gases, Can. J. Chem. Eng. (Apr. 1971) 49, 267-273.
- Wichert, E. and Aziz, K. Calculate Z's for Sour Gases, Hyd. Proc., (May 1972) 51, 119-122.
- Hall, K.R. and Yarborough, L. A New Equation of State for Z Factor Calculations, Oil and Gas J. (June 18, 1973) 82-85, 90-92.

- Yarborough, L. and Hall, K.R. How to Solve Equation of State for Z Factors, Oil and Gas J. (Feb 18, 1974) 86-88.
- Carnahan, B., Luther, H.A., and Wilkes, J.O. Applied Numerical Methods, John Wiley & Sons Inc., New York City (1969).
- 40. Brill, J.P. and Beggs, H.D. **Two Phase Flow in Pipes,** University of Tulsa, INTERCOMP Course, The Hague, (1974).
- Dranchuk, P.M., Purvis, R.A., and Robinson, D.B. Computers Calculations of Natural Gas Compressibility Factors Using the Standing and Katz Correlation, Institute of Petroleum Technical Series, No. IP 74-008 (1974) 1-13.
- Benedict, M., Webb, G.B., and Rubin, L.C. An empirical equation for Thermodynamics Properties of Light Hydrocarbons and Their Mixtures, J. Chem. Phys. (April 1940) 8, 334-345.
- Katz, D.L., Cornell, D., Kobayashi, R., Poettman, F.H., Vary, J.A., Elenbaas, J.R. and Weinaug, C.F. Handbook of Natural Gas Engineering, Mc Graw Hill Book Co., Inc., New York City (1959).
- 44. Dranchuk, P.M. and Abou-Kassem, J.H. Calculation of Z Factors for Natural Gases Using Equation of State, J. Cdn. Pet. Tech. (July Sept., 1975) 34-36.
- 45. Starling, K.E. Fluid Thermodynamic Properties for Light Petroleum Systems, Gulf Publishing Co., Houston (1973). 41 46.
- Gopal, V.N. Gas Z Factor Equations Developed for Computer, Oil and Gas J. (Aug. 8, 1977) 58-60.

- Mattar, L., Brar, G.S. and Aziz, K. Compressibility of Natural Gases, J. Cdn. Pet. Tech. (Oct.-Dec., 1975) 77-80.
- 48. Carr, N.L., Kobayashi, R., and Burrows, D.B. Viscosity of Hydrocarbon Gases Under Pressure, Trans., AIME (1954) 201, 264-272.
- 49. Dempsey, J.R. Computer Routine Treats Gas viscosity as a Variable, Oil and Gas. J. Pet. Tech. (Aug. 16, 1965) 141.
- Lee, A.L., González, M.H., and Eakin, B.E. The Viscosity of Natural Gases, J. Pet. Tech. (Aug. 1966), 997-1000.
- 51. Mendoza, O. y Piña, S. Generación de una correlación empírica para estimar las propiedades PVT de los fluidos del Área Mayor de Socororo, Trabajo Especial de Grado. (Nov. 2002), 80.
- Bánzer S., Carlos. Correlaciones Numéricas P.V.T. Universidad del Zulia. Instituto de Investigaciones Petroleras. Fundación Laboratorio de Servicios a Técnicos Petroleros. (Ene. 1996), 48 – 110.
- TOTAL Compaigne Francaise des Petroles. Correlaciones P.V.T. para crudos del Oriente de Venezuela. Proyectos de Inyección de Fluidos, S.A. Meneven. (Sept. 1983). 1 – 15.
- CORE LABORATORIES INTERNATIONAL, S.A. Black Oil Report. Archive RFL 270062. Petroleum Reservoir Engineering. (Jun. 1983).5 – 14.
- 55. Farias, Leopoldo. Guía de estudio de la asignatura: Propiedades de los Fluidos de Yacimiento. (Oct. 2004). 37.

- 56. Amoco Corporation. **Black Oil Properties**. Black oil properties spreadsheet test case (1995-1997).
- 57. Peaceman, Donald W. Interpretation of Well Block Pressures in Numerical Reservoir Simulation, paper SPE 6893 (Jul. 1980).

BIBLIOGRAFÍAS

- Barrios Y., Maritza. Manual de Trabajos de Grado de Especialización y Maestría y Tesis Doctorales. Universidad Pedagógica Experimental Libertador. Vicerrectorado de Investigación y Postgrado. (2003).
- Claret V., Arnoldo. Cómo hacer y defender una tesis. Editorial Texto. (Ene. 2005).
- Da Silva, Angel. Implantación, Actualización y Mejora de un Simulador de Yacimientos de Dominio Público. Trabajo Especial de Grado. (2004).
- 4. Markman, Roberta, Ph.D. **10 Steps in Writing the Research Paper.** Baron's Educational Series, Inc. (1994).
- Rojas, Gonzalo. M.Sc. Ph.D. Interpretación y Validación de Pruebas PVT de Petróleo Negro. Fundación de Egresados y Amigos del Dpto. de Petróleo de la Universidad de Oriente. (2000).
- Sabino, Carlos A. Cómo hacer una tesis y elaborar todo tipo de escritos. Editorial Panapo. (1994).
- Sánchez E., Pedro. Manual de estilo de publicaciones de la American Phychological Association (APA). Editorial El Manual Moderno, S.A. (1994).

ANEXOS

ANEXO 1

En este anexo se presenta el programa principal de **GPVT+**: MODULO CORRELACIONES.BAS

MODULO_CORRELACIONES.BAS

'Asignación de Variables

Public Mat PVT Bo(), Mat PVT Muo() As Double Global GravGasSep As Double Global Temp As Double Global PresIni As Double Global RGPi As Double Global API As Double Global GravGas As Double Global PresionBurb As Double Global TSep As Double Global PSep As Double Global Salt As Double Global N2 As Double Global H2S As Double Global CO2 As Double Global Presion As Double Global RelacionGP, RelacionGW As Double Global FVFo, FVFw, FVFg As Double Global ViscosidadPet, ViscosidadAqua, ViscosidadGas As Double 'Asignación de Variables Adicionales Global Factor_Correlacion, Factor_A, Factor_B, Factor_C, Factor_D As Double Global Const_1, Const_2, Const_3, Const_4 As Double Global GravPetroleo As Double Global FVFo Pb, Co As Double Global ViscPetMuerto, ViscPetVivo, ViscBurb As Double Global Opcion_Pb, Opcion_Rso, Opcion_Bo, Opcion_Co, Opcion_Visc_PM, Opcion_Visc_PV, Opcion_Visc_P As Byte Global Opcion_Rsw, Opcion_Visc_W, Opcion_Bw As Byte Global Opcion_Pcm, Opcion_PcC7P, Opcion_Cor_Imp, Opcion_Z, Opcion_Bg, Opcion_Visc_G As Byte

