Inhibidores de los SGLT2 en pacientes con diabetes mellitus tipo 2: protección renal y cardiovascular

Autores/as

  • Julio Ignacio Pacuruco Cajas
  • Juan Pablo Garcés Ortega
  • Juan Carlos Pañi Panamá
  • Stefany María Quillupangui Ramón
  • Diana Estefanía Mejía Toro
  • Ángel Gabriel Toro Loayza
  • Ginger Estefanía Espinoza Belduma
  • Jember Javier Quijije Castro
  • Paola Fernanda Bueno Quizhpi

Palabras clave:

Diabetes mellitus tipo 2, inhibidores de SGLT2, protección renal, protección cardiovascular, hiperglicemia

Resumen

La diabetes mellitus tipo 2 es un trastorno metabólico asociado a un conjunto de complicaciones microvasculares y macrovasculares, entre las que destacan la enfermedad renal diabética y las enfermedades cardiovasculares. Durante los últimos años, se ha descrito como fármacos como los inhibidores de SGLT2 pueden combatir dichas complicaciones. Los mecanismos protectores renales y cardiovasculares de este grupo de drogas se basan, esencialmente, en sus propiedades diuréticas, antioxidantes, antiinflamatorias, inmunomoduladoras y antidiabéticas, las cuales son capaces de disminuir considerablemente el daño renal y los procesos patogénicos de diversas enfermedades cardiovasculares como la aterosclerosis, la insuficiencia cardíaca, la enfermedad arterial coronaria, entre otras. El objetivo del presente artículo de revisión es describir los mecanismos protectores renales y cardiovasculares de los inhibidores de SGLT2, así como exponer la evidencia clínica que soporte dichos efectos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, Ostolaza H, Martín C. Pathophysiology of Type 2 Diabetes Mellitus. Int J Mol Sci. 2020 Aug 30;21(17):6275. doi: 10.3390/ijms21176275. PMID: 32872570; PMCID: PMC7503727.

Taylor R. Type 2 diabetes: etiology and reversibility. Diabetes Care. 2013 Apr;36(4):1047-55. doi: 10.2337/dc12-1805. PMID: 23520370; PMCID: PMC3609491.

Drivsholm T, de Fine Olivarius N, Nielsen AB, Siersma V. Symptoms, signs and complications in newly diagnosed type 2 diabetic patients, and their relationship to glycaemia, blood pressure and weight. Diabetologia. 2005 Feb;48(2):210-4. doi: 10.1007/s00125-004-1625-y. Epub 2005 Jan 14. PMID: 15650820.

Lin X, Xu Y, Pan X, Xu J, Ding Y, Sun X, et al. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Sci Rep [Internet]. diciembre de 2020 [citado 10 de febrero de 2022];10(1):14790. Disponible en: https://www.nature.com/articles/s41598-020-71908-9.

World Health Organization. Data and statistics [Internet]. [citado 10 de febrero de 2022]. Disponible en: https://www.euro.who.int/en/health-topics/noncommunicable-diseases/diabetes/data-and-statistics.

American Diabetes Association. Statistics about diabetes | ada [Internet]. [citado 10 de febrero de 2022]. Disponible en: https://www.diabetes.org/about-us/statistics/about-diabetes.

Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of Type 2 Diabetes - Global Burden of Disease and Forecasted Trends. J Epidemiol Glob Health. 2020;10(1):107-111. doi:10.2991/jegh.k.191028.001.

Bommer C, Sagalova V, Heesemann E, Manne-Goehler J, Atun R, Bärnighausen T, et al. Global economic burden of diabetes in adults: projections from 2015 to 2030. Diabetes Care [Internet]. 1 de mayo de 2018 [citado 10 de febrero de 2022];41(5):963-70. Disponible en: https://diabetesjournals.org/care/article/41/5/963/36522/Global-Economic-Burden-of-Diabetes-in-Adults.

Zhou B, Lu Y, Hajifathalian K, Bentham J, Di Cesare M, Danaei G, et al. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4·4 million participants. The Lancet [Internet]. abril de 2016 [citado 10 de febrero de 2022];387(10027):1513-30. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0140673616006188.

Mambiya M, Shang M, Wang Y, Li Q, Liu S, Yang L, et al. The play of genes and non-genetic factors on type 2 diabetes. Front Public Health [Internet]. 19 de noviembre de 2019 [citado 9 de febrero de 2022];7:349. Disponible en: https://www.frontiersin.org/article/10.3389/fpubh.2019.00349/full.

