UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE QUIMICA

"SINTESIS, CARACTERIZACIÓN QUÍMICA Y EVALUACION DE LA ACTIVIDAD ANTIMICROBIANA DE UNA SERIE DE DERIVADOS DE 6-AMINO-5-ARILDENOPIRIMIDIN-2,4-DIONAS Y 6-AMINO-5-ARILDENO-2-TIOXO-PIRIMIDIN-4-ONAS"

> Trabajo Especial de Grado presentado ante la llustre Universidad Central de Venezuela, por el Br. Rubén Maikel Martíns Diniz, para optar al título de Licenciado en Química.

Caracas, Octubre, 2014.

Este trabajo fue realizado en las Unidades de Investigación:

- Laboratorio de Sintesis Organica, de la Unidad de Investigación de Sintesis de Medicamentos, Facultad de Farmacia, UCV.
- > Departamento de Biología Celular, USB.

Nosotras, Profesora Gricela Lobo, Investigadora de la Unidad de Investigación de Síntesis de Medicamentos de la Facultad de Farmacia de la Universidad Central de Venezuela y Profesora María Rodríguez, Investigadora del Laboratorio de Productos Naturales de la Escuela de Química de la Universidad Central de Venezuela.

Certificamos que, el presente Trabajo Especial de Grado, titulado:

"SINTESIS, CARACTERIZACIÓN QUÍMICA Y EVALUACION DE LA ACTIVIDAD ANTIMICROBIANA DE UNA SERIE DE DERIVADOS DE 6-AMINO-5-ARILDENOPIRIMIDIN-2,4-DIONAS Y 6-AMINO-5-ARILDENO-2-TIOXO-PIRIMIDIN-4-ONAS"

Que presenta el Br. <u>Rubén Martíns</u>, para aspirar al título de Licenciado en Química, ha sido realizado en el Laboratorio de Síntesis Orgánica de la Facultad de Farmacia de la Universidad Central de Venezuela, bajo nuestra dirección, durante los año <u>2013 a 2014</u> y con esta fecha autorizamos su presentación.

Caracas, Octubre, 2014

Msq. Gricela Lobo Tutora

Dra. María Rodriguez Tutora

Los abajo firmantes designados por la Universidad Central de Venezuela, como integrantes del jurado examinador del Trabajo Especial de Grado titulado: "SINTESIS, CARACTERIZACIÓN QUÍMICA Y EVALUACION DE LA ACTIVIDAD ANTIMICROBIANA DE UNA SERIE DE DERIVADOS DE (5E)-6-AMINO-5-ARILDENOPIRIMIDIN-2,4-DIONAS Y (5E)-6-AMINO-5-ARILDENO-2-MERCAPTO-PIRIMIDIN-4-ONAS". Presentado por el Br. Rubén Maikel Martíns Diniz, certificamos que este trabajo cumple con los requisitos exigidos por nuestra Magna Casa de Estudios para optar por el título de Licenciado en Química.

Dra. María Rodríguez (Directora)

Dr. Gustavo Cabrera (Jurado)

Dra. Melina Monasterios (Jurado)

INDICE GENERAL

DEDICA	TORIA	I
AGRADECIMIENTOS		II
INDICE GENERAL		
INDICE DE ESPECTROS		VIII
INDICE I	DE FIGURAS	XI
INDICE I	DE TABLAS	XIV
INDICE I	DE GRAFICAS	XVI
RESUME	EN	XVI
Ι.	INTRODUCCIÓN	1
II.	REVISIÓN BIBLIOGRAFICA	6
II.1.	Importancia biológica de las Pirimidinas	6
II.2.	Pirimidinonas	7
II.3.	Síntesis de Pirimidinas	8
II.3.1.	Reacción de Biginelli	8
II.3.2.	Reacción de Knoevenagel	9
II.4.	Antimicrobianos	9
II.5.	Clasificación de los Antimicrobianos	10
II.5.1.	Según su espectro antibacteriano	10
II.5.2.	Según su mecanismo de acción.	10
II.6.	Inhibidores de la enzima dihidrofolatoreductasa (DHFR)	11
II.7.	Resistencia a los Antimicrobianos.	11
II.8.	Infecciones Asociadas a la Atención en Salud (IAAS)	11
II.9.	Microorganismos patógenos evaluados	13
II.9.1.	Bacillus cereus	13
II.9.2.	Staphylococcus aureus	14
II.9.3.	Pseudomonas aeruginosa	15
II.9.4.	Escherichia coli	16
II.9.5.	Candida tropicalis	17
III.	ANTECEDENTES	19
III.1.	Metoxipirimidinas y metilpirimidinas	19
III.2.	Aminopirimidinas	22
III.3.	Análogos de acido fólico, citosina, uracilo y timina	23
IV.	JUSTIFICACIÓN	30