Global YCO2, YN2, YH2S, YC1, YC2, YC3, YiC4, YnC4, YiC5, YnC5, YC6, YC7P As Double Global PcCO2, PcN2, PcH2S, PcC1, PcC2, PcC3, PciC4, PcnC4, PciC5, PcnC5, PcC6, PcC7P As Double Global TcCO2, TcN2, TcH2S, TcC1, TcC2, TcC3, TciC4, TcnC4, TciC5, TcnC5, TcC6, TcC7P As Double Global Pcm, Tcm, Tsr, Psr, F_X, F_Y, Zg As Double Global Opcion_Chequear_O, Opcion_Chequear_W, Opcion_Chequear_G As Byte '** PRESION DE BURBUJEO ** Function PresBurb(ByVal API, RGPi, Temp, GravGas, TSep, PSep, N2, H2S, CO2 As Double) As Double GravPetroleo = 141.5 / (131.5 + API) If $Opcion_Pb = 1$ Then 'Calculo de la Presión de Burbujeo (Correlación de Standing) 'Calculo de del Factor de Correlación Factor_Correlacion = ((RGPi / GravGas) ^ (0.83)) * 10 ^ ((0.0009 * Temp) - (0.0125 * API)) 'Calculo de la Presión de Burbujeo PresionBurb = 18.2 * (Factor_Correlacion - 1.4) End If If $Opcion_Pb = 2$ Then 'Calculo de la Presión de Burbujeo(Correlación de Vazquez-Beqqs) 'Calculo de la gravedad del gas a condiciones de separador GravGasSep = GravGas * (1 + 0.00005912 * API * TSep * 0.434294 * (Log(PSep / 114.7) / Log(10))) 'Rango de constantes según °API If API > 30 Then Const 1 = 0.0178 $Const_2 = 1.187$ Const 3 = 23.931Else $Const_1 = 0.0362$ $Const_2 = 1.0937$ $Const_3 = 25.724$

```
End If
  'Calculo de la Presión de Burbujeo
  PresionBurb = (RGPi / (Const_1 * GravGasSep *
Exp(Const_3 * API / (460 + Temp)))) ^ (1 / Const_2)
End If
If Opcion Pb = 3 Then
'Calculo de la Presión de Burbujeo (Correlación de Glaso)
  'Calculo del Factor de Correlación
  Factor_Correlacion = ((RGPi / GravGas) ^ (0.816)) *
((Temp ^ (0.172)) / (API ^ (0.989)))
  'Calculo de la Presión de Burbujeo
  Factor_A = 1.7447 * (Log(Factor_Correlation) / Log(10))
  Factor_B = 0.30218 * (Log(Factor_Correlation) /
Loq(10)) ^ 2
  PresionBurb = 10 ^ (1.7669 + Factor_A - Factor_B)
  'Cálculo de los factores de corrección por efecto de
impurezas
  'Corrección debido a la presencia de N2
  If (N2 > 0) Then
    Factor_Correlacion = 1 + (((0.0055 - (0.000265 *
API)) * Temp) + ((0.0931 * API) - 0.8295)) * (N2 / 100))
+ (((0.000000001954 * (API ^ (4.699))) * (Temp) +
(0.027 * API - 2.366)) * ((N2 / 100) ^ 2))
    'Presión de Burbujeo corregida por N2
   PresionBurb = PresionBurb * Factor Correlacion
  End If
  'Corrección debido a la presencia de CO2
  If (CO2 > 0) Then
    Factor_Correlacion = 1 - (693.8 * CO2 * (Temp ^ (-
1553)))
    'Presión de Burbujeo corregida por N2
    PresionBurb = PresionBurb * Factor_Correlacion
  End If
  'Corrección debido a la presencia de H2S
  If (YH2S > 0) Then
    Factor_Correlacion = 1 - ((0.9035 + (0.0015 * API)) *
YH2S) + (0.019 * (45 - API) * (YH2S ^ 2))
    'Presión de Burbujeo corregida por N2
    PresionBurb = PresionBurb * Factor_Correlacion
  End If
End If
If Opcion_Pb = 4 Then
'Calculo de la Presión de Burbujeo(Correlación de TOTAL)
```

```
'Rango de constantes según ºAPI
  If API <= 10 Then
     Const_1 = 12.847
     Const_2 = 0.9636
     Const_3 = 0.000993
     Const_4 = 0.03417
  End If
  If (API > 10) And (API <= 35) Then
     Const_1 = 25.2755
     Const_2 = 0.7617
     Const_3 = 0.000835
     Const_4 = 0.011292
  End If
  If (API > 35) And (API <= 55) Then
     Const 1 = 216.4711
     Const_2 = 0.6922
     Const 3 = -0.000427
     Const 4 = 0.02314
  End If
  'Calculo de la Presión de Burbujeo
  PresionBurb = Const_1 * ((RGPi / GravGas) ^ Const_2) *
(10 ^ ((Const_3 * Temp) - (Const_4 * API)))
End If
If Opcion_Pb = 5 Then
'Calculo de la Presión de Burbujeo (Correlación de Al-
Marhoun)
  PresionBurb = 0.00538088 * (RGPi ^ 0.715082) * (GravGas
^ (-1.87784)) * (GravPetroleo ^ 3.1437) * ((Temp + 460) ^
1.32657)
End If
If Opcion_Pb = 6 Then
'Calculo de la Presión de Burbujeo (Correlación de Dokla
y Osman)
  PresionBurb = 8363.86 * (RGPi ^ 0.724047) * (GravGas ^
-1.01049) * (GravPetroleo ^ 0.107991) * ((Temp + 460) ^ -
0.952584)
End If
If Opcion Pb = 7 Then
'Calculo de la Presión de Burbujeo (Correlación de
Petrosky y Farshad)
  'Calculo de del Factor de Correlación
```

```
Factor_Correlacion = ((RGPi ^ 0.5774) / (GravGas ^
0.8439)) * 10 ^ ((0.00004561 * (Temp ^ 1.3911)) -
(0.0007916 * (API ^ 1.541)))
  'Calculo de la Presión de Burbujeo
 PresionBurb = 112.727 * (Factor_Correlacion - 12.34)
End If
If Opcion_Pb = 8 Then
'Calculo de la Presión de Burbujeo(Correlación de
Kartoatmodjo y Schmidt)
  'Calculo de la gravedad del gas a condiciones de
separador
  GravGasSep = GravGas * (1 + 0.1595 * (API ^ 0.4078) *
(TSep ^ -0.2466) * (Log(PSep / 114.7) / Log(10)))
  'Rango de constantes según ºAPI
  If API <= 30 Then
    Const 1 = 0.05958
    Const_2 = 0.7972
    Const_3 = 13.1405
    Const_4 = 0.9986
 Else
    Const 1 = 0.0315
    Const_2 = 0.7587
    Const 3 = 11.2895
    Const_4 = 0.9143
 End If
  'Calculo de la Presión de Burbujeo
 PresionBurb = (RGPi / (Const_1 * (GravGasSep ^ Const_2)
* 10 ^ (Const_3 * API / (460 + Temp)))) ^ (Const_4)
End If
End Function
'** SOLUBILIDAD DEL GAS EN EL PETROLEO **
Function RS(ByVal Presion, API, Temp, GravGas, TSep, PSep
As Double) As Double
GravPetroleo = 141.5 / (131.5 + API)
If Opcion_Rso = 1 Then
'Calculo de Rs (Correlacion de Standing)
```

```
RelacionGP = GravGas * (((Presion / 18.2) + 1.4) * 10)
^ ((0.0125 * API) - (0.00091 * Temp))) ^ 1.2048
End If
If Opcion_Rso = 2 Then
'Calculo de Rs (Correlacion de Vazquez-Beggs)
  'Calculo de la gravedad del gas a condiciones de
separador
  GravGasSep = GravGas * (1 + 0.00005912 * API * TSep *
0.434294 * (Log(PSep / 114.7) / Log(10)))
  'Rangos de Constantes según °API
  If API > 30 Then
     Const_1 = 0.0178
     Const_2 = 1.187
     Const_3 = 23.931
  Else
     Const_1 = 0.0362
     Const 2 = 1.0937
     Const_3 = 25.724
  End If
  'Calculo del Rs
     RelacionGP = Const_1 * GravGasSep * Presion ^
Const_2 * Exp(Const_3 * (API / (Temp + 460)))
End If
If Opcion_Rso = 3 Then
'Calculo de Rs (Correlacion de Glaso)
  'Calculo del Factor de Correlación
  Factor_Correlacion = 10 ^ (2.8869 - (14.1811 - 3.3093 *
(Log(Presion) / Log(10))) ^ 0.5)
  'Calculo del Rs
 RelacionGP = GravGas * (Factor_Correlacion * ((API ^
0.989) / (Temp ^ 0.172))) ^ 1.2255
End If
If Opcion_Rso = 4 Then
'Calculo de Rs (Correlacion de TOTAL)
  'Rangos de Constantes según ºAPI
  If API <= 10 Then
     Const 1 = 12.2651
     Const_2 = 0.030405
     Const 3 = 0
     Const 4 = 0.9669
  End If
  If (API > 10) And (API <= 35) Then
     Const_1 = 15.0057
```

```
Const 2 = 0.0152
     Const 3 = 0.0004484
     Const 4 = 1.095
  End If
  If (API > 35) And (API <= 55) Then
     Const_1 = 112.925
     Const 2 = 0.0248
     Const 3 = -0.001469
     Const 4 = 0.129
  End If
  'Calculo del Rs
     RelacionGP = GravGasSep * ((Presion / Const_1) * 10
^ ((Const_2 * API) - (Const_3 * Temp))) ^ Const_4
End If
If Opcion_Rso = 5 Then
'Calculo de Rs (Correlación de Al-Marhoun)
 RelacionGP = (185.84321 * Presion * (GravGas ^ 1.87784)
* (GravPetroleo ^ -3.1437) * ((Temp + 460) ^ -1.32657)) ^
1.3984
End If
If Opcion_Rso = 6 Then
'Calculo de Rs (Correlación de Dokla y Osmar)
 RelacionGP = (0.00011956 * Presion * (GravGas ^
1.01049) * (GravPetroleo ^ -0.107991) * ((Temp + 460) ^
0.952584)) ^ 1.3811
End If
If Opcion_Rso = 7 Then
'Calculo de Rs (Correlación de Petrosky y Farshad)
 RelacionGP = ((GravGas ^ 0.8439) * ((Presion / 112.727))
+ 12.34) * 10 ^ (0.0007916 * (API ^ 1.541) - (0.00004561
* (Temp ^ -1.3911)))) ^ 1.73184
End If
If Opcion_Rso = 8 Then
'Calculo de Rs (Correlación de Kartoatmodjo y Schmidt)
  'Calculo de la gravedad del gas a condiciones de
separador
  GravGasSep = GravGas * (1 + 0.1595 * (API ^ 0.4078) *
(TSep ^ -0.2466) * (Log(PSep / 114.7) / Log(10)))
  'Rango de constantes según ºAPI
  If API <= 30 Then
     Const_1 = 0.05958
```

```
Const 2 = 0.7972
    Const 3 = 13.1405
    Const_4 = 0.9986
 Else
    Const_1 = 0.0315
    Const_2 = 0.7587
    Const 3 = 11.2895
    Const_4 = 0.9143
 End If
 RelacionGP = Const_1 * (GravGasSep ^ Const_2) *
(Presion ^ (1 / Const_4)) * 10 ^ ((Const_3 * API) / (Temp
+ 460))
End If
End Function
'** FACTOR VOLUMETRICO DE FORMACION DEL PETROLEO **
Function BO(ByVal Presion, PresionBurb, API, RGP, Temp,
GravGas, TSep, PSep As Double) As Double
GravPetroleo = 141.5 / (131.5 + API)
If Opcion Bo = 1 Then
'Calculo del BO (Correlación de Standing)
  'Calculo del Factor de Correlacion
 Factor_Correlacion = (RGP * (GravGas / GravPetroleo) ^
(1 / 2)) + (1.25 * Temp)
  'Calculo del Bo a la Pb
 FVFo = 0.9759 + (0.00012 * (Factor_Correlation ^ 1.2))
End If
If Opcion_Bo = 2 Then
'Calculo del BO(Correlación de Vazquez-Beggs)
  'Calculo de la gravedad del gas acondiciones de
Separador
  GravGasSep = GravGas * (1 + 0.00005912 * API * TSep *
0.434294 * (Log(PSep / 114.7) / Log(10)))
  'Rangos de constantes según °API
  If API > 30 Then
    Const_1 = 0.000467
```

```
Const 2 = 0.000011
     Const 3 = 0.00000001337
  Else
     Const_1 = 0.0004677
     Const_2 = 0.00001751
     Const_3 = -0.00000001811
  End If
  'Calculo del Bo
 FVFo = 1 + Const_1 * RGP + Const_2 * (Temp - 60) * (API)
/ GravGasSep) + Const_3 * RGP * (Temp - 60) * (API /
GravGasSep)
End If
If Opcion_Bo = 3 Then
'Calculo del BO (Correlación de Glaso)
  'Calculo del Factor de Correlacion
  Factor_Correlacion = (RGP * (GravGas / GravPetroleo) ^
(0.5226)) + (0.968 * Temp)
  'Calculo del Bo
  FVFo = 1 + 10 ^ (-6.58511 + (2.91329 *
(Log(Factor_Correlacion) / Log(10))) - (0.27683 *
((Log(Factor_Correlacion) / Log(10))) ^ 2))
End If
If Opcion_Bo = 4 Then
'Calculo del BO (Correlación de TOTAL)
  FVFo = 1.022 + (0.0004857 * RGP) - (0.000002009 * (Temp
- 60) * (API / GravGas)) + (0.000000017569 * RGP * (Temp
- 60) * (API / GravGas))
End If
If Opcion Bo = 5 Then
'Calculo del BO (Correlación de Al-Marhoun)
  'Calculo del Factor de Correlacion
  Factor_Correlacion = (RGP ^ (0.74239)) + (GravGas ^
(0.323294)) + (GravPetroleo ^ (-1.20204))
  'Calculo del Bo
  FVFo = 0.497069 + (0.000862963 * (Temp + 460)) +
(0.00182594 * Factor_Correlacion) + (0.00000318099 *
(Factor Correlacion ^ 2))
End If
If Opcion_Bo = 6 Then
'Calculo del BO (Correlación de Dokla y Osman)
  'Calculo del Factor de Correlacion
```

```
Factor Correlacion = (RGP \land (0.773572)) + (GravGas \land
(0.40402)) + (GravPetroleo ^ (-0.882605))
  'Calculo del Bo
 FVFo = 0.0431935 + (0.00156667 * (Temp + 460)) +
(0.00139775 * Factor_Correlacion) + (0.00000380525 *
(Factor_Correlacion ^ 2))
End If
If Opcion Bo = 7 Then
'Calculo del BO (Correlación de Petrosky y Farshad)
  'Calculo del Factor de Correlacion
 Factor_Correlacion = (RGP ^ (0.3738)) * ((GravGas ^
(0.2914)) / (GravPetroleo ^ (0.6265))) + (0.24626 * (Temp
(0.5371))
  'Calculo del Bo
 FVFo = 1.0113 + (0.000072046 * (Factor Correlacion ^
3.0936))
End If
If Opcion Bo = 8 Then
'Calculo del BO (Correlación de Kartoatmodjo y Schmidt)
  'Calculo de la gravedad del gas a condiciones de
separador
  GravGasSep = GravGas * (1 + 0.1595 * (API ^ 0.4078) *
(TSep ^ -0.2466) * (Log(PSep / 114.7) / Log(10)))
  'Calculo del Factor de Correlacion
 Factor Correlacion = (RGP ^ (0.755)) * (GravGasSep ^
(0.25)) * (GravPetroleo ^ (-1.5)) + (0.45 * Temp)
  'Calculo del Bo
 FVFo = 0.98496 + (0.0001 * (Factor_Correlation ^ 1.5))
End If
If Presion = PresionBurb Then
 FVFo Pb = FVFo
End If
End Function
******
'** COMPRESIBILIDAD DEL PETROLEO **
**********************************
Function Compre(ByVal Presion, RGP, Temp, API, GravGas,
```

