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- The powerful two-times Green'’s function formalism is applied to the calculation of the NMR dipolar lineshape
-corresponding to hindered rotating spin-carrying molecules or atomic groups in solids. The rotation of the molecules is

quantum-mechanically considered as one-phonon induced transitions between the hindered rotator levels. The nuclear spin
system is assumed to be coupled to the bath of thermal phonons through the phonon-rotation interaction. The retarded

Green’s functions, pertinent to the lineshape problem, are determined by -a second order decoupling of their equations of
motion. The lineshape expression is shown to be a weighted superposition of Lorentzians.

1. Introduction

The purpose of this paper 1s to present a formal derivation, in the linear response regime, of the
NMR lineshape of a relatively simple spin system interacting with a more complex system acting as a
thermal reservoir. In actual lineshape calculations on dipolar solids [1,2] the spin system is often

considered to be isolated from the lattice vibrations accounting for the effect of the thermal bath
classically. That is, the source of Magnetic Resonance Absorption lineshape, (the dipole—dipole

_interaction in the present case) is considered to be a random function of time due to the lattice motion.

This procedure, which has shown to be fruitful in the interpretation of measurements at relatively high

“temperatures (above 70K), results in an excessive simplification of the lattice dynamics requlrlng

frequently a posteriori corrections |3, 4].
In the present paper we shall consider a system of spin-carrying molecules or atomic group 1n a

solid, subjected to a strong static magnetic field and a small perpendicular hf magnetic field, both ot
external origin. The spin-carrying molecules are assumed to undergo a hindered rotational motion

considered to occur due to the scattering of phonons. In this sense the rotational degrees of freedom are
modelled by a Hamiltonian whose potential energy term is taken as the interaction energy of the

molecule with all other atoms and molecules in the solid fixed at their equilibrium positions. The
existence of collective vibrational modes in the crystal alters this interaction energy and gives rise to an
interaction between the rotational degrees of freedom and the lattice vibrations (phonons). For

simplicity, we shall consider the effect of the phonon-rotation interaction only to terms linear in the

displacements of the atoms and molecules from their equilibrium positions, allowing in this way only for
one-phonon processes. In regard to the magnetic interaction involved, the nuclear spins are taken to

interact among themselves through magnetic dipolar forces assumed to be of intramolecular character.

A general Hamiltonian, including all the above interacting systems, is used to establish a chain of

‘equations obeyed by a two-times retarded Green’s function. This function contains all pertinent

0378-4363/85/$03.30 © Elsevier Science Publishers B.V.
(North-Holland Physics Publishing Division)



08 | M. Martin Landrove and J.A. Moreno | Dipolar lineshapes for rotating molecules

information to the NMR lineshape [5]. The chain of equations is then solved by a second order

decoupling scheme.
In section 2, we introduce the formalism of Linear Response Theory applied to the calculation of

Magnetic Resonance Absorption lines. In this context, we introduce the two-times retarded Green’s
functions, show its relation to thé lineshape and construct its equation of motion. In section 3, the total

system Hamiltonian is discussed. Section 4 deals with the establishment and second order decoupling of
the chain of equations leading to the Green’s function of interest. The last section serves to discuss our
results.

2. Linear response theory and NMR lineshape

Let us consider an arbitrary spin system interacting with external fields and coupled with another
system which is going to work, eventually, as a heat bath. In NMR experiments the main concern 1s the

study of the spin system linear response to the driving field when a periodic perturbation 1s turned on
adiabatically:

H'=-M-H@®)=Re{H' e} (60, - (1)
H'=—yhH I . (2)

H(t)= H, (i cos wt — j sin wt) exp(et) is the external r.f. field. y is the gyromagnetic ratio and I stands
for the total nuclear spin ladder operator of the system. As discussed elsewhere [6], the energy

absorption under the influence of the perturbation H, and averaged over a period, is determined by the
double time retarded Green’s function of the perturbation:

dE 0 |
= - LM, )

({A/B)), is the Fourier transform of the double time retarded Green’s function defined as

(AMB@E)) = — % 6(t — ')A, BE)]), (4)

where the bracket (- - - ), stands for the average over an equilibrium ensemble and 6(¢) represents the
step function.