V .	OBJETIVOS	31
V.1.	Objetivo General	31
V.2.	Objetivos Específicos	31
VI.	METODOLOGIA EXPERIMENTAL	33
VI.1.	Reactivos empleados	33
VI.2.	Materiales y equipos	33
VI.3.	Técnicas empleadas para la síntesis de los compuestos	34
VI.3.1.	Determinación de puntos de fusión (P.F.)	34
VI.3.2.	Caracterización de compuestos mediante el análisis de los datos espectroscópicos de IR, RMN- ¹ H y ¹³ C	34
VI.4	Síntesis y caracterización de los derivados de (<i>E</i>)-2-cianocinamatos de etilo 1a-I ; pirimidindionas 2a-I y mercaptopirimidinonas 3a-I .	35
VI.4.1.	Procedimiento general para la síntesis de los derivados (E)-2-	26
	cianocinamatos de etilo 1a-l y caracterización	30
VI.4.1.a.	(<i>E</i>)-2-ciano-4'-nitrocinamato de etilo (1a)	38
VI.4.1.b.	(<i>E</i>)-2-ciano-4'-fluorcinamato de etilo (1b)	38
VI.4.1.c.	(<i>E</i>)-2-ciano-4'-clorocinamato de etilo (1c)	39
VI.4.1.d	(E)-2-ciano-3',4'-diclorocinamato de etilo (1d)	39
VI.4.1.e.	(E)-2-ciano-4'-bromocinamato de etilo (1e)	40
VI.4.1.f.	(E)-2-ciano-cinamato de etilo (1f)	40
VI.4.1.g.	(E)-2-ciano-4'-metilcinamato de etilo (1g)	41
VI.4.1.h.	(E)-2-ciano-4'-metoxicinamato de etilo (1h)	41
VI.4.1.i.	(E)-2-ciano-3',4'-dimetoxicinamato de etilo (1i)	42
VI.4.1.j.	(E)-2-ciano-3',4',5'-trimetoxicinamato de etilo (1j)	42
VI.4.1.k.	(E)-2-ciano-4'-N,N-dimetilaminocinamato de etilo (1k)	43
VI.4.1.I.	(E)-2-ciano-4'-hidroxicinamato de etilo (1 I)	43
VI.4.2.	Procedimiento general para la sintesis de los derivados (E)-6- amino-5-arildenpirimidin-2,4(3 <i>H</i> ,5 <i>H</i>)-dionas (2a-l) y caracterización	44
VI.4.2.a.	(<i>E</i>)-6-amino-5-(4'nitrobenciliden)-pirimidin-(3 <i>H</i> ,5 <i>H</i>)-2,4-diona (2a)	46
VI.4.2.b.	(E)-6-amino-5-(4'fluorbenciliden)-pirimidin-(3H,5H)-2,4diona (2b)	46
VI.4.2.c.	(E)-6-amino-5-(4'clorobenciliden)-pirimidin-(3H,5H)-2,4)-diona (2c)	47
VI.4.2.d.	(E)-6-amino-5-(3',4'diclorobenciliden)-pirimidin-(3H,5H)-2,4-diona (2d)	47
VI.4.2.e.	(E)-6-amino-5-(4'bromobenciliden)-pirimidin-(3H,5H)-2,4-diona (2e)	48
VI.4.2.f.	(E)-6-amino-5-bencililidenpirimidin-(3H,5H)-2,4-diona (2f)	48