TSep, PSep As Double, ByVal FVFo_Pb As Double) As Double

```
If Opcion Co = 1 Then
'Calculo de Co (Vazquez-Beggs)
  'Calculo de la gravedad del gas a condiciones de
separador
  GravGasSep = GravGas * (1 + 0.00005912 * API * TSep *
0.434294 * (Log(PSep / 114.7) / Log(10)))
  'Calculo de la compresibilidad del petróleo
  Co = (-1433 + (5 * RGP) + (17.2 * Temp) - (1180 *
GravGasSep) + (12.61 * API)) / (100000 * Presion)
End If
If Opcion_Co = 2 Then
'Calculo de Co (Petrosky y Farshad)
  Co = 0.0000001705 * (RGP ^ 0.69357) * (GravGas ^
0.1885) * (API ^ 0.3272) * (Temp ^ 0.6729) * (Presion ^ -
0.5906)
End If
If Opcion_Co = 3 Then
'Calculo de la gravedad del gas a condiciones de
separador
  GravGasSep = GravGas * (1 + 0.00005912 * API * TSep *
0.434294 * (Log(PSep / 114.7) / Log(10)))
'Calculo de Co (Kartoatmodjo y Schmidt)
  Co = (6.8257 * (RGP ^ 0.5002) * (API ^ 0.3613) * (Temp
^ 0.76606) * (GravGasSep ^ 0.35505)) / (Presion *
1000000)
End If
  FVFo = FVFo_Pb * Exp(Co * (PresionBurb - Presion))
End Function
*********
'** VISCOSIDAD DEL PETROLEO **
Function ViscPet_M(ByVal API, Temp As Double) As Double
If Opcion_Visc_PM = 1 Then
'Calculo de la Viscosidad del Petróleo (Correlación de
Beal para petróleo muerto)
 ViscPetMuerto = (0.32 + (18000000 / API ^ 4.53)) *
((360 / (Temp + 200)) ^ (10 ^ (0.43 + (8.33 / API))))
End If
```

```
If Opcion Visc PM = 2 Then
'Calculo de la Viscosidad del Petróleo (Correlación de
Beggs-Robinson para petróleo muerto)
  ViscPetMuerto = 10 ^ ((10 ^ (3.0324 - 0.02023 * API)) *
Temp ^ (-1.163)) - 1
End If
If Opcion Visc PM = 3 Then
'Calculo de la Viscosidad del Petróleo (Correlación de
Glaso para petróleo muerto)
  ViscPetMuerto = 31410000000# * (Temp ^ (-3.444)) *
((Log(API) / Log(10)) ^ (10.313 * (Log(Temp) / Log(10)) -
36447))
End If
If Opcion Visc PM = 4 Then
'Calculo de la Viscosidad del Petróleo (Correlación de
Eqboqad para petróleo muerto)
  ViscPetMuerto = (10 ^ (10 ^ (1.8653 - 0.025086 * API -
(0.5644 * (Log(Temp) / Log(10))))) - 1
End If
If Opcion Visc PM = 5 Then
'Calculo de la Viscosidad del Petróleo (Correlación de
Kartoatmodjo y Schmidt para petróleo muerto)
  ViscPetMuerto = 1600000000 * (Temp ^ -2.8177) *
((Log(API) / Log(10)) ^ (5.7526 * (Log(Temp) / Log(10)) -
26.9718))
End If
End Function
Function ViscPet_V(ByVal ViscPetMuerto As Double, ByVal
RGP As Double) As Double
If Opcion_Visc_PV = 1 Then
'Calculo de la Viscosidad del Petróleo para
P<=Pb(Correlación de Chew y Connally)</pre>
  Factor A = 10 ^ (RGP * ((0.00000022 * RGP) - 0.00074))
  Factor_B = (0.68 / (10 ^ (0.0000862 * RGP))) + (0.25 / 
(10 ^ (0.0011 * RGP))) + (0.062 / (10 ^ (0.00374 * RGP)))
  ViscPetVivo = Factor_A * (ViscPetMuerto ^ Factor_B)
End If
```

```
If Opcion Visc PV = 2 Then
'Calculo de la Viscosidad del Petróleo para
P<=Pb(Correlación de Beggs-Robinson)
  Factor_A = 10.715 * (RGP + 100) ^ (-0.515)
  Factor_B = 5.44 * (RGP + 150) ^ (-0.338)
  ViscPetVivo = Factor A * (ViscPetMuerto ^ Factor B)
End If
If Opcion_Visc_PV = 3 Then
'Calculo de la Viscosidad del Petróleo para
P<=Pb(Correlación de Kartoatmodjo y Schmidt)
  Factor_B = 10 \land (-0.00081 * RGP)
  Factor_A = (0.2001 + (0.8428 * 10 ^ (-0.000845 * RGP)))
* ViscPetMuerto ^ (0.43 + 0.5165 * Factor_B)
  ViscPetVivo = -0.06821 + 0.9824 * Factor_A + 0.0004034
* Factor A ^ 2
End If
ViscBurb = ViscPetVivo
End Function
Function ViscPet(ByVal Presion, PresionBurb, ViscBurb As
Double) As Double
If Opcion_Visc_P = 1 Then
'Calculo de la Viscosidad del Petróleo para
P>Pb(Correlación de Beal)
  ViscosidadPet = 0.001 * (Presion - PresionBurb) *
((0.024 * ViscBurb ^ 1.6) + (0.038 * ViscBurb ^ 0.56)) +
ViscBurb
End If
If Opcion_Visc_P = 2 Then
'Calculo de la Viscosidad del Petróleo para
P>Pb(Correlación de Vásquez y Beggs)
  Factor_A = 2.6 * (Presion ^ 1.187) * Exp(-0.0000898 *
Presion - 11.513)
  ViscosidadPet = ViscBurb * ((Presion / PresionBurb) ^
Factor A)
End If
If Opcion_Visc_P = 3 Then
```

```
'Calculo de la Viscosidad del Petróleo para
P>Pb(Correlación de Kartoatmodjo y Schmidt)
 ViscosidadPet = (1.00081 * ViscBurb) + 0.001127 *
(Presion - PresionBurb) * ((-0.006517 * ViscBurb ^
1.8148) + (0.038 * ViscBurb ^ 1.59))
End If
End Function
*****
'** SOLUBILIDAD DEL GAS EN EL AGUA **
*********
Function RSW(ByVal Temp, Presion, Salt As Double) As
Double
If Opcion Rsw = 1 Then
'Calculo del Rs (Correlación de Culberson-McKetta)
Factor_A = 8.15839 - 0.0612265 * Temp + 0.000191663 *
Temp ^ 2 - 0.0000021654 * Temp ^ 3
 Factor_B = 0.010102 - 0.0000744241 * Temp +
0.000000305553 * Temp ^ 2 - 0.00000000294883 * Temp ^ 3
 Factor C = -9.02505 + 0.130237 * Temp - 0.000853425 *
Temp ^ 2 + 0.00000234122 * Temp ^ 3 - 0.0000000237049 *
Temp ^ 4
RSW = Factor_A + (Factor_B * Presion) + (Factor_C *
Presion ^ 2)
 RelacionGW = RSW * (10 ^ (-0.0840655 * Salt * (Temp ^ -
0.285854)))
End If
If Opcion_Rsw = 2 Then
'Calculo del Rs (Correlación de McCoy)
Factor_A = 2.12 + 0.00345 * Temp - 0.0000359 * Temp ^ 2
 Factor B = 0.0107 - 0.0000526 * Temp + 0.000000148 *
Temp ^ 2
 Factor_C = -0.00000875 + 0.000000039 * Temp -
0.000000000102 * Temp ^ 2
RSW = Factor_A + (Factor_B * Presion) + (Factor_C *
Presion ^ 2)
RelacionGW = RSW * (1 - (0.0753 - 0.000173 * Temp) *
Salt)
End If
End Function
```

```
'** FACTOR VOLUMETRICO DE FORMACION DEL AGUA **
**********
Function BW(ByVal Temp, Presion, Salt As Double) As
Double
If Opcion_Bw = 1 Then
'Calculo del FVFw (Correlación de McCain)
Factor_A = -0.010001 + 0.000133391 * Temp +
0.00000550654 * Temp ^ 2
Factor_B = -(0.0000000195301 * Presion * Temp) -