In most NMR experiments it turns out to be a good approximation for the lineshape to use the
following expression:

I(w) = ‘;“ R I |, (5)

‘The reason for this being that the main contribution of the NMR absorption lines lies in a frequency
interval around the Larmor frequency o, and the other contributions far from w, are negligible. This
fact must be accounted for in expression (5) where the Hamiltonian must be conveniently truncated [1]
‘in such a way that the poles of Im{({I"|I")) lie only in the frequency interval of interest, which in most
cases 1s very small compared to w,.
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One important fact that follows from eq. (5) is that all the relevant information about the lineshape
is contained in the Green’s function ((I*|I)) [5]. In this sense, this expression provides a very
convenient way for the calculation of the linear response lineshapes of NMR spectra.

In general the Green’s function ((A/B))_ obeys the following equation of motion [6]:

hw((A|B)), = ([A, B])y+ (A, H]|B)), , (6)

where H is the total Hamiltonian of the system.

This expression will be used in the calculation of the Green’s function ({(I"|I")),. However, it must be
noticed that in the right-hand side of eq. (6) higher order Green’s functions appear and an infinite chain
of coupled equations is generated. Then, the basic problem in this Green’s functions formalism is to find
a decoupling scheme. This decoupling scheme is usually performed as early as possible 1n order to keep

the mathematical complexity at a manageable level.

3. Hamiltonian of the system

In this paper we are interested in the calculation of the NMR absorption hineshape due to the nucles
in symmetric molecules or molecular ionic groups in solids. This includes molecular crystals such as

CH,, NH, X, CH,X, etc. In neglecting internal vibration modes of the molecules, the Hamiltonian of a
molecular crystal placed in an external magnetic field 1s written as

H = H,+ Hy+ Hp, + Hp , + Hyg gy, (7)

where H, is the nuclear Zeeman Hamiltonian in the external magnetic field. Hp, 1s the phonon
Hamiltonian given by '

Hpy, = 2 gks(b;sbks +1/2), (8)
ks

where b}, and b, are phonon creation and annihilation operators, s denotes the branch and polarization
of the phonons and k its wave vector. Hy, , represents the intramolecular magnetic dipolar interaction
Hamiltonian between the nuclei. We assume that the intermolecular part of this interaction is negligible
as in most cases of practical interest. Finally, the terms Hy and Hy p, represent the molecular rotation
Hamiltonian and the rotation—phonon interaction Hamiltonian, respectively. In what follows we discuss
the explicit form of these terms. In general, the rotational Hamiltonian for a molecule can be written as

[7-9]
jZ
Y

Hy F VD, ry ) | - (9)

where J is the molecular angular momentum operator, I 1s the moment of inertia, V represents the
intermolecular interaction potential which depends on the set of Eulerian angles describing the
molecular orientation with respect to the lattice axes, the position r,, of the pertinent molecule or ionic
group in the lattice and on the set {r;} of positions of all other molecules and atoms in the lattice. This
interaction potential V({2, r,,, {r;}) must be at least invariant with respect to the point symmetry group
of the molecule or ionic group [8] and it can be expanded as
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V2, ry, {ri) = 2, C(rw, {rHV,(2), (10)

where V_({f2) is some linear combination of Wigner matrices D,,(2) with the appropiate molecular
symmetry invariance properties [10]. The molecular positions in the crystal are not fixed but are
undergoing displacements around its lattice equilibrium sites due to the presence of the collective
vibrational modes, 1.e. phonons. Assuming that the displacements are very small we can expand, to first
order, the coefficients C, in Taylor series around the molecular equilibrium positions, obtaining

VL, ry, {rih) = E C,(rom {ro: D)V, (£2) + 2 (VMG (ron {roi}) - UV, (02)