VI.4.2.g.	(<i>E</i>)-6-amino-5-(4'-metilbencililiden)-pirimidin-(3 <i>H</i> ,5 <i>H</i>)-2,4-diona (2g)	49
VI.4.2.h.	(<i>E</i>)-6-amino-5-(4'-metoxibenciliden)-pirimidin-(3 <i>H</i> ,5 <i>H</i>)-2,4diona (2h)	49
VI.4.2.i.	(<i>E</i>)-6-amino-5-(3',4'-dimetoxibenciliden)-pirimidin-(3 <i>H</i> ,5 <i>H</i>)-2,4-diona (2i)	50
VI.4.2.j.	(<i>E</i>)-6-amino-5-(3',4',5'-trimetoxibenciliden)-pirimidin-(3 <i>H</i> ,5 <i>H</i>)-2,4diona (2j)	50
VI.4.2.k	(E)-6-amino-5-(4'-N,N-dimetilaminobenciliden)-pirimidina2,4- (3 <i>H</i> ,5 <i>H</i>)-diona (2k)	51
VI.4.2.I.	(<i>E</i>)-6-amino-5-(4'-hidroxibenciliden)-pirimidin-(3 <i>H</i> ,5 <i>H</i>)-2,4-diona (2I)	51
VI.4.3.	Procedimiento general para la síntesis de los derivados (E)-6-	
	amino-5-arilden-2-mercaptopirimidin-(<i>5H</i>)-4-ona (3a-I) y	52
	caracterización	
VI.4.3.a	(<i>E</i>)-6-amino-5-(4'-nitrobenciliden)-2-mercapto-pirimidin-4(5H)-ona (3a)	54
VI.4.3.b	(E)-6-amino-5-(4'-fluorbenciliden)-2-mercapto-pirimidin-4(5H)-ona	51
	(3b)	54
VI.4.3.c	(<i>E</i>)-6-amino-5-(4'-clorobenciliden)-2-mercapto-pirimidin-4(5H)-ona (3c)	55
VI.4.3.d.	(E)-6-amino-5-(3',4'-diclorobenciliden)-2-mercapto-pirimidin-4(5H)-ona (3d)	55
VI.4.3.e.	(E)-6-amino-5-(4'-bromobenciliden)-2-mercapto-pirimidin-4(5H)-ona (3e)	56
VI.4.3.f.	(<i>E</i>)-6-amino-5-benciliden-2-mercapto-pirimidin-4(5H)-ona (3f)	56
VI.4.3.g.	(<i>E</i>)-6-amino-5-(4'-metilbenciliden)-2-mercapto-pirimidin-4(5H)-ona	57
	(3 g)	57
VI.4.3.h.	(<i>E</i>)-6-amino-5-(4'-metoxibenciliden)-2-mercapto-pirimidin-4(5H)-ona (3h)	57
VI.4.3.i.	(E)-6-amino-5-(3',4'-dimetoxibenciliden)-2-mercapto-pirimidin-4(5H)-ona	58
	(3i)	50
VI.4.3.j.	(E)-6-amino-5-(3',4',5'-trimetoxibenciliden)-2-mercapto-pirimidin-4(5H)-ona (3j)	58
VI.4.3.k.	(E)-6-amino-5-(4'-N,N-dimetilaminobenciliden)-2-mercapto-pirimidin- 4(5H)-ona	50
	(3k)	59
VI.4.3.I.	(E)-6-amino-5-(4'-hidroxibenciliden)-2-mercapto-pirimidin-4(5H)-ona (3I)	59
VI.5.	Evaluación de la actividad antimicrobiana de los derivados 2a-l y 3a-l	60