(1.72834E-13 * Temp * Presion ^ 2) - 0.000000358922 *
Presion
FVFw = (1 + Factor A) * (1 + Factor B)
End If
If Opcion_Bw = 2 Then
'Calculo del FVFw (Correlación de McCoy)
Factor_A = 0.9911 + 0.0000635 * Temp + 0.00000085 * Temp
^ 2
Factor_B = -0.000001093 - 0.00000003497 * Temp +
0.000000000457 * Temp ^ 2
Factor C = -0.0000000005 + 6.429E - 13 * Temp - 1.43E - 15
* Temp ^ 2
BW = Factor_A + Factor_B * Presion + Factor_C * Presion
^ 2
FVFw = BW * ((0.000000051 * Presion + (0.00000547 -
0.00000000195 * Presion) * (Temp - 60) + (-0.0000000323
+ 0.000000000085 * Presion) * (Temp - 60) ^ 2) * Salt +
1)
End If
End Function
'** VISCOSIDAD DEL AGUA **
*****
Function ViscAgua(ByVal Temp, Presion, Salt As Double) As
Double
If Opcion_Visc_W = 1 Then
'Calculo de la Viscosidad del Agua (Correlación de Van
Wingen)
```

```
ViscosidadAgua = Exp(1.003 - 0.01479 * Temp + 0.00001982
* Temp ^ 2)
End If
If Opcion_Visc_W = 2 Then
'Calculo de la Viscosidad del Agua (Correlación de
Matthews-Russel)
 Factor A = -0.04518 + 0.00931313 * Salt - 0.000393 *
Salt ^ 2
 Factor_B = 70.634 + 0.09576 * Salt ^ 2
ViscosidadAgua = (Factor_A + (Factor_B / Temp)) * (1 +
0.00000000035 * Presion ^ 2 * (Temp - 40))
End If
If Opcion Visc W = 3 Then
'Calculo de la Viscosidad del Agua (Correlación de
McCain)
Factor_A = 109.574 - 8.40564 * Salt + 0.313314 * Salt ^
2 + 0.00872213 * Salt ^ 3
 Factor_B = -1.12166 + 0.0263951 * Salt - 0.000679461 *
Salt ^ 2 - 0.0000547119 * Salt ^ 3 + 0.00000155586 * Salt
^ 4
Factor C = 0.9994 + 0.000040295 * Presion +
0.000000031062 * Presion ^ 2
ViscosidadAgua = (Factor_A * Temp ^ Factor_B) * Factor_C
End If
If Opcion Visc W = 4 Then
'Calculo de la Viscosidad del Aqua (Correlación de McCoy)
 Factor_A = (5 * Temp / 9) + 255.37
Factor_B = 0.02414 * 10 ^ (247.8 / (Factor_A - 140))
 Factor C = 1 - 0.00187 * Salt ^ 0.5 + 0.000218 * Salt ^
2.5 + (Temp ^ 0.5 - 0.0135 * Temp) * (0.00276 * Salt -
0.000344 * Salt ^ 1.5)
 ViscosidadAgua = Factor_B * Factor_C
End If
If Opcion_Visc_W = 5 Then
'Calculo de la Viscosidad del Agua (Correlación de
Numbere)
Tc = 5 / 9 * (Temp - 32)
Tk = Tc + 273.15
Sum = -7.419242 * (0.65 - 0.01 * Tc) ^ (1 - 1)
Sum = Sum - 0.29721 * (0.65 - 0.01 * Tc) ^ (2 - 1)
Sum = Sum - 0.1155286 * (0.65 - 0.01 * Tc) ^ (3 - 1)
```

```
Sum = Sum - 0.008685635 * (0.65 - 0.01 * Tc) ^ (4 - 1)
Sum = Sum - 0.001094098 * (0.65 - 0.01 * Tc) ^ (5 - 1)
Sum = Sum - 0.00439993 * (0.65 - 0.01 * Tc) ^ (6 - 1)
Sum = Sum - 0.002520658 * (0.65 - 0.01 * Tc) ^ (7 - 1)
Sum = Sum - 0.0005218684 * (0.65 - 0.01 * Tc) ^ (8 - 1)
Psat = 22088 * Exp((374.136 - Tc) * Sum / Tk)
ViscAqua = 0.02414 * 10 ^ (247.8 / (Tk - 140)) * (1 +
(Presion / 14.504 - Psat) * 0.0000010467 * (Tk - 305))
ViscosidadAgua = ViscAgua * (1 - 0.00187 * Salt ^ 0.5 +
0.000218 * Salt ^ 2.5 + (Temp ^ 0.5 - 0.0135 * Temp) *
(0.00276 * Salt - 0.000344 * Salt ^ 1.5))
End If
End Function
'** PRESION Y TEMPERATURA CRITICA DEL GAS **
Function PcC7P_TcC7P(ByVal PMC7P As Double, ByVal GEC7P
As Double) As Double
If Opcion PcC7P = 1 Then
'Calculo de la PcC7+ y TcC7+ (Correlación de Mathews-
Katz)
PcC7P = 1188 - 431 * (Log(PMC7P - 61.1) / Log(10)) +
((2319 - 852 * (Log(PMC7P - 53.71) / Log(10))) * (GEC7P -
(0.8)
TcC7P = 608 + 364 * (Log(PMC7P - 71.2) / Log(10)) +
(2450 * (Log(PMC7P) / Log(10)) - 3800) * (Log(GEC7P) /
Loq(10)
End If
If Opcion PcC7P = 2 Then
'Calculo de la PcC7+ y TcC7+ (Correlación de Kessler-Lee)
Tebu = (4.5579 * (PMC7P ^ 0.15178) * (GEC7P ^ 0.15427))
^ 3
PcC7P = Exp(8.3634 - (0.0566 / GEC7P) - ((0.24244 +
(2.2898 / GEC7P) + (0.11857 / (GEC7P ^ 2))) * (Tebu *
0.001)) + ((1.4685 + (3.648 / GEC7P) + (0.47227 / GEC7P ^
2)) * (Tebu ^ 2 * 0.0000001)) - ((0.42019 + (1.6977 /
GEC7P ^ 2)) * (Tebu * 0.000000001)))
 T_{CC7P} = 341.7 + 811 * GEC7P + (0.4244 + 0.1174 * GEC7P)
* Tebu + (0.4669 - 3.2623 * GEC7P) * (0.00001 / Tebu)
End If
```

```
End Function
```

```
Function Pcm_Tcm(ByVal GravGas, YN2, YCO2, YH2S, PcC7P,
TcC7P As Double) As Double
If Opcion Pcm = 1 Then
'Calculo de la Psc y Tsc (Método de Kay)
'Tabla de Presiones críticas de componentes
 PcCO2 = 1070.2
 PcN2 = 492.2
 PcH2S = 1306.5
 PcC1 = 673.1
 PcC2 = 708.3
 PcC3 = 617.4
 PciC4 = 529.1
 PcnC4 = 550.1
 PciC5 = 483.5
 PcnC5 = 489.8
 PcC6 = 440.1
'Tabla de Temperaturas críticas de componentes
 TcCO2 = 547.5
 TcN2 = 227
 T_{CH2S} = 672.4
 TcC1 = 343.2
 TcC2 = 549.9
 TcC3 = 666
 TciC4 = 734.6
 TcnC4 = 765.7
 TciC5 = 829.6
 TcnC5 = 846.2
 TcC6 = 914.2
 Pcm = YCO2 * PcCO2 + YN2 * PcN2 + YH2S * PcH2S + YC1 *
PcC1 + YC2 * PcC2 + YC3 * PcC3 + YiC4 * PciC4 + YnC4 *
PcnC4 + YiC5 * PciC5 + YC6 * PcC6 + YC7P * PcC7P
Tcm = YCO2 * TcCO2 + YN2 * TcN2 + YH2S * TcH2S + YC1 *
TcC1 + YC2 * TcC2 + YC3 * TcC3 + YiC4 * TciC4 + YnC4 *
TcnC4 + YiC5 * TciC5 + YC6 * TcC6 + YC7P * TcC7P
End If
If Opcion Pcm = 2 Then
'Calculo de la Psc y Tsc (Correlación de Brown-Katz)
Gasg = (GravGas - (0.9672 * YN2) - (1.5195 * YCO2) -
(1.1765 * YH2S)) / (1 - YN2 - YCO2 - YH2S)
 Pcm = 677 + 15 * Gasg - 37.5 * Gasg ^ 2
```

```
Pcm = (1 - YN2 - YCO2 - YH2S) * Pcm + 493.1 * YN2 + 1071
* YCO2 + 1306 * YH2S
Tcm = 168 + 325 * Gasg - 12.5 * Gasg ^ 2
Tcm = (1 - YN2 - YCO2 - YH2S) * Tcm + 227.5 * YN2 +
547.9 * YCO2 + 672.4 * YH2S
End If
If Opcion Pcm = 3 Then
'Calculo de la Pc y Tc (Correlación de Sutton)
Gasg = (GravGas - (0.9672 * YN2) - (1.5195 * YCO2) -
(1.1765 * YH2S)) / (1 - YN2 - YCO2 - YH2S)
Pcm = 756.8 + 131 * Gasg - 3.6 * Gasg ^ 2
Pcm = (1 - YN2 - YCO2 - YH2S) * Pcm + 493.1 * YN2 + 1071
* YCO2 + 1306 * YH2S
Tcm = 169.2 + 349.5 * Gasg - 74 * Gasg ^ 2
Tcm = (1 - YN2 - YCO2 - YH2S) * Tcm + 227.5 * YN2 +