Hu FB, Manson JE, Stampfer MJ, Colditz G, Liu S, Solomon CG, Willett WC. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med. 2001 Sep 13;345(11):790-7. doi: 10.1056/NEJMoa010492. PMID: 11556298.

Trikkalinou A, Papazafiropoulou AK, Melidonis A. Type 2 diabetes and quality of life. World J Diabetes. 2017;8(4):120-129. doi:10.4239/wjd.v8.i4.120.

Butler J, Usman MS, Khan MS, Greene SJ, Friede T, Vaduganathan M, Filippatos G, Coats AJS, Anker SD. Efficacy and safety of SGLT2 inhibitors in heart failure: systematic review and meta-analysis. ESC Heart Fail. 2020 Dec;7(6):3298-3309. doi: 10.1002/ehf2.13169. Erratum in: ESC Heart Fail. 2021 Jun;8(3):2362. PMID: 33586910; PMCID: PMC7755023.

Scheen AJ, Delanaye P. SGLT2 inhibitors in patients with chronic kidney disease : from clinical trials to guidelines and new prospects for clinical practice. Rev Med Liege. 2021 Mar;76(3):186-194. French. PMID: 33682388.

Scheen AJ. Pharmacokinetics, Pharmacodynamics and Clinical Use of SGLT2 Inhibitors in Patients with Type 2 Diabetes Mellitus and Chronic Kidney Disease. Clin Pharmacokinet. 2015 Jul;54(7):691-708. doi: 10.1007/s40262-015-0264-4. PMID: 25805666.

Vallon V. The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus. Annu Rev Med. 2015; 66:255-70. doi: 10.1146/annurev-med-051013-110046. Epub 2014 Oct 17. PMID: 25341005.

Osorio H, Coronel I, Arellano A, Pacheco U, Bautista R, Franco M, Escalante B. Sodium-glucose cotransporter inhibition prevents oxidative stress in the kidney of diabetic rats. Oxid Med Cell Longev. 2012; 2012:542042. doi: 10.1155/2012/542042. Epub 2012 Nov 20. PMID: 23227274; PMCID: PMC3512343.

Steven S, Oelze M, Hanf A, Kröller-Schön S, Kashani F, Roohani S, Welschof P, Kopp M, Gödtel-Armbrust U, Xia N, Li H, Schulz E, Lackner KJ, Wojnowski L, Bottari SP, Wenzel P, Mayoux E, Münzel T, Daiber A. The SGLT2 inhibitor empagliflozin improves the primary diabetic complications in ZDF rats. Redox Biol. 2017 Oct;13:370-385. doi: 10.1016/j.redox.2017.06.009. Epub 2017 Jun 22. PMID: 28667906; PMCID: PMC5491464.

Tsai KF, Chen YL, Chiou TT, et al. Emergence of SGLT2 Inhibitors as Powerful Antioxidants in Human Diseases. Antioxidants (Basel). 2021;10(8):1166. Published 2021 Jul 22. doi:10.3390/antiox10081166.

Kim MN, Moon JH, Cho YM. Sodium-glucose cotransporter-2 inhibition reduces cellular senescence in the diabetic kidney by promoting ketone body-induced NRF2 activation. Diabetes Obes Metab. 2021 Nov;23(11):2561-2571. doi: 10.1111/dom.14503. Epub 2021 Aug 10. PMID: 34318973.

Vallon V, Gerasimova M, Rose MA, et al. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am J Physiol Renal Physiol. 2014;306(2):F194-F204. doi:10.1152/ajprenal.00520.2013.

Ojima A, Matsui T, Nishino Y, Nakamura N, Yamagishi S. Empagliflozin, an Inhibitor of Sodium-Glucose Cotransporter 2 Exerts Anti-Inflammatory and Antifibrotic Effects on Experimental Diabetic Nephropathy Partly by Suppressing AGEs-Receptor Axis. Horm Metab Res. 2015 Aug;47(9):686-92. doi: 10.1055/s-0034-1395609. Epub 2015 Jan 22. PMID: 25611208.

Alshnbari AS, Millar SA, O’Sullivan SE, Idris I. Effect of Sodium-Glucose Cotransporter-2 Inhibitors on Endothelial Function: A Systematic Review of Preclinical Studies. Diabetes Ther. 2020;11(9):1947-1963. doi:10.1007/s13300-020-00885-z.