VII.	RESULTADOS Y DISCUSIÓN	62
VII.1.	Sección Química	62
VII.1.1.	Síntesis de intermediarios (E)-2-cianocinamato de etilo 1a-l	62
VII.1.1.1.	Mecanismos de reacción propuestos para la obtención de la serie	64
	1a-I	04
VII.1.1.2.	Análisis de los datos espectroscópicos de la serie 1a-l	66
VII.1.1.2.a.	Espectroscopia de IR	66
VII.1.1.2.b.	Análisis de RMN- ¹ H	67
VII.1.1.2.c.	Análisis de RMN- ¹³ C	70
VII.1.2.	Síntesis de derivados (E)-6-amino-5-arildenpirimidin-(3H,5H)-2,4-diona	75
	(2a-I)	10
VII.1.2.1.	Mecanismos de reacción propuestos para la obtención de la serie	78
	2a-I.	10
VII.1.2.2.	Análisis de los datos espectroscópicos de la serie 2a-l.	81
VII.1.2.2.a.	Espectroscopia de IR.	81
VII.1.2.2.b.	Análisis de RMN- ¹ H.	82
VII.1.2.2.c.	Análisis de RMN- ¹³ C.	85
VII.1.3.	Síntesis de derivados (E)-6-amino-5-arilden-2-mercaptopirimidin-(5H)-	89
	4-ona (3a-I).	00
VII.1.3.1.	Mecanismos de reacción propuestos para la obtención de la serie	90
	3a-I.	00
VII.1.3.2.	Análisis de los datos espectroscópicos de la serie 3a-I .	93
VII.1.3.2.a.	Espectroscopia de IR.	93
VII.1.3.2.b.	Análisis de RMN-'H.	95
VII.1.3.2.c.	Análisis de RMN-1°C	99
VII.2.	Evaluación biológica (Actividad Antimicrobiana).	103
VII.2.1.	Resultados obtenidos de la actividad antimicrobiana.	103
VII.2.2.	Comparación de actividad de los productos evaluados por	109
	sustituyentes.	400
VII.2.2.1.	Compuestos halogenados.	109
VII.2.2.2.		112
VII.2.2.3.	Compuestos metilo e niarogeno sustituidos.	113
VII.2.2.4.	Compuestos nidroxi, amino y nitro sustituídos.	115
VII.2.3.	Comparación de actividad biológica por series (2a-I Vs 3a-I)	116
VII.2.4.	Comparación de actividad biológica de la forma de sal potásica Vs	
	forma neutra	117

VII.2.5.	Comparación de actividad biológica por microorganismo	117
VII.2.5.1.	Actividad sobre <i>B. cereus</i>	117
VII.2.5.2.	Actividad sobre S. aureus	119
VII.2.5.3.	Actividad sobre <i>E. coli</i>	120
VII.2.5.4.	Actividad sobre <i>P. aeruginosa</i>	122
VII.2.5.5.	Actividad sobre <i>C. tropicalis</i>	123
VIII.	CONCLUSIONES	125
IX.	RECOMENDACIONES	127
Х.	REFERENCIAS BIBLIOGRÁFICAS	128
XI.	APENDICES	137
XI.1.	Abreviaturas v Simbolos	137
XI.2.	Espectros de los productos obtenidos 1a-I , 2a-I y 3a-I	139
	Espectro de RMN ¹ H y RMN ¹³ C (CDCl ₃) de 1a	139
	Espectro de RMN ¹ H y RMN ¹³ C (CDCl ₃) de 1b	140
	Espectro de RMN ¹ H y RMN ¹³ C (CDCl ₃) de 1 c	141
	Espectro de RMN ¹ H y RMN ¹³ C (CDCl ₃) de 1d	142
	Espectro de RMN ¹ H y RMN ¹³ C (CDCl ₃) de 1e	143
	Espectro de RMN ¹ H y RMN ¹³ C (CDCl ₃) de 1f	144
	Espectro de RMN ¹ H y RMN ¹³ C (CDCl ₃) de 1g	145
	Espectro de RMN ¹ H y RMN ¹³ C (CDCl ₃) de 1h	146
	Espectro de RMN ¹ H y RMN ¹³ C (CDCl ₃) de 1i	147
	Espectro de RMN ¹ H y RMN ¹³ C (CDCl ₃) de 1j	148
	Espectro de RMN ¹ H y RMN ¹³ C (CDCl ₃) de 1k	149
	Espectro de RMN ¹ H y RMN ¹³ C (CDCl ₃) de 1I	150
	Espectro de RMN ¹ H y RMN ¹³ C (DMSOd ₆) de 2a	151
	Espectro de RMN ¹ H y RMN ¹³ C (DMSOd ₆) de 2b	152
	Espectro de RMN ¹ H y RMN ¹³ C (DMSOd ₆) de 2c	153
	Espectro de RMN ¹ H y RMN ¹³ C (DMSOd ₆) de 2d	154
	Espectro de RMN ¹ H y RMN ¹³ C (DMSOd ₆) de 2e	155
	Espectro de RMN ¹ H y RMN ¹³ C (DMSOd ₆) de 2f	156
	Espectro de RMN ¹ H y RMN ¹³ C (DMSOd ₆) de 2g	157
	Espectro de RMN ¹ H y RMN ¹³ C (DMSOd ₆) de 2h	158
	Espectro de RMN ¹ H y RMN ¹³ C (DMSOd ₆) de 2i	159