547.9 * YCO2 + 672.4 * YH2S
End If
End Function
'** FACTOR DE COMPRESIBILIDAD DEL GAS Z **
Function Z(ByVal Presion, Temp, GravGas, YN2, YCO2, YH2S
As Double, ByVal Pcm As Double, ByVal Tcm As Double) As
Double
Dim Pol_0_X, Pol_1_X, Pol_2_X, Pol_3_X, Pol_4_X, Pol_5_X
As Double
Dim Pol_0_Y, Pol_1_Y, Pol_2_Y, Pol_3_Y, Pol_4_Y, Pol_5_Y
As Double
Dim A00, A01, A02, A03, A04, A05, A10, A11, A12, A13,
A14, A15, A20, A21, A22, A23, A24, A25, A30, A31, A32,
A33, A34, A35, A40, A41, A42, A43, A44, A45, A50, A51,
A52, A53, A54, A55 As Double
Dim Suma, DenRed, DenRedAnt, FDenRed, DFDenRed, ZAct,
ZAnt, FZ, DFZ As Double
Psr = Presion / Pcm
Tsr = (Temp + 460) / Tcm
If Opcion Z = 1 Then
'Calculo del factor de Compresibilidad Z (Método de
Sarem)
F_X = (2 * Psr - 15) / 14.8
```

```
FY = (2 * Tsr - 4) / 1.9
'Polinomios
Pol 0 X = 0.7071068
Pol_1_X = 1.224745 * F_X
Pol_2 = 0.7905695 * ((3 * F_X ^ 2) - 1)
Pol_3_X = 0.9354145 * ((5 * F_X ^ 5) - 3 * F_X)
Pol 4 X = 0.265165 * ((35 * F X ^ 4) - (30 * F X ^ 2) +
3)
Pol_5_X = 0.293151 * ((63 * F_X ^ 5) - (70 * F X ^ 3) +
15 * F X)
Pol_0_Y = 0.7071068
Pol_1_Y = 1.224745 * F_Y
Pol_2_Y = 0.7905695 * ((3 * F_Y ^ 2) - 1)
Pol_3_Y = 0.9354145 * ((5 * F_Y ^ 5) - 3 * F_Y)
Pol 4 Y = 0.265165 * ((35 * F Y ^ 4) - (30 * F Y ^ 2) +
3)
Pol_5_Y = 0.293151 * ((63 * F_Y ^ 5) - (70 * F_Y ^ 3) +
15 * F Y)
'Constantes
A00 = 2.1433504
A01 = 0.0831762
A02 = -0.021467
A03 = -0.0008714
A04 = 0.0042846
A05 = -0.0016595
A10 = 0.3312352
A11 = -0.1340361
A12 = 0.066881
A13 = -0.0271743
A14 = 0.0088512
A15 = -0.002152
A20 = 0.1057287
A21 = -0.0503937
A22 = 0.0050925
A23 = 0.0105513
A24 = -0.0073182
A25 = 0.002696
A30 = 0.052184
A31 = 0.0443121
A32 = -0.0193294
A33 = 0.0058973
A34 = 0.0015367
A35 = -0.0028327
A40 = 0.019704
A41 = -0.0263834
```

```
A42 = 0.019262
A43 = -0.0115354
A44 = 0.004291
A45 = -0.0081303
A50 = 0.0053096
A51 = 0.0089178
A52 = -0.0108948
A53 = 0.0095594
A54 = -0.0060114
A55 = 0.0031175
'Cálculo de Z
Suma = A00 * Pol_0_X * Pol_0_Y
Suma = Suma + A01 * Pol_0_X * Pol_1_Y
Suma = Suma + A02 * Pol_0_X * Pol_2_Y
Suma = Suma + A03 * Pol_0_X * Pol_3_Y
Suma = Suma + A04 * Pol_0_X * Pol_4_Y
Suma = Suma + A05 * Pol_0_X * Pol_5_Y
Suma = Suma + A10 * Pol_1_X * Pol_0_Y
Suma = Suma + All * Pol_1_X * Pol_1_Y
Suma = Suma + A12 * Pol_1_X * Pol_2_Y
Suma = Suma + A13 * Pol_1_X * Pol_3_Y
Suma = Suma + A14 * Pol_1_X * Pol_4_Y
Suma = Suma + A15 * Pol_1_X * Pol_5_Y
Suma = Suma + A20 * Pol_2_X * Pol_0_Y
Suma = Suma + A21 * Pol_2_X * Pol_1_Y
Suma = Suma + A22 * Pol_2_X * Pol_2_Y
Suma = Suma + A23 * Pol_2_X * Pol_3_Y
Suma = Suma + A24 * Pol_2_X * Pol_4_Y
Suma = Suma + A25 * Pol_2_X * Pol_5_Y
Suma = Suma + A30 * Pol_3_X * Pol_0_Y
Suma = Suma + A31 * Pol_3_X * Pol_1_Y
Suma = Suma + A32 * Pol_3_X * Pol_2_Y
Suma = Suma + A33 * Pol_3_X * Pol_3_Y
Suma = Suma + A34 * Pol 3 X * Pol 4 Y
Suma = Suma + A35 * Pol_3_X * Pol_5_Y
Suma = Suma + A40 * Pol_4_X * Pol_0_Y
Suma = Suma + A41 * Pol_4_X * Pol_1_Y
Suma = Suma + A42 * Pol_4_X * Pol_2_Y
Suma = Suma + A43 * Pol_4_X * Pol_3_Y
Suma = Suma + A44 * Pol_4_X * Pol_4_Y
Suma = Suma + A45 * Pol_4_X * Pol_5_Y
Suma = Suma + A50 * Pol_5_X * Pol_0_Y
Suma = Suma + A51 * Pol_5_X * Pol_1_Y
Suma = Suma + A52 * Pol_5_X * Pol_2_Y
Suma = Suma + A53 * Pol_5_X * Pol_3_Y
```

```
Suma = Suma + A54 * Pol 5 X * Pol 4 Y
 Suma = Suma + A55 * Pol_5_X * Pol_5_Y
 Zq = Suma
End If
If Opcion_Z = 2 Then
 If Psr <= 0.1 Or Psr >= 24 Or Tsr <= 1.2 Or Tsr >= 3
Then
  Zg = 1
 Else
 'Calculo del factor de Compresibilidad Z (Método de
Hall-Yarborough)
 'Estimado inicial de Densidad pseudo reducida
 DenRed = 0.27 * Psr / Tsr
 DenRedAnt = DenRed
 Factor_A = 0.06125 * (1 / Tsr) * Exp(-1.2 * (1 - (1 / Tsr)))
Tsr)) ^ 2)
 Factor_B = 14.76 * (1 / Tsr) - 9.76 * (1 / Tsr) ^ 2 +
4.58 * (1 / Tsr) ^ 3
 Factor_C = 90.7 * (1 / Tsr) - 242.2 * (1 / Tsr) ^ 2 +
42.4 * (1 / Tsr) ^ 3
 Factor D = 2.18 + 2.82 * (1 / Tsr)
'Iteración de Newton-Raphson
    For i = 1 To 100
        FDenRed = -Factor_A * Psr + ((DenRed + DenRed ^ 2
+ DenRed ^ 3 - DenRed ^ 4) / (1 - DenRed) ^ 3) - Factor_B
* DenRed ^ 2 + Factor_C * DenRed ^ Factor_D
        DFDenRed = ((1 + 4 * DenRed + 4 * DenRed ^ 2 - 4
* DenRed ^ 3 + DenRed ^ 4) / (1 - DenRed) ^ 4) - 2 *
Factor_B * DenRed + Factor_C * Factor_D * DenRed ^
(Factor D - 1)
        DenRed = DenRed - FDenRed / DFDenRed
        Test = Abs((DenRed - DenRedAnt) / DenRed)
        If Test < 0.00001 Then Exit For 'Tolerancia
para la Convergencia
        DenRedAnt = DenRed
    Next i
    Zg = (0.06125 * Psr * (1 / Tsr) * Exp(-1.2 * (1 - (1 + 1))))
/ Tsr)) ^ 2)) / DenRed
End If
End If
If Opcion_Z = 3 Then
 'Calculo del factor de Compresibilidad Z (Método de
Beggs-Brill)
```

```
If Psr <= 0 Or Psr >= 13 Or Tsr <= 1.2 Or Tsr >= 2.4
Then
  Zq = 1
 Else
Factor_A = (1.39 * (Tsr - 0.92) ^ 0.5) - 0.36 * Tsr -
0.1
 Factor B = (0.62 - 0.23 * \text{Tsr}) * \text{Psr} + (0.066 / (\text{Tsr} -
0.86) - 0.037) * Psr ^ 2 + ((0.32 * Psr ^ 6) / (10 ^ (9 * 10)))
(Tsr - 1))))
Factor_C = 0.132 - 0.32 * (Log(Tsr) / Log(10))
 Factor_D = 10^{(0.3106 - 0.49 * Tsr + 0.1824 * Tsr^2)
 Zg = Factor_A + ((1 - Factor_A) / (Exp(Factor_B))) +
Factor_C * Psr ^ Factor_D
 End If
End If
If Opcion_Z = 4 Then
 'Calculo del factor de Compresibilidad Z (Método de
Dranchuk-Robinson)
 A10 = 0.31506237
 A20 = -1.0467099
 A30 = -0.57832729
 A40 = 0.53530771
 A50 = -0.61232032
 A60 = -0.10488813
 A70 = 0.68157001
 A80 = 0.68446549
 Factor_A = A10 + (A20 / Tsr) + (A30 / Tsr^3)
 Factor_B = A40 + (A50 / Tsr)
 Factor_C = A50 * A60 / Tsr
 Factor D = A70 / Tsr ^ 3
 ZAct = 1