T E Z (Vi (rons {roi) - U) V,(£2) . (11)

‘The first term 1n the right-hand side of eq. (11) must be invariant under the molecular symmetry group

at the equilibrium positions ry,, 1r,;} whereas the other two terms must account for the difference in
symmetry due to the displaced molecular positions ry, + Uy, {r,; + U} so that the potential is invariant
under the actual symmetry group. In this approximation the main interaction term, described in general

in [10]:

V82, row, {re) = 20 C(rous {ro DV, (02), (12)

1s taken to be the main interaction potential in the rotation Hamiltonian:

jz
Hy = o7 V(D ro, 1)) - (13)

On the other hand, the other two terms in eq. (11) are interaction terms that couple the rotational
degrees of freedom to the lattice vibrations. These terms take into account only one-phonon processes
because the expansion in eq. (11) was carried out only to first order in the displacements. We simplify
matters further by assuming that, out of the two terms in the rotation—phonon interaction, the main
coupling term is due to the vibration of the molecule or ionic group about 1ts equilibrium position, so

that

Hy_py = E C. UV, (Q2), (14)

~ where CI;’I:VMC&(rUM, {r,}).

Assuming one-atom unit-cell we can write eq. (14) in terms of the phonon creation and annihilation
operators: '

Hg py = E E (2M8 )1;2 CM ] es)Eik'rUM bks T (C:I ' e;:) e—ik‘r{}mbzs] v, (-Q) > (15)
ks

Where the e, are the polarization vectors and M is the mass of the crystal.
~The Hamlltoman (7) will be now used in conjunction with eq. (6) to obtain an expressmn for

-((I 1),
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4. Calculation of Green’s function

It was shown in [11] that a convenient representation basis for the operators occurring in the system
Hamiltonian is the set of eigenstates of the Zeeman and rotation Hamiltonians:

(H,+ Hp)lu) = (EL + Eln) . (16)

The states | ) are linear combinations of products of spin and rotational wave functions [13] so that
the label u represents a set of quantum mumbers which, 1n general, can be chosen as (Im;; Jm,;
' ,t) where I is the total nuclear spin, m; its projection on the z axis, J the angular momentum and
m, its projection on the laboratory-frame z axis. For the most frequently studied hindered rotators of
the type XY, and XY, with molecular point groups C;, and 1, respectively, it is safe to assume that the
“feasible” operations of the full molecular symmetry group Py XS, (Py 1s the symmetric group of N
elements) form a subgroup which is isomorphic to the molecular point group. In this case the I’y denotes
irreducible representations of the molecular point group. I is the irreducible representation associated
with a particular spin species of total nuclear spin I I is the irreducible representation according to
which the rotational wave function transforms and I', must be A, or A, depending on our choice of the
state |u) as a symmetric or antisymmetric state with respect to the exchange of two identical nuclei.
Finally, the label t distinguishes between the distinct states where all other quantum numbers are the
same. In most cases t can be left out since there are no such other states. In what follows and for the
sake of simplicity in our notation we will denote these Zeeman-rotation states only by the label pu.

In this representation the operators can be written as follows:

r= 3 Al ' h (17)
Hop= S hauuls = GlFolu) ' (18)
Hy gy = E (F* (ks)|'Xp|by + F,,(ks)uwXp'lb} . (19)

where
F (ks)=S (| V, ()| ") (€Yo c*. 20)

(2M Egs )”2

i 4

The evaluation of the matrix elements for the different operators involved in the relations (17)-(20)
is highly simplified by considering the symmetry properties of the |u) states together with those of the
relevant operators. In this sense the application of a convenient form of the Wigner-Eckart theorem to
finite groups [13] will be particularly useful. _

On the other hand, as Green’s function ((I*/I7)) is a bilinear form in the spin ladder operators it
can be written as [11] o

(I, = Z (/| T X X[, - . (21)

In this form Green’s function ({(I"/I7)) is decomposed into a combination of new Green’s functions
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{u'Xul|/I)), that can be considered as its ‘“‘components” in the given representation. Now the
calculation of ((I7/I")) reduces to the evaluation by means of eq. (6) of each one of its components.