Nespoux J, Vallon V. SGLT2 inhibition and kidney protection. Clin Sci (Lond). 2018;132(12):1329-1339. Published 2018 Jun 28. doi:10.1042/CS20171298.

Ansary TM, Nakano D, Nishiyama A. Diuretic Effects of Sodium Glucose Cotransporter 2 Inhibitors and Their Influence on the Renin-Angiotensin System. Int J Mol Sci. 2019;20(3):629. Published 2019 Feb 1. doi:10.3390/ijms20030629.

De Nicola L, Gabbai FB, Garofalo C, Conte G, Minutolo R. Nephroprotection by SGLT2 Inhibition: Back to the Future?. J Clin Med. 2020;9(7):2243. Published 2020 Jul 15. doi:10.3390/jcm9072243.

Verma A, Patel AB, Waikar SS. Sglt2 inhibitor: not a traditional diuretic for heart failure. Cell Metabolism [Internet]. julio de 2020 [citado 10 de febrero de 2022];32(1):13-4. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1550413120303156.

Tonelli M, Karumanchi SA, Thadhani R. Epidemiology and mechanisms of uremia-related cardiovascular disease. Circulation [Internet]. 2 de febrero de 2016 [citado 10 de febrero de 2022];133(5):518-36. Disponible en: https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.115.018713.

Bobrowski D, Kumar R, Wu PE, Lapointe‐Shaw L. Prolonged ketosis and glycosuria secondary to SGLT2 inhibitor therapy. Clinical Case Reports [Internet]. noviembre de 2021 [citado 10 de febrero de 2022];9(11). Disponible en: https://onlinelibrary.wiley.com/doi/10.1002/ccr3.5057.

Verma S, Rawat S, Ho KL, Wagg CS, Zhang L, Teoh H, Dyck JE, Uddin GM, Oudit GY, Mayoux E, Lehrke M, Marx N, Lopaschuk GD. Empagliflozin Increases Cardiac Energy Production in Diabetes: Novel Translational Insights into the Heart Failure Benefits of SGLT2 Inhibitors. JACC Basic Transl Sci. 2018 Aug 26;3(5):575-587. doi: 10.1016/j.jacbts.2018.07.006. PMID: 30456329; PMCID: PMC6234616.

Bonnet F, Scheen AJ. Effects of SGLT2 inhibitors on systemic and tissue low-grade inflammation: The potential contribution to diabetes complications and cardiovascular disease. Diabetes & Metabolism [Internet]. diciembre de 2018 [citado 10 de febrero de 2022];44(6):457-64. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1262363618301769.

Xu L, Ota T. Emerging roles of SGLT2 inhibitors in obesity and insulin resistance: Focus on fat browning and macrophage polarization. Adipocyte. 2018;7(2):121-128. doi:10.1080/21623945.2017.1413516.

Rolski F, Błyszczuk P. Complexity of TNF-α Signaling in Heart Disease. J Clin Med. 2020;9(10):3267. Published 2020 Oct 12. doi:10.3390/jcm9103267.

Kanda T, Takahashi T. Interleukin-6 and cardiovascular diseases. Jpn Heart J. 2004 Mar;45(2):183-93. doi: 10.1536/jhj.45.183. PMID: 15090695.

Hui X, Lam KS, Vanhoutte PM, Xu A. Adiponectin and cardiovascular health: an update. Br J Pharmacol. 2012 Feb;165(3):574-90. doi: 10.1111/j.1476-5381.2011.01395.x. PMID: 21457225; PMCID: PMC3315032.

Kim SR, Lee S-G, Kim SH, Kim JH, Choi E, Cho W, et al. SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nat Commun [Internet]. diciembre de 2020 [citado 10 de febrero de 2022];11(1):2127. Disponible en: http://www.nature.com/articles/s41467-020-15983-6.

Lopaschuk GD, Verma S. Mechanisms of Cardiovascular Benefits of Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: A State-of-the-Art Review. JACC Basic Transl Sci. 2020;5(6):632-644. Published 2020 Jun 22. doi:10.1016/j.jacbts.2020.02.004.

Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, Johansen OE, Woerle HJ, Broedl UC, Zinman B; EMPA-REG OUTCOME Investigators. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N Engl J Med. 2016 Jul 28;375(4):323-34. doi: 10.1056/NEJMoa1515920. Epub 2016 Jun 14. PMID: 27299675.