 ZAnt = 1
 DenRed = 0.27 * Psr / (ZAct * Tsr) 'Estimado inicial de
densidad pseudo reducida
 'Iteración de Newton-Raphson
    For i = 1 To 100
        FZ = ZAct - (1 + (Factor_A * DenRed) + (Factor_B
* DenRed ^ 2) + (Factor_C * DenRed ^ 5) + (Factor_D * (1
+ A80 * DenRed ^ 2) * (DenRed ^ 2) * Exp(-A80 * DenRed ^
2)))
        DFZ = (1 + (Factor_A * DenRed / ZAct) + ((2 /
ZAct) * Factor_B * DenRed ^ 2) + ((5 / ZAct) * Factor_C *
DenRed ^ 5) + ((2 / ZAct) * Factor_D * (1 + (A80 * DenRed
```

```
^ 2) - (A80 * DenRed ^ 2) ^ 2) * (DenRed ^ 2) * Exp(-A80
* DenRed ^ 2)))
                     ZAct = ZAct - FZ / DFZ
                     Test = Abs((ZAct - ZAnt) / ZAct)
                     If Test < 0.00001 Then Exit For 'Tolerancia
para la Convergencia
                     ZAnt = ZAct
          Next i
           Zq = ZAct
End If
If Opcion_Z = 5 Then
   'Calculo del factor de Compresibilidad Z (Método de
Dranchuk-Abou-Kassem)
   A10 = 0.3265
   A20 = -1.07
  A30 = -0.5339
   A40 = 0.01569
   A50 = -0.05165
  A60 = 0.5475
   A70 = -0.7361
   A80 = 0.1844
  A90 = 0.1056
  A100 = 0.6134
  A110 = 0.721
  Factor_A = A10 + (A20 / Tsr) + (A30 / Tsr ^ 3) + (A40 /
Tsr ^{4}) + (A50 / Tsr ^{5})
   Factor_B = A60 + (A70 / Tsr) + (A80 / Tsr^2)
   Factor_C = A90 * ((A70 / Tsr) + (A80 / Tsr ^ 2))
   Factor_D = A100 / Tsr ^ 3
   ZAct = 1
   ZAnt = 1
  DenRed = 0.27 * Psr / (ZAct * Tsr) 'Estimado inicial de
densidad pseudo reducida
   'Iteración de Newton-Raphson
          For i = 1 To 100
                     FZ = ZAct - (1 + (Factor_A * DenRed) + (Factor_B
* DenRed ^ 2) - (Factor_C * DenRed ^ 5) + (Factor_D * (1
+ A110 * DenRed ^ 2) * (DenRed ^ 2) * Exp(-A110 * DenRed
^ 2)))
                     DFZ = (1 + (Factor A * DenRed / ZAct) + ((2 / DenRed / ZAct)) + ((2 / DenRed / DenRed / ZAct)) + ((2 / DenRed / DenRed / ZAct)) + ((2 / DenRed / DenRed / DenRed / ZAct)) + ((2 / DenRed / 
ZAct) * Factor_B * DenRed ^ 2) - ((5 / ZAct) * Factor_C *
DenRed ^ 5) + ((2 / ZAct) * Factor_D * (1 + (A110 *
DenRed ^ 2) - (A110 * DenRed ^ 2) ^ 2) * (DenRed ^ 2) *
Exp(-A110 * DenRed ^ 2)))
```

```
ZAct = ZAct - FZ / DFZ
        Test = Abs((ZAct - ZAnt) / ZAct)
        If Test < 0.00001 Then Exit For 'Tolerancia
para la Convergencia
        ZAnt = ZAct
    Next i
    Zq = ZAct
End If
If Opcion_Z = 6 Then
 'Calculo del factor de Compresibilidad Z (Método de
Gopal)
 If Psr >= 0.2 And Psr <= 1.2 Then
  If Tsr >= 1.05 And Tsr <= 1.2 Then
    Zq = Psr * (1.6643 * Tsr - 2.2114) - 0.3647 * Tsr +
1.4385
  End If
  If Tsr > 1.2 And Tsr <= 1.4 Then
    Zg = Psr * (0.0522 * Tsr - 0.8511) - 0.0364 * Tsr +
1.049
  End If
  If Tsr > 1.4 And Tsr <= 2 Then
    Zg = Psr * (0.1391 * Tsr - 0.2988) + 0.0007 * Tsr +
0.9969
  End If
  If Tsr > 2 And Tsr <= 3 Then
    Zg = Psr * (0.0295 * Tsr - 0.0825) + 0.0009 * Tsr +
0.9967
  End If
 End If
 If Psr > 1.2 And Psr <= 2.8 Then
  If Tsr >= 1.05 And Tsr <= 1.2 Then
    Zg = Psr * (-1.357 * Tsr + 1.4942) + 4.6315 * Tsr -
4.7009
  End If
  If Tsr > 1.2 And Tsr <= 1.4 Then
    Zg = Psr * (0.1717 * Tsr - 0.3232) + 0.5869 * Tsr +
0.1229
  End If
  If Tsr > 1.4 And Tsr <= 2 Then
    Zq = Psr * (0.0984 * Tsr - 0.2053) + 0.0621 * Tsr +
0.858
  End If
  If Tsr > 2 And Tsr <= 3 Then
```

```
Zq = Psr * (0.0211 * Tsr - 0.0527) + 0.0127 * Tsr +
0.9549
 End If
 End If
 If Psr > 2.8 And Psr <= 5.4 Then
 If Tsr >= 1.05 And Tsr <= 1.2 Then
  Zq = Psr * (-0.3278 * Tsr + 0.4752) + 1.8223 * Tsr -
1.9036
 End If
 If Tsr > 1.2 And Tsr <= 1.4 Then
   Zg = Psr * (-0.2521 * Tsr + 0.3871) + 1.6087 * Tsr -
1.6635
 End If
 If gTsr > 1.4 And Tsr <= 2 Then
   Zq = Psr * (-0.0284 * Tsr + 0.0625) + 0.4714 * Tsr -
0.0011
 End If
 If Tsr >= 2 And Tsr <= 3 Then
   Zq = Psr * (0.0041 * Tsr + 0.0039) + 0.0607 * Tsr +
0.7927
 End If
 End If
 If Psr > 5.4 And Psr <= 15 Then
   Zg = Psr * (0.711 + 3.66 * Tsr) - 1.4667 - (1.637 /
(0.319 * Tsr + 0.522)) + 2.071
End If
End If
End Function
'** FACTOR VOLUMETRICO DE FORMACION DEL GAS **
Function BG(ByVal Temp, Presion, Z As Double) As Double
 'Calcula el Bg a partir de la Ley de Gases Reales
 FVFg = (0.02829 * (Temp + 459.67) * Z) / Presion
End Function
'** VISCOSIDAD DEL GAS **
*****
```
```
Function ViscGas(ByVal Presion, Temp, GravGas, YN2, YCO2,
YH2S, Z As Double) As Double
Dim PMq, DenGas As Double
Dim Visc_G_1, Visc_G_2, Visc_G_3 As Double
If Opcion_Visc_G = 1 Then
 'Calculo de la Viscosidad del gas(Correlación de Carr-
Kobayashi)
 'Calculo de la Viscosidad del gas a Patm y Tyac
 Visc_G_1 = (0.00001709 - 0.000002062 * GravGas) * Temp +
0.008188 - 0.00615 * (Log(GravGas) / Log(10))
 'Corrección de la Viscosidad por Efecto de Impurezas
 Factor_A = YN2 * (0.00848 * (Log(GravGas) / Log(10)) +
0.00959)
 Factor_B = YCO2 * (0.00908 * (Log(GravGas) / Log(10)) +
0.00624)
 Factor_C = YH2S * (0.00849 * (Log(GravGas) / Log(10)) +
0.00373)
 Visc_G_2 = Visc_G_1 + Factor_A + Factor_B + Factor_C
 'Constantes
 A00 = -2.4621182
 A10A = 2.97054714
 A20 = -0.286264054
 A30 = 0.00805420522
 A40 = 2.80860949
 A50 = -3.49803305
 A60 = 0.36037302
 A70 = -0.0104432413
 A80 = -0.793385684
 A90 = 1.39643306
 A100 = -0.149144925
 A110 = 0.00441015512
 A120 = 0.0839387178
 A130 = -0.186408848
 A140 = 0.0203367881
A150 = -0.000609579263
Visc_G_3 = (Visc_G_1 / Tsr) * Exp(A00 + A10A * Psr + A20
* Psr ^ 2 + A30 * Psr ^ 3 + Tsr * (A40 + A50 * Psr + A60
* Psr ^ 2 + A70 * Psr ^ 3) + Tsr ^ 2 * (A80 + A90 * Psr +
A100 * Psr ^ 2 + A110 * Psr ^ 3) + Tsr ^ 3 * (A120 + A130
* Psr + A140 * Psr ^ 2 + A150 * Psr ^ 3))
ViscosidadGas = (Visc_G_3 / Visc_G_1) * Visc_G_2
End If
```