It should be noted that the operator I in relation (21) has non-zero matrix elements only between
states of equal nuclear symmetry, so that the double sum in (21) has to be carried out for Zeeman-rotation

states belonging to the same spin species.
The equation of motion for any of the components in (21) 1s given by

- {f(w — wp) = (b, = A WA X)),

= [leXuel, TPt 2 b, L XudI Mo — 2 bl Xulll ™),

+ Z{ m(kS)«Iﬂ’>(#1lbksll"))&,- o s Y X B [ 1)), )
+ 2 AF (ks )l X | b T, — MI(kS)((IMXuIb 17),} . (22)

The new higher order Green’s functions that appear and which contain phonon creation and
annihilation operators obey the following equations of motion:

{ho — AE}), + e KX polbil I,

= (rXplbi, I Dot 3 Xl bLlT N = 3 I XA BLITON
3 E ('YX il bbal T W = Fo (65 Y X il b b T,
3 {F K5 WXL T Ve = F b5 KXl T ).
E F, (kY1 sX ll1)),, (23)

and

{how — AES;I - Sks}(d#l)(#z'bksll_»m

'I‘L;l)(ﬂz,bml >o+ 2 hﬂzﬂ3<<lﬂ1><#3lbkgu >> — E h#wl(('#:%)(ﬂz,bksll »

T E | {Fﬁmpj(k"g!)((l#ﬁ(ﬂa'bksbk'sfu_»m — #wl(krsf)«’ﬂ:a)(#z’b by ‘I*» h
T 2 {F :3p2(k 'S ’)«I#1><ﬂa'b I"s*-bksll D) #1;..,3 (k's ')((Iﬂ3><mlb bkslI Mot
p3k’s’
+ Z F (s )l Xl L)), » I | (24)

where
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AE}) (E ;th —E il) T (E Ez ) T (hﬂzﬂz mm) ' (25)

MM

It has to be noticed that only terms presenting poles in the neighborhood of the Larmor frequency
w, need to be kept in the last three equations. On the other hand, in order to decouple the chain of
equations, we will make the following approximation for the higher order two-phonon Green’s

functions appearing in eqgs. (23) and (24):
«’#Q(lbz'b;b;s'u_»m — «I#'a)(ﬂzl bksbk’s'u_»m =0, (26)
(e ) o) By big [ 1)), = (M (KS)) O B Lt XA T, @)

Here {(n(ks)), = {(b;.b,.), = ii(ks) is the Bose-Einstein distribution formula.
The approximation in eq. (26) is justified because as explained in section 3 we take into account in

our rotation—phonon interaction only one-phonon processes so that terms involving the creation or
annihilation of two phonons must be dropped out. On the other hand, the phonon operators appearing

in Green’s function in eq. (27) denote phonon scattering processes and our approximation consists 1n
considering only the elastic part of this scattering together with the assumption that the operator for the

number of phonons in the state ks, i1, is uncorrelated with the operator I'. These approximations
effectively decouple the chain of equations for the “component” Green’s function obtaining

uXullI), = QuXul, I Do —AED, - M, (w)}. (28)

We introduce in eq. (28) the function M, (w) which by analogy with the quantum theory of fields
can be called the mass operator. This function, M, (w), accounts for the effects of the phonon

interaction over the Zeeman-rotational levels, and for calculatlonal purposes 1t is generally assumed to

be a “small quantity” [12].
The explicit form of the mass operator 1s

(kS)IZ(n(kS)H) F (kS)Izﬁ(kS)}

F,
M r(&))z Z { B N "
a p1Kks A##l Amn

{2 Re(F}, (ks)F . (ks)i(ks)+ F (ks)F ., (ks)}
AT

it

2

Wl(ks)lz(n(ks) + 1) ]Fﬂw,(ks)lzﬁ(ks)
o3 P i)
2Re(F, (ks)F, (ks))alks)+ F, (ks)F (ks) _
_ % { i } (29)
with A = fiw - AEE};M + £,