Heerspink HJL, Karasik A, Thuresson M, Melzer-Cohen C, Chodick G, Khunti K, Wilding JPH, Garcia Rodriguez LA, Cea-Soriano L, Kohsaka S, Nicolucci A, Lucisano G, Lin FJ, Wang CY, Wittbrodt E, Fenici P, Kosiborod M. Kidney outcomes associated with use of SGLT2 inhibitors in real-world clinical practice (CVD-REAL 3): a multinational observational cohort study. Lancet Diabetes Endocrinol. 2020 Jan;8(1):27-35. doi: 10.1016/S2213-8587(19)30384-5. PMID: 31862149.

Mosenzon O, Wiviott SD, Cahn A, Rozenberg A, Yanuv I, Goodrich EL, Murphy SA, Heerspink HJL, Zelniker TA, Dwyer JP, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Kato ET, Gause-Nilsson IAM, Fredriksson M, Johansson PA, Langkilde AM, Sabatine MS, Raz I. Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE-TIMI 58 randomised trial. Lancet Diabetes Endocrinol. 2019 Aug;7(8):606-617. doi: 10.1016/S2213-8587(19)30180-9. Epub 2019 Jun 10. Erratum in: Lancet Diabetes Endocrinol. 2019 Aug;7(8):e20. PMID: 31196815.

Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, Edwards R, Agarwal R, Bakris G, Bull S, Cannon CP, Capuano G, Chu PL, de Zeeuw D, Greene T, Levin A, Pollock C, Wheeler DC, Yavin Y, Zhang H, Zinman B, Meininger G, Brenner BM, Mahaffey KW; CREDENCE Trial Investigators. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N Engl J Med. 2019 Jun 13;380(24):2295-2306. doi: 10.1056/NEJMoa1811744. Epub 2019 Apr 14. PMID: 30990260.

Heerspink HJL, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF, Mann JFE, McMurray JJV, Lindberg M, Rossing P, Sjöström CD, Toto RD, Langkilde AM, Wheeler DC; DAPA-CKD Trial Committees and Investigators. Dapagliflozin in Patients with Chronic Kidney Disease. N Engl J Med. 2020 Oct 8;383(15):1436-1446. doi: 10.1056/NEJMoa2024816. Epub 2020 Sep 24. PMID: 32970396.

Li N, Lv D, Zhu X, Wei P, Gui Y, Liu S, et al. Effects of sglt2 inhibitors on renal outcomes in patients with chronic kidney disease: a meta-analysis. Front Med [Internet]. 1 de noviembre de 2021 [citado 11 de febrero de 2022];8:728089. Disponible en: https://www.frontiersin.org/articles/10.3389/fmed.2021.728089/full.

Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Silverman MG, Zelniker TA, Kuder JF, Murphy SA, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Ruff CT, Gause-Nilsson IAM, Fredriksson M, Johansson PA, Langkilde AM, Sabatine MS; DECLARE–TIMI 58 Investigators. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2019 Jan 24;380(4):347-357. doi: 10.1056/NEJMoa1812389. Epub 2018 Nov 10. PMID: 30415602.

Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, Shaw W, Law G, Desai M, Matthews DR; CANVAS Program Collaborative Group. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med. 2017 Aug 17;377(7):644-657. doi: 10.1056/NEJMoa1611925. Epub 2017 Jun 12. PMID: 28605608.

Lo KB, Gul F, Ram P, Kluger AY, Tecson KM, McCullough PA, Rangaswami J. The Effects of SGLT2 Inhibitors on Cardiovascular and Renal Outcomes in Diabetic Patients: A Systematic Review and Meta-Analysis. Cardiorenal Med. 2020;10(1):1-10. doi: 10.1159/000503919. Epub 2019 Nov 19. PMID: 31743918.

Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE; EMPA-REG OUTCOME Investigators. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015 Nov 26;373(22):2117-28. doi: 10.1056/NEJMoa1504720. Epub 2015 Sep 17. PMID: 26378978.

Ghosh-Swaby OR, Goodman SG, Leiter LA, Cheng A, Connelly KA, Fitchett D, Jüni P, Farkouh ME, Udell JA. Glucose-lowering drugs or strategies, atherosclerotic cardiovascular events, and heart failure in people with or at risk of type 2 diabetes: an updated systematic review and meta-analysis of randomised cardiovascular outcome trials. Lancet Diabetes Endocrinol. 2020 May;8(5):418-435. doi: 10.1016/S2213-8587(20)30038-3. PMID: 32333878.