If $Opcion_Visc_G = 2$ Then

```
'Calculo de la Viscosidad del gas(Correlación de Lee-
Gonzalez)
'Calculo del peso molecular del gas(aire=28.97)
PMg = 28.97 * GravGas
Factor_A = (9.4 + 0.02 * PMg) * (Temp + 460) ^ 1.5 /
(209 + 19 * PMg + (Temp + 460)) / 10000
Factor_B = 3.5 + (986 / (Temp + 460)) + 0.01 * PMg
Factor_C = 2.4 - 0.2 * Factor_B
'Calculo de la densidad del gas
DenGas = Presion * PMg / (Z * 669.8 * (Temp + 460))
'Expresión final Lee-Gonzalez
ViscosidadGas = Factor_A * Exp(Factor_B * DenGas ^
Factor_C)
End If
```

End Function

ANEXO 2

En este anexo se presenta el análisis PVT elaborado por CORE LABORATORIES INTERNATIONAL, S.A., el cual se usó como parámetro de comparación para la validación de las propiedades PVT generadas por **GPVT2.0**.

CORE LABORATORIES INTERNATIONAL, S. A. Petroleum Reservoir Engineering APARTADO 118 MARACAIGO - VENEZUELA

2

Página <u>2</u> de 14 Archivo <u>RFL 270062</u>

-

•

Compañía	CORPOVEN SA			
Pozo	SVS 182	Formación _	<u>"Haca B</u>	-6/2
Campo	Ι ΔΜΔ	Estado	ZULIA	
	<u>Cana</u>	País	VENEZUELA	

ANALISIS DE COMPOSICION DE LA MUESTRA DE <u>FLUIDO DE VACIMIENTO</u>

Componentes	Mo1	Peso	Densidad a	°API	Peso
	%	%	60°F gr/cc.	a 60°F.	Molecular
Sulfuro de Hidrógeno Dióxido de Carbono Nitrógeno Metano Etano Propano Iso Butano Normal Butano Iso Pentano Normal Pentano Hexanos +	0.00 0.97 0.13 41.27 9.71 6.52 1.62 2.74 1.33 1.50 2.39 <u>31.82</u> 100.00	0.00 0.39 0.03 6.08 2.64 0.86 1.46 0.88 0.99 1.88 82.11	0.8902	27.3	281

CORE LABORATORIES INTERNATIONAL, S. A. Petroleum Reservoir Engineering APARTADO 119 MARACAJED - VENEZUELA

Página _	3	de	14	
Archivo	RFL	270062	<u></u>	
Pozo	SVS	182		

DATOS VOLUMETRICOS DE LA MUESTRA DE __FLUIDO DEL YACIMIENTO

Presión de Saturación (pres. del punto de burbuja) <u>3193</u> Lpcm a <u>209</u>°F
 Volumen específico a la presión de saturacion: pies³/1b0<u>.02251</u> a <u>209</u>°F
 Expansión térmica del petróleo saturado a <u>5000</u> Lpc = <u>Va 209</u>°F= <u>1.07185</u>
 Compresibilidades del petróleo saturado a la temperatura de yacimiento: Vol/Vol/Lpc:

de	5000	Lpc	9	4000	Ĺpc	=	10.94×10^{-6}
de	4000	Lpc	а	3193	Lpc	=	12.64×10^{-6}
de		Lpc	a		Lpc	-	
de	·	Lpc	a	- <u></u>	Lpc	¥	
de	<u>-</u>	Lpc	a		Lpc	×	