By definition, the mass operator is a complex function of the real variable w and 1t can be
decomposed into its real and imaginary parts using the simbolic identity:

1 1
— = P -Fimd(w — '), (30)

to rewrite
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M, (vo*ie)=A, (w)Fi7B, (v) (e>0"). (31)

In this last equation

Aﬂ’ﬂ (w)=P zks {IFM,#l—(kSﬂZJ(rﬁ(kS) 1) | ‘FP‘I# (j‘i)lzﬁ(ks)}
N Pl @)+ 1) IE,, (ki)

—P > Re(F jﬂ(ks)Fﬂ,ﬂ,(ks)) {A}L ,+ Al } (2n(ks)+ 1)

L i

+a >, Im(F,, (ks)F, (ks){5(4;, )+ (4 )} (32)

and

B, (w)= 2 AIF . (k) (7iks) + 1)8(4 ) + |E, , (ks)7i(ks)8(4, )}

p1ks

+ 2 AF, (k) (fi(ks) + DA, ) + |F,, (k)] fi(ks)3(4,, )}

p1ks

— S Re(F L, (ks)F,, (ks)H8(A ) + 8(4,, 27 (ks) + 1)

1 11
—|——PZIm(Fﬁﬂ(ks)Fﬂ,ﬁf(ks)){A+ o 3 (33)

T ks pp’ g

(P indicates that the principal value of the corresponding integral must be taken.)

These newly defined functions A, (w) and B, (w) are real functions of the variable w whereas
A, (w) determines phonon-induced corrections for the energies at which the magnetic resonance
transitions occurrs, the imaginary part of the mass operator B, (w) includes dissipative effects due to
the redistribution of energy among the phonon degrees of freedom in the system. That is there 1s some

dissipation of the energy absorbed at resonance.
An expression for the lineshape can now be obtained if we subtitute relations (28)-(33) in expression

(21) and make use of the expansion [11]

([l e, 1 ‘Dﬁ = > {1 [ )Xo = Sital T 1" X Xt Do
= ([T Ml Y Do = e X Do} - - (34)
In the last equation we have made use of the fact that [11]

(| X))o = 3#1;;2 BXp(—BESD / E exp(—,BES)) ; (35)

where Ef) = Ei + Ef_j+ h,, is the Zeeman-rotation energy corrected up to first order in the spin—spin
dipolar interaction.
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In this way we finally obtain for the lineshape the expression:

Im{(I7|7)), = - E [T )P Y"1 = e X D)

X [7B,,(@))/[{ho - AE,,.— A, (o)} + 7°B.. (»)]. (36)

In this equation the sum has to be carried out for states u, u’ of the same nuclear symmetry. This
condition is indicated through the index of the relevant irreducible representation I, It is clear that the

final spectrum 1s a superposition of Lorentzian functions corresponding to different spin-species
weighted according to their transition probabilities. Its temperature dependence comes from the
thermal distribution function for the Zeeman-rotation levels (35) and from the phonon distribution
formulas appearing in the expressions for A, () and B, (w).

Each of the component Lorentzians corresponds to a resonant transition in the Zeeman-rotation
system. Their occurrence in the frequency domain depends on the energy difference for the cor-
responding levels and on the real part of the mass operator. The width of the Lorentzian depends on
the 1maginary part of the mass operator. On the other hand, the contribution of each of these
Lorentzians to the total lineshape will be mainly determined —if the transition i1s allowed —by the
thermal distribution of the involved Zeeman-rotation levels.