Tsampasian V, Baral R, Chattopadhyay R, Debski M, Joshi SS, Reinhold J, et al. The role of sglt2 inhibitors in heart failure: a systematic review and meta-analysis. Rossi A, editor. Cardiology Research and Practice [Internet]. 19 de agosto de 2021 [citado 11 de febrero de 2022];2021:1-11. Disponible en: https://www.hindawi.com/journals/crp/2021/9927533/.

Cardoso R, Graffunder FP, Ternes CMP, Fernandes A, Rocha AV, Fernandes G, et al. SGLT2 inhibitors decrease cardiovascular death and heart failure hospitalizations in patients with heart failure: A systematic review and meta-analysis. EClinicalMedicine [Internet]. junio de 2021 [citado 11 de febrero de 2022];36:100933. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S2589537021002133.

Nassif ME, Windsor SL, Borlaug BA, Kitzman DW, Shah SJ, Tang F, et al. The SGLT2 inhibitor dapagliflozin in heart failure with preserved ejection fraction: a multicenter randomized trial. Nat Med [Internet]. noviembre de 2021 [citado 11 de febrero de 2022]; 27(11):1954-60. Disponible en: https://www.nature.com/articles/s41591-021-01536-x.

Fernandes GC, Fernandes A, Cardoso R, Penalver J, Knijnik L, Mitrani RD, Myerburg RJ, Goldberger JJ. Association of SGLT2 inhibitors with arrhythmias and sudden cardiac death in patients with type 2 diabetes or heart failure: A meta-analysis of 34 randomized controlled trials. Heart Rhythm. 2021 Jul;18(7):1098-1105. doi: 10.1016/j.hrthm.2021.03.028. Epub 2021 Mar 20. PMID: 33757845.

Zhou Z, Jardine MJ, Li Q, Neuen BL, Cannon CP, de Zeeuw D, et al. Effect of sglt2 inhibitors on stroke and atrial fibrillation in diabetic kidney disease: results from the credence trial and meta-analysis. Stroke [Internet]. mayo de 2021 [citado 11 de febrero de 2022];52(5):1545-56. Disponible en: https://www.ahajournals.org/doi/10.1161/STROKEAHA.120.031623.

Tsai WH, Chuang SM, Liu SC, Lee CC, Chien MN, Leung CH, Liu SJ, Shih HM. Effects of SGLT2 inhibitors on stroke and its subtypes in patients with type 2 diabetes: a systematic review and meta-analysis. Sci Rep. 2021 Jul 28;11(1):15364. doi: 10.1038/s41598-021-94945-4. PMID: 34321571; PMCID: PMC8319393.

Guo M, Ding J, Li J, Wang J, Zhang T, Liu C, Huang W, Long Y, Gao C, Xu Y. SGLT2 inhibitors and risk of stroke in patients with type 2 diabetes: A systematic review and meta-analysis. Diabetes Obes Metab. 2018 Aug;20(8):1977-1982. doi: 10.1111/dom.13295. Epub 2018 Apr 16. PMID: 29573118.

Masson W, Lavalle-Cobo A, Nogueira JP. Effect of SGLT2-Inhibitors on Epicardial Adipose Tissue: A Meta-Analysis. Cells. 2021;10(8):2150. Published 2021 Aug 20. doi:10.3390/cells10082150.

Guglielmo M, Lin A, Dey D, Baggiano A, Fusini L, Muscogiuri G, et al. Epicardial fat and coronary artery disease: Role of cardiac imaging. Atherosclerosis [Internet]. marzo de 2021 [citado 11 de febrero de 2022]; 321:30-8. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0021915021000678.

Mookadam F, Goel R, Alharthi MS, Jiamsripong P, Cha S. Epicardial fat and its association with cardiovascular risk: a cross-sectional observational study. Heart Views. 2010 Oct;11(3):103-8. doi: 10.4103/1995-705X.76801. PMID: 21577377; PMCID: PMC3089830.

Christensen RH, von Scholten BJ, Hansen CS, et al. Epicardial adipose tissue predicts incident cardiovascular disease and mortality in patients with type 2 diabetes. Cardiovasc Diabetol. 2019;18(1):114. Published 2019 Aug 30. doi:10.1186/s12933-019-0917-y.

Descargas

Publicado

2023-05-14