	CORE LAB	ORATORIES INTERNA Petroleum Reservoir Engineerin	ATIONAL, E	5. A,		
		APARTADO 115 MARACAIBO - VENEZUELA	- Página_	4	de	14
			Archivo	RFL	270062	,
<i>x</i>			Pozo	SVS	182	
Presión	RELACIONES D	E PRESION Y VOLUMEN	A209	°F.		
Lpcm.		Volumen Relativo (1)			Funci Tyr (ón 2)
5000		0.9790				
4500		0.9842				
3600		0.9898				
3500		0.9948				
3400		0.9961				
3300		0.9974				
3200		0.9980				
<u>3193</u>		1 0000				
3180		1 0010				
3170		1.0017				
3128	8	1.0027				
3145		1.0037				
2830		1.0120				
2588		1.0328			3 895	
2235		1.0627		32	3.706	<u>,</u>
1988		1.1231			3.460)
1749		1.1839			3.271	
1529		1.2000			3.086	i
1338		1 4800			2.935	
1155		1.6536			2.799	
988		1.8584			2.665	
774		2.2710			2.561	
592 429	,	2.8867 3.9156			2.412	
					2.100	

 Volumen Relativo: V/Vsat. son barriles a las presiones indicadas por barril a la presión de saturación. (2) Función "Y" = $\frac{(Psat-P)}{(Pabs) (V/Vsat-1)}$

de 14 2700 <u>62</u> 82		Incremen de Grave del Ga		0.765	0.747	0.742	0.768	0.795	0 840	0.040	1 227	1 073	1.973 ual a 60°F. de petrólec 60°F.
nina <u>5</u> hivo <u>RFL</u> 2 o <u>SVS 1</u>		F.V.F. del gas (Bg) (4)		0.00523	0.00599	0 00073	0 01144	0 01632	0.02783	0.06636	0.13408		0°F. őleo resid or barril. .7 Lpca y
Pág Arc Poz		Factor de Desviación "Zu		0.834	0.829	0.030	0.856	0.876	0.905	0.937	0.957		residuala (arrildepetr y <u>209</u> °F.p
	CIAL A 209 °F	Densidad del Petróleo (gm/cc)	0,7117	0.7170	0.7379	0.7477	0.7575	0.7682	0.7791	0.7934	0.8011	0.8287	or rril de petróleo iones indicadas 209 °F. por bio 209 °F. por pio
	ION DIFEREN	Volumen Relativo Total (3)	1.481	1.505	1.0.1	1.841	2.144	2.715	4.125	9.173	18.396		0°F = 28.5° Al 0°F - por ba indicadas y a las pres
	LIBERAC	Volumen Relativo del Petróleo (2)	1.431	1.458	1.378	1.339	1.302	1.265	1.227	1.180	1.154	1.066	= 1,000 iceite residual a 6 iceite residual a 6 <u>14.7</u> Lpca y 6 i as presiones iás gas liberado
		6.0.R. en Solución (1)	816 765	/ 60 670	582	492	403	316	231	139	94	0	A 60°F Gravedad del a Gravedad del a Úbicos de gas a es de petróleo a es de petróleo a al a 60°F.
		Presión Lpcm	3193	2600	2200	1800	1400	1000	600	252	120	0	 (1) Pies c (2) Barrill (3) Barrill (4) Pies ci

• • • •

CORE LABORATORIES INTERNATIONAL, S. A. Petroleum Reservoir Engineering APARTADO 118 MARACAIEO - VENEZUELA

Página	6	de	14	
Archivo	RFL	270062		_
Pozo	SVS	182		-

DATOS DE VISCOSIDAD A 209 °F.

Presión Lpcm	Viscosidad del Petróleo Centipoise	Viscosidad del Gas Calculado Centipoise	Relación Viscosidad Petróleo/Gas
5000 4500 3500 3193 3000 2600 2200 1800 1400 1000 600 252 120 0	0.823 0.791 0.760 0.728 0.712 0.720 0.768 0.842 0.983 1.169 1.419 1.751 2.198 2.450 3.887	0.0223 0.0202 0.0185 0.0170 0.0157 0.0146 0.0135 0.0122 0.0112	32.3 38.0 45.5 57.8 74.5 97.2 129.7 180.2 218.8

<u>.</u>

.

14	Grave. Especi	0.701	1.20	0 724	1.231	1 76A	1.233	A RDA*	1.190	r.
0 7 <u>8 8 8 182</u> 8 8 182	Factor Volumétrico de Separador (4)	1.099	1.007	1.075	1.007	1.045	1.007	1.027	1.007	
Página Archiv Pozo	Factor Volumétrico de Formación FVF (3)		1.406	rii	1.396		1.394		1.399	
FLUIDO DEL YACTI	Gravedad a Condiciones de Tanque °API a 60°F.		30.6		31.0		31.1		30.8	
LA MUESTRA DE	Relación Gas Petróleo GOR (2)	557	165	595	117	645	63	687	31	
DE SEPARADOR DE	Relación Gas Petróleo 608 (1)	507	164	553	116	617	63	. 669	31	
PRUEBAS	Temperatura del Separador °F.	76	76	76	76	76	76	76	76	
	Presión del Separador Lpcm	300 a	0	200 a	0	100 a	0	50 a	0	

*Estos gases fueron tomados y analizados en el laboratorio.

- (1) Relación Gas/Petróleo en pies cúbicos de gas a 60°F y <u>14.</u>7 Lpca por barril de petróleo a presión Y temperatura indicadas. (2) Relación Gas/Petróleo en pies cúbicos de gas a 60° F y <u>14.7</u> Lpca por barril de petróleo a condi-ciones de tanque a 60° F. (3) Factor Volumétrico de Formación es los barriles de petróleo saturado a <u>3193</u> Lpcm y <u>209</u> °F. (4) Por barril de petróleo a condiciones de tanque a 60° F. (4) Factor Volumétrico de Separador es los barriles de petróleo a tresión y temperatura indicadas (2) Por barril de petróleo a condiciones de tanque a 60° F.

AMAL ISIS DE COMPOSICION DE LAS MIESTIAS DE CAS DEL SEPARADOR 5 del Separador 300 Lpcm y 76 * F 200 Lpcm y 76 * F 200 Lpcm y 76 * F 50 Lpcm							Pág Arct Pozc	ina	de <u>14</u> 270062 82
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		ANALISIS DE	COMPOSI CION	DE LAS MUE	STRAS DE GAS	DEL SEPARA	DOR		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	del Separador	<u>300 Lpc</u>	.m y 76 °F	200 Lp	cm y 76 °F	LD0	ст <u>7</u> 6°F	50 Lp	сту 76
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		<u>& Molar</u>	H49	% Molar	GPM	& Molar	GPM	% Molar	СРМ
arbono 1.72 1.70 1.67 0.00 0.23 0.046 0.142 0.046 0.142 0.465 0.166 <th0.166< th=""> <th0.166< th=""> <th0.166<< td=""><td>1 i d rógeno</td><td>0,00</td><td></td><td>00.00</td><td></td><td>0 00</td><td></td><td></td><td>ļ</td></th0.166<<></th0.166<></th0.166<>	1 i d rógeno	0,00		00.00		0 00			ļ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	a rbono	1.72		1.70		1.67		1 61	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.28		0.26		0.25		10.1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		79.79		77.19		73.33		0.1.0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		12.23	3.263	13.42	3.581	14.60	3.895	14 89	2 073
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4.18	1.148	5.14	1.411	6.66	1.828	7 80	. 331.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.57	0.186	0.72	0.235	1.06	0.346	CO. 1	001.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.76	0.239	0.95	0.299	1.43	0.450	2 1 2	0.667
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.14	0.051	0.19	0.069	VE 0	VC1 0	21.2	0.00/
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	0.16	0.058	0.21	0 076	15 U	U.164 0 112	75°0	0.190
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.11	0.045	0.14	0.057	10.0	0 00B	0.45	0.166
ire=1). 0.701 0.724 0.764 0.00 7.869 ire=1). 0.764 0.804 do: BTU do: BTU ico a 60°F. 1192 1228 1292 1356	_	0.06 100.00	0.027	0.08 100.00	0.036 5.764	0.11	0.050	0.17	0.07/
or frico do. BTU do. a ico a 60°F. 1192 1228 1292 1356	i gas ire=1).	0.70	1	0.72	4	0.76	4	00.001 00.001	1.869
	orífico do. BTU ico a 60°F.	1192		122	œ	129	2	135	t u

Fage <u>10</u> of 14 File <u>RFL 270</u>062

VOLUMEN RELATIVO DURANTE LA LIBERACION DIFERENCIAL A 209°F

C.

CORE LABORATORIES, INC. Petroleum Reservoir Engineering

Page <u>12</u> of <u>14</u> File <u>RFL</u> 270062

FACTOR VOLUMETRICO DEL GAS DURANTE LA LIBERACION DIFERENCIAL A 209°F

CORE LABORATORIES, INC Petroleum Reservoir Engineering

Page <u>13</u> of <u>14</u> File <u>RFL 270062</u>

VISCOSIDAD A 209°F

CORE LABORATORIES, INC. Petroleum Reservoir Engineering

Page <u>14</u> of <u>14</u> File <u>RFL</u> 270062

1