5. Discussion

The physical content of egs. (32), (33) and (36) will be much more accessible after we introduce into
the theory simplifications concerning the strength of the phonon-rotation interaction and the particular
phonon branch mvolved. _

The first simplification is to consider that the damping may be assumed to be very small, then the
component Lorentzians in eq. (36), correspondmg to the transition u - u', have a steep maximum at
some value w = @,,,. Expanding A . (w) in power series in w near @ ., and taking into account that

T
(@) 1s a slowly varymg function of w, we can write for the Lorentzians

| 7B, (@)]/[{hw — AES&_, — Aﬁfﬂ () + wQBi,ﬂ(a))]

1 /dA . (w) . . -
— 1 ( e ) ] , —Hh 2 2 2’ —1
W[ - 1 o B, {ho - te,, "+ 7B, ] . (37)
where
. ) 1 /dA, . -
szB#,#(%,ﬁ)P () ] . - - (3%)

In the above derivation 1t has been assumed that

1 /dA . |
Wi <1. 39
fl(da)) ) ( )

W=Wun

On the other hand, f:’m 1s determined from the transcendental equation
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ha,, —AEY - A, (0,,)=0. . (40)

M

This last equation determines the occurrence, in the frequency domain, of the Lorentzian line
corresponding to the transition u — u'. It is clear that the temperature dependence of the line position

is determined by the real part of the mass operator, whereas the damping or dissipative eftects are

included 1n the terms B, ...
In order to calculate these two functions we make a second simplification by assuming that the
phonons involved correspond to the acoustic branch. This allows us to approximate the sums over ks in

(32) and (33) with integrals, taking the Debye expression as density of phonon states:

- INh 1ho(k) ’ | - :
plw)= kT, [kBTD] 4l

here TD is the 'Debye temperature of the sohd.
With the latter consideration and defining

V. (Q)|p)h - '
=3 (;fw))l',f’ 2(CYe, | 2)
so that
| _F#ﬂ'(ks) Ef##’ (ﬁw(k))lﬂ .

The consideration of the rotational symmetry properties in the evaluation of the matrix elements for
the operators V,_({2), occurring in f,,., allows the simplification of equations (32) and (33). Recalling that
the spin-independent operators V, ({2) are invariant with respect to the operations of the molecular
symmetry group it can be concluded that the states they connect must belong to the same I, m,
manifold. The complete evaluation of the matrix element (u|V,_(£2)|u’) can be easily carried out by the
application of the Wigner—Eckart theorem [13]. In any case, we can write

' 9NA . o
Aﬂ,ﬁ (“’) ] (kB TD)2 [% ]f#’mlzrim T é lfnmlzrﬁw - lfﬂ#”fﬂ’#'u##’] ? | (43)
Iy Iy
- 9Nnh o a.
Bﬁfﬂv (w) - E lf,u'pllz s | f 2 sad L . 4_4
(kg TD)2 {#1##' exp(B’aﬂﬂl) —1 mz;fﬂ ] Mll 1= exp(—ﬁ’a’m#,) | (44)
Iy Iy

In these equations we have defined

+1

J=p [ o T cth (=) . (45)
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and

—AE(D, T
o e 4B, 5T (46)
ﬂ'#. kBTD

It should be noted that in the above derivation use has been made of the fact that |a,,|<1 for those

states connected by I,
We are thus led to a self-consistent set of nonlinear equations for the functions A, (o, #) , and

Im{((I*|I")) very characteristic for approximations of the kind of interpolation decoupling methods for
the chains of equations for Green’s functions.