Espectro de RMN ¹ H y RMN ¹³ C (DMSOd ₆) de 2j	160
Espectro de RMN ¹ H y RMN ¹³ C (CDCl ₃) de 2k	161
Espectro de RMN ¹ H y RMN ¹³ C (DMSOd ₆) de 2I	162
Espectro de RMN ¹ H y RMN ¹³ C (CDCl ₃) de 3a	163
Espectro de RMN ¹ H y RMN ¹³ C (CDCl ₃) de 3b	164
Espectro de RMN ¹ H y RMN ¹³ C (CDCl ₃) de 3c	165
Espectro de RMN ¹ H y RMN ¹³ C (CDCl ₃) de 3d	166
Espectro de RMN ¹ H y RMN ¹³ C (CDCl ₃) de 3e	167
Espectro de RMN ¹ H y RMN ¹³ C (CDCl ₃) de 3f	168
Espectro de RMN ¹ H y RMN ¹³ C (CDCl ₃) de 3g	169
Espectro de RMN ¹ H y RMN ¹³ C (CDCl ₃) de 3h	170
Espectro de RMN ¹ H y RMN ¹³ C (CDCl ₃) de 3i	171
Espectro de RMN ¹ H y RMN ¹³ C (CDCl ₃) de 3j	172
Espectro de RMN ¹ H y RMN ¹³ C (CDCl ₃) de 3k	173
Espectro de RMN ¹ H y RMN ¹³ C (CDCl ₃) de 3I	174

INDICE DE FIGURAS

Figura 1.	Estructuras químicas de citosina (A), timina (B) y uracilo (C).	6
Figura 2.	Estructuras químicas de ácido orótico (A), willardina (B), tingitanin (C), bacimetrina (D), vasicina (E) y febrifugina (F).	7
Figura 3.	Estructuras químicas de algunos ejemplos de pirimidinonas con sistema de numeración.	7
Figura 4.	Síntesis general de Biginelli.	8
Figura 5.	Mecanismo de reacción de la condensación general de Knoevenagel.	9
Figura 6.	Estructura química de sulfametoxidiazina	20
Figura 7.	Estructura química de sulfazomidina (A), sulfadimetoxina (B) y sulfametomidina (C).	20
Figura 8.	Estructura química de sulfadoxina (A) y sulfisomidina (B).	20
Figura 9.	Estructura química de sulfametoxina.	21
Figura 10.	Estructura química de sulfadiazina (A), sulfamerazin (B), sulfadimidina (C), sulfametoxidiazina (D) y metildiazina (E).	22
Figura 11.	Estructura química de tiamina (A) y bacimetrina (B).	22
Figura 12.	Estructura química de nimustina.	23
Figura 13.	Estructura química de iclaprin (A), trimetoprin (B) y emtricitabina (C).	24
Figura 14.	Estructura química de brodimoprim.	24
Figura 15.	Estructura química de aloxano (A) y barbitona (B).	25
Figura 16.	Estructuras químicas de plicacetin (A), gourgetin (B), amicetin (C) y	25

sulfacitina (D).