At the lowest temperatures the coupling of the spin system to the phonon bath becomes neghgible.
In this limit we can replace expression (37), for very small values of the damping B,u ., by a é-function

[1-%—(‘1‘4;2(‘”)) | ]nlﬁ(ﬁw—ha’iﬂ,ﬂ). - (47)

—®u'p

In this case, sometimes referred to as the not-interrupted coherent tunneling limit [4], the dipolar

spectrum is simply a superposition of §-functions at the tunneling frequency w,.,. As the temperature 1s
raised, the coherent tunneling of the hindered rotator is interrupted by the interaction with the lattice
phonons and each 8-line broadens attaining the Lorentzian form given by eq. (37). It is noteworthy that
the broadening of each of the Lorentzian components continues, beyond the latter transition, when the
temperature is raised. This is easily seen from relation (44), for the damping B, (w), since this function
increases with temperature. A final remark can be made concerning the experimentally observed
narrowing of the dipolar spectrum as the temperature is raised. Our expression (36) together with (37) is
not suitable for the unambiguous calculation of the absorption lineshape second moment, since in such
a case we have a superposition of Lorentzian lines. However, since the width of the individual lines, given

by WB# ..» will have a negligible effect on the total linewidth, the second moment of the spectrum will be

mainly determined by the frequency separation between the component lines together with their

relative intensities. That is, the temperature variation of @,,, and of the weighting factors in (36) will be

determinant for the temperature behaviour of the second moment. With these considerations in mind,
we can use the 8-line limit (47) together with relation (36) in order to evaluate the second moment, and

after dropping small terms

(Aw) = E ! 1 [ ) X Do = e Xt Dot 3,0, 2. Kw'll ) X Do = e X e o}

Iy Iy
~1=2

— E\m T ) X o = (IS E\m I RS REX(TIN

Iy
Iy FI

L

(48)

The first term in the right-hand side of (48) constitutes the most important contribution and
determines the temperature dependence of the second moment. This is because the second term gwes
the square of the average frequency for the dipolar lineshape which can be safely assumed to be W}

A similar expression, for a hindered two-spin rotor, was calculated in a previous paper [11]. In that
case, we indeed demonstrated that this expression accounts for a line-narrowing as the temperature is
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raised. Nevertheless, it must be noted that the theoretical decrease of the second moment took place m

a wide temperature interval in contrast to the observed abrupt narrowing of the dipolar spectrum.
In forthcoming papers, the present formalism, will be applied to the calculation of the low-temperature

dipolar lineshape for hindered rotating atomic groups of the type NH, X and CH,X in solids.

Acknowledgemehts |

| We would like to thank Dr. J.D. Mujica for useful advice and stimulating discussions. This WG_rk has
been partially financed by CONICIT-VENEZUELA.

References

[1] A. Abragam, The Principles of Nuclear Magnetism (Clarendon, Oxford, 1961).
[2] H.W. Spiess, NMR Basic Principles and Progress, Vol 15 (Springer, Berlin, 1978).
[3] S. Clough, NMR Basic Principles and Progress, Vol. 13 (Springer, Berlin, 1976).
f[4] M.M. Pintar, NMR Basic Principles and Progress, Vol 13 (Springer, Berlin, 1976).
~[5] M. Martin Landrove and J.A. Moreno, Chem. Phys. Lett. 108 (1984) 76.
[6] D.N. Zubarev, Nonequilibrium Statistical Thermodynamics (Consultants Bureau, New York, 1974).
[7] R.F. Curl, H.P. Hopkins and K.S. Pitzer, J. Chem. Phys. 48 (1968) 4064.
'[8] A. Hiiller, Z. Phys. B36 (1980) 215.
- [9] J. Peternelj, J. Magn. Res. 50 (1982) 111.
[10] H. F. King and D.F. Hormg, J. Chem. Phys. 58 (1973) 3833.

- [11]) M. Martin Landrove and J.A. Moreno, Acta. Cient. Venez. 33 (1982) 185.
- [12] S.V. Tyablikov, Methods in the Quantum Theory of Magnetism (Plenum Press, New York, 1967).

}[13] W.M. Itano, J. Mol. Spectrosc. 71 (1978) 193.

BRI S |

MY Ve g
e R St I

g W oAR AR o



	escanear0001
	escanear0002
	escanear0003
	escanear0004
	escanear0005
	escanear0006
	escanear0007
	escanear0008
	escanear0009
	escanear0010
	escanear0011
	escanear0012