Figura 17.	Estructura química de compuestos diaminopirimidínicos, derivados de la citosina (4,6-diamino-5-(bencilideno)-pirimidin-2-(5H)-ona	27
Figura 18.	Estructura química de 5-fluorouracilo (A), 5-tiouracilo (B), 2-tiouracilo (C), propiltiouracilo (D) y tiobarbital (E).	28
Figura 19.	Estructura química de gemcitabina (A), pirimetamina (B), fluorocitosina (C), uramustina (D) y tegafur (E).	28
Figura 20.	Estructuras químicas de 5-yodo-2'-desoxiuridina (A), 5-trifluorometil-2'- desoxiuridina (B), zidovudina (C) y zalcitabina (D).	28
Figura 21.	Esquema de síntesis de los derivados 1a-I; 2a-I y 3a-I .	35
Figura 22.	Estructura Química de AN: Amikacina, SAM: ampicilina/sulbactam, O: ofloxacina, TIL: tilmicosin.	61
Figura 23.	Estructura y esquema de asignación para RMN- ¹ H y ¹³ C de 1a-I	62
Figura 24.	Mecanismo de reacción propuesto para la formación de 1a-I .	64
Figura 25.	Formación del doble enlace <i>E</i> en una eliminación E1cB 1a-I .	65
Figura 26.	Espectro de IR(KBr) de 1b. Se muestran los rango de absorción para	66
	1a-I.	00
Figura 27.	Espectro de RMN- ¹ H (CDCl ₃) de 1d .	67
Figura 28.	Espectro de RMN- ¹ H (CDCl ₃) de 1i .	69
Figura 29.	Espectro HETCOR de 1a .	71
Figura 30.	Espectro de RMN ¹³ C (CDCl ₃) de 1a .	72
Figura 31.	Espectro de DEPT-135 (CDCl ₃) de 1a .	73
Figura 32.	Estructura y esquema de asignación para RMN- ¹ H y ¹³ C de 2a-I .	75
Figura 33.	Estructuras de resonancia de la sal de potasio del ácido imidocarbónico.	78
Figura 34.	Reacción neta para la formación del nucleófilo.	79
Figura 35.	Mecanismo propuesto para formar las pirimidinas 2a-I .	80
Figura 36.	Espectro de IR de 2 j.	82
Figura 37.	Espectro de RMN ¹ H (CDCl ₃) de 2k . A: CDCl ₃ . B CDCl ₃ + D_2O .	84
Figura 38.	Espectro HETCOR de 2 I.	86
Figura 39.	Espectro de RMN- ¹³ C (DMSOd ₆) de 2 I.	87
Figura 40.	Espectro DEPT-135 de 2 I.	87
Figura 41.	Estructura y esquema de asignación para RMN-'H y '°C de 3a-I .	89
Figura 42.	Estructuras de resonancia de la sal de potasio del ácido tioimidocarbónico.	91
Figura 43.	Reacción neta para la formación del nucleófilo.	91
Figura 44.	Mecanismo propuesto para formar las pirimidinas 3a-I.	92
Figura 45.	Espectro de IR de 3k .	94
Figura 46.	Formas tautoméricas de compuestos de la serie 3a-I .	94

Figura 47.	Espectro de RMN- ¹ H de 3k . A: CDCl ₃ . B: CDCl ₃ +D ₂ O.	98
Figura 48.	Espectro RMN ¹ H (CDCl3) de 3f . A: sin D2O. B: (CDCl ₃ D_2O 1:1).	98
Figura 49.	Espectro HETCOR de 3h .	100
Figura 50.	Espectro de RMN- ¹³ C (CDCl ₃) de 3h .	101
Figura 51.	Espectro DEPT-135 de 3h .	101

INDICE DE TABLAS

Tabla 1.	Cantidad en g y mmoles de aldehídos y cianoacetato de etilo utilizados para la síntesis de los derivados cianocinamatos de etilo 1a-I	37
Tabla 2.	Cantidad en g y mmoles de 1a-l, urea y K_2CO_3 utilizados para la síntesis de los derivados de 6-amino-5-arilden-pirimidin-(3H,5H)-2,4-dionas 2a-l	44
Tabla 3.	Cantidad en g y mmoles de 1a-l, tiourea y K_2CO_3 utilizados para la síntesis de los derivados de 6-amino-5-arilden-pirimidin-2-mercapto-(5H)-4-ona 3a-l	52
Tabla 4.	Datos físicos de los derivados 1a-l	63
Tabla 5.	Datos de RMN- ¹ H de los grupos detectados ente δ 4.00-11,00 de los derivados 1a-I .	68
Tabla 6.	Desplazamiento químico de RMN ¹³ C de los grupos comunes en todos los derivados 1a-l	70
Tabla 7.	Correlaciones establecidas por espectro HETCOR para el compuesto 1a	71
Tabla 8.	Datos físicos de los derivados 2a-l	77
Tabla 9.	Datos de RMN-1H de los grupos detectados ente δ 4.00-11,00 de los derivados 2a-I	83
Tabla 10.	Desplazamiento químico de RMN ¹³ C de los grupos comunes en todos los derivados 2a-I	85
Tabla 11.	Correlaciones establecidas por espectro HETCOR para el compuesto 2 I	86
Tabla 12.	Datos físicos de los derivados 3a-l	90
Tabla 13.	Valores de energías de enlace entre átomos de diferentes elementos químicos	95
Tabla 14.	Grupos de protones detectados entre δ 2,30-8,20 ppm de los derivados 3a-I	96
Tabla 15.	Desplazamiento químico de RMN ¹³ C de los grupos comunes en todos los derivados 3a-I	99
Tabla 16.	Correlaciones establecidas por espectro HETCOR para el compuesto 3h	100
Tabla 17.	Actividad antimicrobiana de los productos 2a-I y 3a-I , tanto sales potásicas (S) como neutros (N)	104

INDICE DE GRAFICAS

Gráfica 1.	Actividad antimicrobiana de los compuestos evaluados 2a-l, como sales potásicas	105
Gráfica 2.	Actividad antimicrobiana de los compuestos evaluados 2a-l, como neutros	106
Gráfica 3.	Actividad antimicrobiana de los compuestos evaluados 3a-l, como sales potásicas	107
Gráfica 4.	Actividad antimicrobiana de los compuestos evaluados 3a-l, como neutros	108
Gráfica 5.	Actividad antimicrobiana de los compuestos en forma de sales y neutros con sustituyentes halógenos	110
Gráfica 6.	Actividad antimicrobiana de los compuestos en forma de sales y neutros con sustituyentes metóxido	113
Gráfica 7.	Actividad antimicrobiana de los compuestos en forma de sales y neutros sin sustituyentes y sustituyente metilo	114
Gráfica 8.	Actividad antimicrobiana de los compuestos en forma de sales y neutros con sustituyentes nitro, amino e hidroxilo	116
Gráfica 9.	Actividad antimicrobiana de los compuestos en forma de sales y neutros contra la bacteria B. cereus	118
Gráfica 10.	Actividad antimicrobiana de los compuestos en forma de sales y neutros contra la bacteria S. aureus	120
Gráfica 11.	Actividad antimicrobiana de los compuestos en forma de sales y neutros contra la bacteria E. coli	121
Gráfica 12.	Actividad antimicrobiana de los compuestos en forma de sales y neutros contra la bacteria P. aeruginosa	123
Gráfica 13.	Actividad antimicrobiana de los compuestos en forma de sales y neutros contra la levadura <i>C. tropicalis</i>	124

RESUMEN

La resistencia a los antimicrobianos hace necesario obtener nuevos fármacos efectivos contra las bacterias resistentes. En el presente trabajo, se realizó la síntesis en dos pasos de una serie de nuevos derivados de pirimidinas para evaluar su actividad antimicrobiana. El primer paso consistió en la reacción de condensación de Knoevenagel entre diferentes benzaldehídos y cianoacetato de etilo, para la obtención de los intermediarios (*E*)-2-cianocinamatos de etilo **1a-I**. El segundo paso consistió en una reacción de ciclocondensación de 1a-l con urea que condujo a los derivados (E)-6-amino-5-bencilidenpirimidin-(3H, 5H)-2.4-dionas 2a-I. Por otra parte, la reacción de **1a-I** con tiourea dio origen a los derivados análogos (*E*)-6-amino-5-benciliden-2mercapto-pirimidin-(5H)-4-ona 3a-I. Se ensayaron los compuestos finales obtenidos (2a-l y 3a-l), bajo la forma de sales potásicas y neutras, para un total de 48 compuestos evaluados contra bacterias Gram-positivos: Staphylococcus aureus y Bacillus cereus, y Gram-negativos: Escherichia coli, y Pseudomonas aeruginosa y la levadura Candida tropicalis. El compuesto 3c en formal de sal, fue activo contra B. cereus, E. coli, P. aeruginosa y C. tropicalis. 2c en forma de sal, fue activo contra S. aureus, E. coli y P. aeruginosa. 2d en forma neutra fue activo contra B. cereus, S. aureus y C. tropicalis. La sal de 3a fue activa contra S. aureus y P. aeruginosa, y C. tropicalis. La sal de 2e fue activa contra E. coli y P. aeruginosa. 2h en forma de sal fue activa contra S. aureus y E. coli. Las sales de 3g y 3b fueron activas contra B. cereus y S. aureus. 3e en forma neutra fue activo contra B. cereus y C. tropicalis. La sal de 2f fue activa solo contra P. aeruginosa. Las sales de 2b, 2g, 2j y 3j fuerona activas contra S. aureus. La forma neutra de 2f fue activo sólo contra E. coli. La forma neutra de 2j y la sal de 3j fueron acivas sólo contra C. tropicalis.